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Abstract

In this supplementary material, we start by giving a dis-
cussion of the limitations and the broader impact of our
paper (Section 1). We then continue by providing the ex-
act numbers for all the graphs in the main paper (Section
2). We continue by providing more extended results in MS-
COCO (Section 3) and devising a pseudo-label for class
model (Section 4). We then compare our method with SSL
methods that are boosted by active learning (Section 5), be-
fore we conclude by a discussion of engineering tricks that
we considered in our work (Section 6).

1. Limitations and broader impact

Limitations. Our method is task-specific and limited to
a set of known categories. Furthermore, our method is less
suitable for acquiring datasets for multi-task networks. Fi-
nally, we only experimented with a vanilla pseudo-labeling
method, which might not reach the best possible results.

Broader impact. Our work introduces a unified frame-
work for reducing the labeling costs needed to train object
detection networks. It provides a way of using all the sam-
ples in the dataset, be they labeled or not, in an optimized
way to reach high accuracy. Manually selecting and label-
ing frames takes a tremendous amount of time and labor, so
by selecting the right data for annotation and training, our
approach can positively impact by reducing storage and la-
beling costs on industries such as autonomous driving that
require large amounts of labeled data. Our approach uses a
single model with the minimum amount of training data to
maximize performance from an ecological standpoint. Our
results suggest that this is a practical approach to address
inefficiencies in training data selection for real-world ap-
plications such as autonomous driving. As our approach
requires fewer training resources, thus we also reduce the
carbon footprint.

*Work performed while interning at NVIDIA.

2. Exact numbers for the experiments given in
the main paper

In the paper, we provide plots for the main experiments
due to the limited space. In Tables 1, 2a, 2b, 3, 4a, 4b, we
summarize the exact numbers corresponding to Figures 3a,
3b, 3c, 4a, 4b and 4c of the main paper. We provide the
mean and the standard deviation for each method and AL
cycle. Each experiment has been run three times.

3. Extended results in MS-COCO
In the paper we presented aggregated results on the num-

ber of classes one acquisition function performs another,
and in pseudo-label performance boost per class. We pre-
sented results by aggregating them over the five cycles of
active learning. For completeness, in Figures 1 and 2, we
provide results for each AL cycle in isolation. We see the
same trend as in the paper.

4. Pseudo-labels for class
In this experiment we analyze different methods for

obtaining pseudo-labels. Precisely, instead of obtaining
pseudo-labels using the confidence score and a threshold τ
independently of the class, we consider the k% most confi-
dent objects for each class and add them as pseudo-labels.
In Table 5a we present the results where we pseudo-label
the top 20%, top 30%, top 40% most confident predictions
for class and compare them with the results of our method
described in the main paper. We see that the methods where
we pseudo-label per class work well, but worse than our
method. Thus, for both simplicity and perormance, we
choose to use our class-agnostic method.

5. Comparison with semi-supervised learning
methods

In this section, we compare our method with semi-
supervised learning methods that are combined with active
learning methods. These results are similar to those of Tab.
3 of the main paper, where we used different active learn-
ing acquisition functions (random, entropy, and inconsis-



Cycle Random Entropy Core-Set [1] LLAL [2] Ensemble [3] MC-dropout [4] CDAL-RL [5] MI-AOD [6] PM [7] Ours
0 60.82±0.2 61.23±0.8 62.36±0.5 60.95±0.4 60.82±0.2 60.82±0.2 61.45 ±0.2 62.20 ±0.2 61.30 ±0.5 63.25±0.2
1 64.23±0.2 63.57±0.9 65.90±0.4 64.91±0.5 65.70±0.9 66.90±0.3 65.30 ±0.2 65.60 ±0.2 65.56 ±0.3 70.95 ±0.1
2 66.33±0.2 66.94±0.2 67.63±0.2 66.90±0.3 69.20±0.3 68.40±0.2 68.20 ±0.3 69.25 ±0.2 68.43 ±0.1 72.88±0.1
3 67.51±0.2 68.70±0.2 68.88±0.5 69.05±0.5 71.50±0.2 70.80±0.4 70.30 ±0.2 70.35 ±0.2 70.77 ±0.1 73.55±0.2
4 68.60±0.5 69.82±0.1 69.44±0.3 70.35±0.6 72.90±0.3 71.90±0.5 71.60 ±0.2 70.80 ±0.2 72.52 ±0.1 74.75±0.2
5 69.27±0.2 70.18±0.3 70.16±0.1 71.49±0.7 74.29±0.2 73.81±0.0 72.20 ±0.2 72.00 ±0.2 73.52 ±0.5 75.60±0.2

Table 1. VOC07+12. Comparison to state-of-the-art active learning methods. We initially use 2, 000 randomly sampled images and, in
every other cycle, we label 1, 000 extra images. Our method outperforms all the other methods, including ensembles, by a large margin.

Cycle Random SSL-cons. [8] SSL-PL [9] Ours
0 60.82±0.2 63.25±0.2 63.25±0.2 63.25±0.2
1 64.23±0.2 67.19 ±0.1 69.60 ±0.5 70.95 ±0.1
2 66.33±0.2 69.44 ±0.1 70.90 ±0.5 72.88±0.1
3 67.51±0.2 71.13 ±0.1 71.80 ±0.1 73.55±0.2
4 68.60±0.5 72.18 ±0.1 72.60 ±0.2 74.75±0.2
5 69.27±0.2 73.10 ±0.1 73.30 ±0.2 75.60±0.2

Cycle Random Entropy Inconsistency Combined Ours
0 63.25±0.2 63.25±0.2 63.25±0.2 63.25±0.2 63.25±0.2
1 67.19 ±0.1 67.24±0.1 67.39±0.9 68.40±0.3 70.95 ±0.1
2 69.44±0.1 70.05±0.1 70.42±0.6 70.84±0.8 72.88±0.1
3 71.13±0.1 72.13±0.2 72.43±0.4 72.93±0.3 73.55±0.2
4 72.18±0.1 73.48±0.6 72.80±1.0 73.66±0.2 74.75±0.2
5 73.1±0.1 74.77±0.2 74.90±0.3 74.98±0.5 75.60±0.2

(a) (b)

Table 2. VOC07+12. a) Comparison to two semi-supervised learning methods. We initially use 2, 000 randomly sampled images and,
in every other cycle, we label 1, 000 extra images. Our method outperforms both of them by a large margin. b) Ablation study on the
effect of entropy, inconsistency, unified score, and our method in VOC07+12. We observe that doing active learning with either entropy or
consistency outperforms the semi-supervised model, that the unified score performs better than either of the individual scores, and that our
method reaches the best overall results.

Cycle Random Entropy Core-Set [1] Ensemble [3] MC-dropout [4] PM [7] Ours
0 25.63±0.4 25.63±0.4 25.63±0.4 27.50±0.3 27.50±0.3 27.70 ±0.1 27.50±0.3
1 28.40±0.1 28.57±0.2 28.10±0.5 28.65±0.1 28.70±0.2 29.28 ±0.1 30.07±0.4
2 29.40±0.2 29.47±0.1 29.57±0.1 29.75±0.2 29.42±0.2 30.51±0.1 31.63±0.1
3 30.20±0.6 30.37±0.1 30.40±0.4 30.43±0.1 30.24±0.2 31.20 ±0.1 32.10±0.1
4 31.03±0.1 31.17±0.2 31.17±0.3 31.20±0.2 31.03±0.1 31.86 ±0.1 32.43±0.1
5 31.47±0.3 31.50±0.2 31.87±0.2 31.75±0.1 31.22±0.1 32.27 ±0.1 32.80±0.0

Table 3. MS-COCO. Comparison to state-of-the-art methods. In this case, we initially use 5, 000 randomly sampled images, and, in every
active learning cycle, we label 1, 000 extra images. Our method outperforms all the other methods, including ensembles, by a large margin.

Cycle Random SSL-cons. [8] SSL-PL [9] Ours
0 25.63±0.4 27.50±0.3 27.50±0.3 27.50±0.3
1 28.40±0.1 28.52 ±0.1 28.70 ±0.2 30.07±0.4
2 29.40±0.2 29.20 ±0.1 29.42 ±0.2 31.63±0.1
3 30.20±0.6 30.20 ±0.1 30.24 ±0.2 32.10±0.1
4 31.03±0.1 31.03 ±0.1 31.03 ±0.1 32.43±0.1
5 31.47±0.3 31.47 ±0.1 31.22±0.1 32.80±0.0

Cycle Random Entropy Inconsistency Combined Ours
0 27.50±0.3 27.50±0.3 27.50±0.3 27.50±0.3 27.50±0.3
1 28.53±0.1 28.97±0.3 28.90±0.3 29.17±0.2 30.07±0.4
2 29.20±0.1 29.77±0.1 29.90±0.7 30.17±0.2 31.63 ±0.1
3 29.87±0.1 29.93±0.4 30.85±0.4 30.90±0.2 32.10 ±0.1
4 31.03±0.1 31.10±0.1 31.55±0.1 31.55±0.1 32.43 ±0.1
5 31.10±0.1 31.40±0.1 31.65±0.3 31.50±0.1 32.80 ±0.0

(a) (b)

Table 4. MS-COCO. a) Comparison to two semi-supervised learning methods. We initially use 5, 000 randomly sampled images and,
in every other cycle, we label 1, 000 extra images. Our method outperforms both of them by a large margin. b) Ablation study on the
effect of entropy, inconsistency, unified score, and our method in MS-COCO. We observe that doing active learning with either entropy or
consistency outperforms the semi-supervised model, that the unified score performs better than either of the individual scores, and that our
method reaches the best overall results.

tency) on top of the consistency-based SSL [8]. Here, we
add a diversity method (core set [1]) and we also experi-
ment with the pseudo-labeling SSL method. We show the
results in Tab. 6. As we show, both entropy and inconsis-
tency when combined with either form of semi-supervision
improve over the baseline. However, our method still signif-

icantly outperforms these naive combinations. The core-set
method [1] harms the training in both cases.



Cycle Top 20% Top 30% Top 40% Ours
0 63.25±0.3 63.25±0.3 63.25±0.3 63.25±0.3
1 69.42±0.1 69.63±0.1 69.67±0.3 70.95±0.1
2 71.84±0.3 71.84±0.3 72.14±0.2 72.88±0.1
3 73.34±0.3 73.47±0.1 73.56±0.2 73.55±0.1
4 74.53±0.1 74.53±0.2 74.32±0.2 74.75±0.1
5 75.13±0.1 75.39±0.2 75.19±0.2 75.60±0.1

Cycle Random Balanced quarter Unified
0 53.66±0.2 63.37±0.2 63.25±0.2
1 67.39±0.4 68.12±0.2 68.40±0.3
2 69.90±0.5 70.12±0.6 70.84±0.8
3 71.38±1.2 71.92±0.3 72.93±0.3
4 73.53±0.4 73.48±0.3 73.66±0.2
5 74.30±0.4 73.90±0.4 74.98±0.5

(a) (b)

Table 5. VOC07+12. a) The results of adding top k% most confident pseudo-labels for class, compared to the results of our method. Top
20%, Top 30%, Top 40% represent the methods where we choose to pseudo-label the most confident 20%, 30% and 40% pseudo-labels
per class. Ours represent our method where we pseudo-label all the objects for which the network’s confidence is greater than 0.99. b)
Accuracy as a function of label/unlabeled sampling strategy. Random refers to random sampling from the entire dataset, Balanced quarter
refers to having a quarter of labeled samples; Unified refers to half of the samples being labeled. Our balanced strategy outperforms the
other two strategies. Note that in order to check only the effect of balancing, we do not add pseudo-labels during the training.

Method/Cycle 1 2 3 4 5
CSD [8] 67.19 69.44 71.13 72.18 73.10
CSD [8] + incons. 67.39 70.42 72.43 72.80 74.90
CSD [8] + entropy 67.24 70.05 72.13 73.48 74.77
CSD [8] + coreSet 62.93 65.35 67.15 69.32 70.62
PL [9] 69.60 70.90 71.80 72.60 73.30
PL [9] + incons. 68.32 69.93 72.13 73.42 73.74
PL [9] + entropy 66.87 71.48 72.30 74.06 74.62
PL [9] + coreSet 66.35 67.56 70.59 72.06 72.93
Ours 70.95 72.88 73.55 74.75 75.60

Table 6. VOC07+12. Comparison to other semi-supervised active
learning methods. We use the consistency-based method [8] and
pseudo-labeling method [9] as semi-supervised learning method,
and use random sampling, entropy, inconsistency and core set as
active learning method. We show that our method significantly
outperforms the other approaches.

6. Engineering tricks to consider
6.1. Non-maximum suppression

We found the effect of non-maximum suppression
(NMS) to be very important in all AL methods. Without
applying NMS, active learning methods did not work better
than a random sampling method. We hypothesize that this
happens because if we do not apply NMS, the number of
detected boxes is in the hundreds, so by sheer chance, some
of them might have high acquisition scores. Considering
that in a real-world scenario these boxes would be killed by
NMS, we conclude that these boxes should not be used to
compute an acquisition score. Thus, for every image, we
apply NMS before proceeding with the computation of the
acquisition score.

6.2. Balanced mini-batches

In the main paper, for every experiment, we force that
half of the samples in a mini-batch are labeled. In this ex-
periment, we evaluate the effect of varying the number of
labeled samples in a mini-batch. In particular, we compare
our results to having only half of the samples labeled, and

a random approach. In order to be able to quantify the ef-
fect of balancing, we do all the experiments without adding
pseudo-labels. We present the results in Table 5b. We ob-
serve that our strategy of balancing the mini-batches so they
contain an equal number of labeled and unlabeled samples,
performs best by up to 1pp in all AL cycles except the zeroth
one, when it gets outperformed by 0.12pp by the strategy
where only a quarter of samples contain labels. We also ob-
serve that the strategy where we do only random sampling
consistently reaches the worst results. In fact, in the zeroth
AL cycle it gets outperformed by the balanced strategies by
almost 10pp. This can be explained by the fact that the num-
ber of labeled samples (2, 000) is much lower than the num-
ber of unlabeled samples (14, 651), so in a mini-batch of
size 32, in average, only 3.86 samples have labels. In some
mini-batches, the number of labeled samples is 0, and thus
the loss function becomes completely self-supervised. We
observe that when the number of labeled samples increases
(by labeling other images during AL stage), the overall per-
formance increases, but it still lags behind the the balanced
strategies.

6.3. Balancing the losses

Similar to balancing the mini-batches, we experiment
with balancing the weight of the consistency loss. We show
the experiments in Tab. 7, and these results are comple-
mentary to those of the balanced mini-batches. Similar
to the results with balanced mini-batches, we see that we
reach the top performance where we do not use any weight
(weight=1) for the consistency loss.
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Figure 1. MS-COCO. The percentage of classes where one acquisition function outperforms another. Numbers 1-5 represent the active
learning cycle. Example: taking the entry ”unified” in the y-axis, and ”entropy” in the x-axis in (1), we get the value 0.65 which means
that ”unified” acquisition function outperforms the ”entropy” acquisition function in 65% of classes during the first active learning cycle.

(1) (2) (3) (4) (5)

Figure 2. MS-COCO. The percentage of classes where our unified acquisition function outperforms random with and without pseudo-
labels. Numbers 1-5 represent the active learning cycle. Example: taking the entry ”unified with PL” in the y-axis, and ”random” in the
x-axis in (1), we get the value 0.76 which means that our method outperforms the random acquisition function in 76% of classes during
the first active learning cycle.

Method/Cycle 1 2 3 4 5
weight=0.25 69.75 65.55 73.39 73.89 74.18
weight=0.50 69.62 65.90 73.06 74.37 74.48
Ours (weight=1) 70.95 72.88 73.55 74.75 75.60
weight=2.00 69.92 65.74 73.31 74.12 74.22
weight=4.00 70.09 63.58 72.07 73.78 74.06

Table 7. VOC07+12. Accuracy as a function of the weight of the
unsupervised loss.
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