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Supplementary material

Figure I: The role of Grain Appearance Inspection (GAI).

In this supplementary material, we describe GrainSpace,
our benchmark and grain image examples in further detail.
This document includes:

• Details and statistical information about GrainSpace
(Section A).

• Detailed results of our benchmark (Section B).

• Examples of single-kernel images of wheat, maize and
rice grains (Section C).

A. GrainSpace
In this section, we describe more details about GAI (see

Figure I) including device prototypes, data processing pro-
cedure and the statistical information of GrainSpace.

Figure II gives the information about the original loca-
tions of cultivation of all grain samples. We tried our best
to construct GrainSpace with comprehensive grain samples
in terms of species and regions. To avoid potential ethi-
cal issues or privacy restrictions, information about speci-
fied regions is erased. Nonetheless, we found that all grain
samples are acquired from 5 countries including The United
States (USA), Canada (CAN), Australia (AU), Cambodia
(KHM) and China (CHN). Specifically, wheat grains are
mainly sampled from USA, CAN, AU and CN; maize grains
are mainly sampled from USA and CN; and rice grains are
mainly sampled from KHM and CN.

Figure III shows more information about three kinds of
device prototypes in terms of design blueprint, real images,
raw image Iraw, single-kernel image Ig and radar map. At
the beginning of designing device prototypes, we consid-
ered that how to capture the whole outside appearance in-
formation of grain kernels with the lowest cost but the high-
est efficiency. However, there is no such thing as a free
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Figure II: The cultivation locations of all grain samples.

lunch. We designed P600 with an automatic feeding sys-
tem and stable photograph environments, and also designed
M600 with a smartphone and a simple holder. P600 with
high manufacturing cost is suitable for laboratory or indus-
trial situations, whereas M600 with low efficiency has more
potential for widespread acceptance. In addition, we at-
tempted to design G600 as an intermediate device which
is a trade-off between P600 and G600. We believe that
data captured by G600 can provide abundant information
for training M600 models.

Figure IV describes detailed overview of data process-
ing procedure. Taking wheat sample as an example, raw
wheat grain samples obtained from granaries or freighters
contain various impurities including extraneous and inor-
ganic matters, and thus raw samples are firstly cleaned man-
ually by using combinations of sieves with different aper-
tures. Then, wheat samples are still mixed with impurities
that have similar shape and weight with wheat kernels, in

1



Camera-UP

Conveyor

Light Source-UP

Light Source-Down

Camera-Down

Transparent Plate 
with Samples

Camera

Transparent Plate 

with Samples

Light Source

Conveyor

P600

G600

M600
Mobile Phone

Holder

Blueprint Device Prototypes Raw Image Image Radar Map

AutomaticityReproducibility

Complexity ERF

Cost

AutomaticityReproducibility

Complexity ERF

Cost

AutomaticityReproducibility

Complexity ERF

Cost

Figure III: Detailed description of three device prototypes (P600, G600 and M600).

which these impurities are picked out by inspectors with
the aid of tweezers. With the above operations, test sam-
ples are obtained and then divided into several predefined
groups with the inspectors’ determination, each of which
groups is delivered into devices in batch to obtain N raw
images I1raw, . . . , I

N
raw. After capturing all raw images, raw

image Iraw is processed to generate many single-kernel im-
ages Ig via detection and alignment stages, in which detec-
tion stage is introduced to localize and crop single-kernel
images and alignment stage is used to normalize the view
of single-kernel image. Finally, all aligned singe-kernel im-
ages are inspected manually to construct high-quality data.

Figure V illustrates the distribution of NORMAL and
UD categories of wheat and maize data, and all sub-types
of rice data. We observed that, except for NORMAL cate-
gory, SD and MY are the most common UD-grains in wheat
and maize respectively, whereas F&S and SD are the rarest
UD-grains. These UD categories distribution are consistent
with real-world situation where these kinds of UD samples
are abundant or unusual.

B. Detailed Results of Benchmark

In this section, we give some backgrounds about three
challenges, and describe detailed experimental settings, re-

sults and visualization of our benchmark.
Fine-grained Recognition: Fine-grained visual clas-

sification (FGVC) aims at find subtle differences among
a set of classes, in which these differences are usually
defined by experts. There are several common datasets,
e.g. bird categories [40, 35], dog species, flower types
[1, 25, 29], aircraft [24] and etc [19]. Recently, FGVC
has attracted attention and great progress has been obtained
[8, 38, 41, 43, 7, 9, 17, 20]. Due to the limitation of com-
putational resources, in this paper, we employed DCL [8]
as one of the benchmarking models. Compared to FGVC
models, we also employ two common models: ResNet50
(R50) [14] and Swin Transformer [21].

• R50 models were trained with cross entropy loss for 40
epochs, batch size is 64, and we employed Radam op-
timizer with ReduceLROnPlateau learning rate sched-
uler and initial learning rate of 0.0003. All input im-
ages are resized to 224 × 224 and a combination of
data augmentation (RandomBright, RandomContrast,
RandomFlip) is adopted.

• Following original paper, DCL models were trained
for 40 epochs, batch size is 48, and we employed SGD
optimizer with step learning rate scheduler (halved af-
ter 10, 20 and 30 epochs) and initial learning rate of
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0.001. All input images are resized to 224 × 224 and
data augmentation (RandomSwap) is adopted.

• Swin Transformer models were trained with cross en-
tropy loss for 40 epochs, batch size is 24, and we
employed Radam optimizer with ReduceLROnPlateau
learning rate scheduler and initial learning rate of
0.0003. All input images are resized to 224× 224 and
a combination of data augmentation (RandomBright,
RandomContrast, RandomFlip) is adopted.

Table I shows the detailed results of Table 8. We used
different color boxs to denote collapsed( <5% ), limited
( <50% ) and good ( >90% ) performance.

In addition, we employed t-SNE [34] to qualitatively vi-
sualize features extracted from pretrained models. Figure
VI presents the t-SNE visualization on all P600 data based
on features extracted from DCL models. Specifically, the
same classes in wheat R1−14 are clustered well, whereas the
NORMAL and SD classes are mixed in wheat R15−18 and
R19−22. The majority of classes in maize are gathered ex-
cept for a slight confusion between MY and HD. The inter-
classes in rice are separated clearly.

Semi-supervised Learning: We employed MixMatch
[4] to fine-tune corresponding models. Models were fine-
tuned for 40 epochs, batch size is 128, and we em-
ployed Adam optimizer with the step learning rate sched-
uler (halved after 10, 20 and 30 epochs) and initial learning
rate of 0.00005. All input images are resized to 224 × 224
and data augmentation (Mixup [39]) is adopted. Table II
shows the detailed results of Table 9.

Self-supervised Learning: We employed MoCo [13] to
train models without annotations. Following the original
paper, models were trained for 40 epochs (due to the limi-
tation of GPU resources), batch size is 256, MoCo momen-
tum is 0.999, and we employed SGD optimizer with the
step learning rate scheduler (halved after 30 epochs) and
initial learning rate of 0.02. All input images are resized to
224 × 224 and a combination of data augmentation (Ran-
domResizeCrop, ColorJitter, RandomGrayscale, Gaussian-
Blur and RandomHorizontalFlip) is adopted.

Then, we evaluated the pretrained models via linear
probe with different proportions of labeled data. We ex-
tracted frozen features from pretrained models and added a
linear classifier. Models are fine-tuned for 50 epochs, batch
size is 256, and we employed SGD optimizer with the step
learning rate scheduler (halved after 30 epochs) and initial
learning rate of 5. All input images are resized to 224×224
and a combination of data augmentation (RandomResize-
Crop and RandomHorizontalFlip) is adopted. Figure VII
and Table III illustrate the detailed results of Table 10.

Domain Adaptation: The task of Domain Adaptation
(DA) aims at learning models that can eliminate the distri-
bution shift between training and testing datasets. There are

serveral common datasets [37, 26] and advanced methods
[5, 11, 28, 36]. In this paper, we employed CDAN [22],
MCD [32] and MCC [18] to evaluate DA performance.

• CDAN models were trained for 30 epochs, batch size
is 48, and we employed SGD optimizer with the spec-
ified rate scheduler and initial learning rate of 0.001.
All input images are resized to 224 × 224 and a com-
bination of data augmentation (RandomResizedCrop,
RandomHorizontalFlip) is adopted.

• MCD models were trained for 30 epochs, batch size is
36, and we employed Adam optimizer with a constant
learning rate of 0.0002. All input images are resized to
224× 224.

• CDAN models were trained for 30 epochs, batch size
is 48, and we employed SGD optimizer with the spec-
ified rate scheduler and initial learning rate of 0.001.
All input images are resized to 224 × 224 and a com-
bination of data augmentation (RandomResizedCrop,
RandomHorizontalFlip) is adopted.

Table IV shows the detailed results of Table 11. Table V,
Table VI and Table VII show the detailed results of Table
12. We observed that models adapting between G600 and
M600 on wheat and rice data achieved comparable results,
which verified that data acquired by G600 benefits M600
models.

Out-of-distribution Recognition: The task of Out-of-
distribution (OOD) recognition (also named as an anomaly
detection) aims at identifying weather a sample come from
training dataset or not. There are several datasets [6, 27, 10,
3] and many deep learning-based methods [30, 23, 2, 12,
15]. In this paper, we employed Deep SVDD [31], Rot [16]
and CSI [33] to evaluate out-of-distribution (OOD) recog-
nition performance.

• Deep SVDD models were trained for 40 epochs, batch
size is 128, and we employed Adam optimizer with
step rate scheduler (halved after 10, 20 and 30 epochs)
and initial learning rate of 0.0001. All input images
are resized to 96 × 96 and data augmentation (global
contrast normalization) is adopted.

• Rot models were trained for 40 epochs, batch size is
64, and we employed SGD optimizer with a constant
learning rate of 0.1. All input images are resized to
96×96 and data augmentation (RandomResizedCrop)
is adopted.

• CSI models were trained for 40 epochs, batch size is
24, and we employed SGD optimizer with the cosine
rate scheduler and initial learning rate of 0.1. All in-
put images are resized to 224 × 224 and a combina-
tion of data augmentation (RandomResizedCrop Ran-
domHorizontalFlip) is adopted.
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Table VIII shows OOD method results on G600 and
M600 rice data, and Table IX shows OOD method results
on G600 and M600 wheat and maize data. We observed
that Rot models on wheat (M600) and maize(G600) data
achieved AUROC of near 80%, which verified that treating
UD-grains recognition as OOD recognition is feasible and
potential.

C. Examples of Wheat, Maize and Rice Grains
We further plot single-kernel images of all categories of

wheat, maize and rice grains (see Figure VIII, Figure IX and
Figure X).

Figure XI shows the raw images acquired by P600, G600
and M600. We show more CAM-based [42] visualization
results (see Figure XII, Figure XIII and Figure XIV).
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Figure IV: Detailed overview of data acquisition.
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Figure V: The histogram of three kinds of grain data (wheat, maize and rice) and their subclasses.
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Table I: Detailed performance of R50, DCL and Swin Transformer on wheat data: regions vs. device prototypes (supplements
Table 8, all results are F1-scores, <5% , <50% , >90% ).

Model Region Device NORMAL F&S SD MY BN AP BP Total

R50

R1−14

P600 99.5% 85.2% 93.0% 93.6% 98.5% 95.5% 92.0% 93.9%
G600 99.0% 95.1% 69.7% 77.0% 95.2% 70.2% 54.7% 80.1%
M600 99.5% 87.1% 86.1% 80.1% 94.7% 78.5% 87.2% 87.6%

R15−18

P600 82.3% 35.9% 80.0% 93.9% 98.1% 83.4% 86.4% 80.0%
G600 75.7% 25.9% 73.5% 96.4% 97.7% 89.8% 76.7% 76.5%
M600 96.8% 41.4% 95.8% 94.5% 92.8% 47.4% 89.2% 79.7%

R19−22

P600 86.7% 34.1% 78.2% 40.0% 96.2% 76.8% 78.9% 70.1%
G600 84.0% 38.4% 81.6% 65.0% 96.5% 94.3% 72.7% 76.1%
M600 96.7% 56.6% 82.8% 60.4% 85.9% 62.8% 87.4% 76.1%

DCL

R1−14

P600 99.4% 83.0% 92.1% 93.0% 97.7% 92.0% 90.6% 92.5%
G600 99.0% 93.1% 69.7% 78.1% 93.9% 69.4% 50.5% 79.1%
M600 99.5% 85.3% 85.4% 80.0% 96.1% 79.2% 89.6% 87.9%

R15−18

P600 82.1% 49.3% 80.3% 93.5% 98.3% 84.2% 86.9% 82.1%
G600 75.1% 30.1% 72.7% 96.5% 97.1% 91.0% 77.6% 77.2%
M600 96.2% 53.4% 93.6% 93.8% 87.7% 25.7% 82.5% 76.1%

R19−22

P600 86.4% 46.8% 77.5% 42.9% 97.1% 85.9% 80.6% 73.9%
G600 83.1% 37.4% 79.9% 61.0% 96.5% 94.1% 72.0% 74.9%
M600 96.0% 44.0% 78.3% 52.0% 86.7% 61.0% 88.7% 72.4%

SwinT

R1−14

P600 97.4% 43.2% 20.7% 81.2% 87.5% 25.9% 40.0% 56.5%
G600 97.0% 41.6% 17.3% 22.6% 71.2% 0.3% 24.5% 39.2%
M600 98.8% 66.3% 52.3% 33.5% 79.8% 41.7% 75.9% 64.0%

R15−18

P600 65.0% 0.0% 54.1% 75.3% 94.1% 0.0% 59.9% 49.8%
G600 65.1% 0.0% 50.0% 85.2% 92.3% 66.2% 50.8% 58.5%
M600 90.0% 0.0% 69.9% 51.1% 63.0% 0.0% 33.3% 43.9%

R19−22

P600 76.2% 0.0% 64.1% 0.0% 92.8% 13.2% 61.6% 44.0%
G600 74.6% 0.0% 69.6% 31.0% 90.8% 43.9% 49.3% 51.3%
M600 93.5% 35.1% 64.8% 20.0% 71.7% 10.4% 78.5% 53.4%

Table II: Detailed performance of device prototypes on wheat, maize and rice data. (+ and - denote results obtained from
MixMatch, supplements Table 9, all results are F1-scores, <5% , <50% , >90% ).

Species Training set Test set NORMAL Damaged and Unsound grains Total
P600 G600 M600 F&S SD MY BN AP BP

Wheat

X P600 89.4%+2.8% 67.2%+0.5% 19.8%+41.9% 67.1%+15.6% 94.9%+0.4% 73.8%+2.4% 67.6%+10.9% 68.5%+10.7%
X G600 93.7%+0.8% 89.9%-4.5% 17.0%+28.3% 59.7%+4.6% 86.5%-0.7% 54.2%-0.1% 43.6%+7.3% 63.5%+5.2%

X M600 95.1%+1.7% 62.3%-3.4% 32.9%+36.5% 54.3%+10.9% 57.6%+17.7% 48.7%-2.5% 65.1%+14.1% 59.4%+10.7%
X X G600 93.7%+0.6% 89.3%-7.4% 19.3%+21.3% 62.1%+3.9% 81.8%+5.0% 56.8%-3.0% 41.1%+10.9% 63.4%+4.5%
X X M600 88.1%+5.3% 0.1%+27.1% 0.2%+7.2% 0.1%+22.1% 10.4%+5.1% 0.5%+11.0% 4.5%+25.3% 14.8%+14.7%

Species Training set Test set NORMAL Damaged and Unsound grains Total
P600 G600 M600 FM SD MY BN AP HD

Maize

X P600 99.2%-1.5% 99.4%-2.1% 93.6%-5.7% 86.5%-2.8% 98.0%-1.5% 96.8%-1.0% 84.8%-4.1% 94.0%-2.6%
X G600 97.9%-1.4% 85.5%-2.4% 88.9%-1.5% 75.3%-6.0% 95.4%-0.6% 92.2%-3.1% 70.8%-0.3% 86.6%-2.2%

X M600 95.4%-1.7% 52.4%-8.3% 85.3%-24.3% 81.3%-4.1% 94.9%-1.3% 91.4%-0.3% 79.0%-4.6% 82.8%-6.4%
X X G600 97.7%-1.0% 83.2%-1.6% 87.5%-2.0% 72.7%-3.8% 95.7%-1.4% 91.7%-1.9% 68.4%+0.6% 85.3%-1.6%
X X M600 67.8%+8.9% 14.4%+13.1% 27.3%+28.3% 31.4%+24.2% 62.2%+19.3% 31.7%+33.9% 1.6%+42.8% 33.8%+24.3%

Species Training set Test set Categories of Rice Grains Total
P600 G600 M600 Malis SQ 545 HF WC HN JZ SY

Rice

X P600 99.2% 97.4% 98.9% 99.0% 99.9% 99.4% 99.7% 99.8% 99.2%
X G600 99.4% 95.6% 97.8% 99.4% 99.7% 99.5% 99.6% 99.8% 98.9%

X M600 93.4% 80.0% 88.2% 91.6% 98.0% 97.1% 98.6% 96.8% 93.0%
X X G600 99.3% 95.0% 97.5% 99.4% 99.7% 99.4% 99.6% 99.8% 98.7%
X X M600 4.3% 30.0% 19.8% 21.7% 43.5% 23.0% 46.6% 25.7% 26.8%
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Figure VI: t-SNE visualization of P600 wheat, maize and rice data (based on DCL models).

Figure VII: Curves of MoCo performance via linear probe vs. different proportions of labeled data.
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Table III: Detailed MoCo performance of device prototypes on wheat, maize and rice data (supplements Table 10, all results
are F1-scores, <5% , <50% , >90% ).

Species Training set Test set Proportion NORMAL Damaged and Unsound Grains Total
P600 G600 M600 F&S SD MY BN AP BP

Wheat

X
P600

1% 89.7% 19.0% 60.3% 69.5% 96.1% 27.6% 39.8% 57.4%
X 10% 90.2% 35.2% 59.8% 76.3% 96.3% 22.9% 39.2% 60.0%
X 100% 89.8% 27.4% 55.6% 72.1% 96.1% 21.2% 34.6% 56.7%

X
G600

1% 94.1% 59.2% 50.4% 75.4% 94.8% 55.6% 27.8% 65.3%
X 10% 93.8% 51.2% 44.5% 75.4% 95.5% 57.0% 26.2% 63.4%
X 100% 93.7% 53.5% 40.7% 72.2% 95.4% 49.1% 28.4% 61.9%

X
M600

1% 94.7% 28.0% 0.0% 20.4% 70.1% 0.6% 7.2% 31.6%
X 10% 95.3% 52.0% 29.7% 21.2% 83.2% 25.9% 12.2% 45.6%
X 100% 95.5% 51.0% 37.2% 32.6% 82.7% 12.0% 7.4% 45.5%

X X

G600
M600

1%
93.2%
94.5%

52.5%
32.3%

30.7%
10.2%

73.1%
33.7%

94.7%
73.8%

37.7%
9.8%

25.7%
6.8%

58.2%
37.3%

X X 10%
93.4%
94.7%

47.8%
38.9%

34.8%
15.2%

74.4%
36.0%

95.2%
77.0%

48.8%
16.1%

26.9%
9.5%

60.2%
41.1%

X X 100%
93.3%
94.5%

49.1%
36.3%

31.7%
9.2%

73.0%
31.5%

95.1%
76.5%

48.1%
11.9%

26.9%
10.8%

59.6%
38.7%

Species Training set Test set Proportion NORMAL Damaged and Unsound Grains Total
P600 G600 M600 FM SD MY BN AP HD

Maize

X
P600

1% 64.1% 0.1% 0.1% 0.1% 56.1% 0.1% 0.1% 17.2%
X 10% 83.4% 77.9% 0.1% 31.8% 88.1% 49.9% 37.8% 52.7%
X 100% 86.5% 92.8% 55.0% 59.4% 92.6% 61.9% 58.3% 72.4%

X
G600

1% 0.1% 39.3% 0.1% 0.1% 31.1% 0.1% 15.8% 12.3%
X 10% 80.9% 59.7% 39.2% 44.5% 76.3% 33.8% 32.6% 52.4%
X 100% 86.5% 64.8% 53.3% 50.9% 84.2% 54.0% 39.7% 61.9%

X
M600

1% 48.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 6.9%
X 10% 67.1% 0.1% 0.1% 0.1% 0.1% 6.2% 0.1% 10.5%
X 100% 74.5% 14.0% 29.9% 53.1% 69.2% 28.4% 1.7% 38.7%

X X

G600
M600

1%
78.2%
48.6%

0.1%
0.1%

0.1%
0.1%

29.9%
0.1%

3.0%
0.1%

0.1%
0.1%

22.3%
19.6%

19.1%
9.7%

X X 10%
79.5%
76.0%

60.6%
26.1%

40.9%
4.9%

44.6%
56.9%

79.6%
77.4%

40.7%
39.4%

34.2%
28.1%

54.3%
44.1%

X X 100%
87.0%
80.2%

65.1%
34.3%

54.8%
38.3%

51.1%
49.2%

85.3%
78.9%

53.2%
48.7%

42.8%
29.5%

62.8%
51.3%

Species Training set Test set Proportion Categories of Rice Grains Total
P600 G600 M600 Malis SQ 545 HF WC HN JZ SY

Rice

X
P600

1% 0.0% 0.0% 46.0% 0.0% 0.0% 0.0% 36.7% 0.0% 10.3%
X 10% 37.2% 13.3% 47.4% 25.6% 61.3% 38.7% 65.2% 64.1% 44.2%
X 100% 30.0% 16.8% 49.6% 32.5% 72.8% 40.8% 79.2% 70.2% 49.0%

X
G600

1% 0.0% 0.0% 73.1% 56.7% 57.8% 38.4% 47.5% 0.0% 34.2%
X 10% 32.7% 10.9% 46.3% 71.0% 84.6% 47.8% 75.1% 67.8% 54.5%
X 100% 79.2% 41.6% 57.5% 83.6% 79.2% 53.7% 88.6% 79.4% 70.4%

X
M600

1% 0.0% 0.0% 0.0% 15.4% 28.7% 21.8% 18.9% 0.0% 10.6%
X 10% 15.9% 6.5% 1.0% 24.3% 25.6% 18.8% 17.2% 19.9% 16.2%
X 100% 33.6% 21.8% 33.6% 23.6% 41.7% 31.8% 35.5% 35.2% 32.1%

X X

G600
M600

1%
91.1%
12.5%

0.8%
20.4%

72.8%
8.5%

90.7%
13.7%

0.0%
0.1%

47.4%
35.7%

0.0%
0.1%

0.0%
0.1%

37.9%
11.4%

X X 10%
46.9%
36.0%

5.9%
22.1%

26.4%
43.9%

73.6%
26.6%

86.3%
75.1%

46.7%
45.8%

50.2%
57.7%

63.8%
45.6%

50.0%
44.2%

X X 100%
84.4%
46.3%

42.8%
10.7%

66.9%
45.3%

87.4%
32.3%

90.4%
83.1%

57.0%
45.6%

94.9%
77.6%

90.6%
61.0%

76.8%
50.2%
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Table IV: Detailed performance of DA methods on wheat data: regions vs. device prototypes (supplements Table 11, all
results are F1-scores, <5% , <50% , >90% ).

S→ T Method Normal F&S SD MY BN AP BP Total

R1−14

↓
R15−18

Source only 67.5%,60.6%,80.2% 0.0% , 0.0% , 2.7% 14.1% , 0.0% , 20.8% 52.5%, 0.0% , 13.3% 94.5% ,70.0%, 31.7% 25.5% , 1.7% , 0.0% 46.0% , 0.0% , 10.3% 42.9% , 18.9% , 22.7%

CDAN 64.8%,60.4%,83.6% 0.0% , 0.0% , 0.0% 3.9% , 0.2% , 2.2% 4.5% , 12.9% , 2.0% 72.0%, 45.2% , 2.9% 18.1% , 2.2% , 0.0% 29.0% , 0.0% , 9.5% 27.5% , 17.3% , 14.3%
MCD 63.7%,59.8%,83.6% 0.0% , 0.0% , 0.0% 0.0% , 0.0% , 0.0% 0.0% , 12.4% , 0.0% 75.9%, 0.0% , 0.0% 0.0% , 0.0% , 0.0% 0.0% , 0.0% , 0.0% 20.0% , 10.3% , 11.9%
MCC 65.9%,61.4%,83.8% 0.0% , 0.0% , 0.0% 7.8% , 0.0% , 0.0% 3.6% , 17.8% , 0.0% 90.7% ,65.5%, 11.0% 18.2% , 0.6% , 0.0% 35.9% , 0.5% , 13.6% 31.8% , 20.8% , 15.5%

R15−18

↓
R1−14

Source only 49.7% , 5.8% ,58.2% 0.8% , 0.0% , 2.1% 8.6% , 16.6% , 7.1% 6.4% , 3.6% , 15.9% 8.6% ,72.3%,66.7% 16.3% , 11.4% , 2.1% 33.1% , 3.6% , 6.1% 17.6% , 16.2% , 22.6%

CDAN 87.8%, 44.3% ,85.3% 2.6% , 0.0% , 5.5% 16.2% , 1.7% , 5.7% 18.1% , 7.3% , 16.4% 66.3%,53.2%, 39.7% 8.8% , 5.3% , 0.1% 21.8% , 9.3% , 34.8% 31.6% , 17.3% , 26.8%
MCD 69.0%,85.0%, 92.9% 0.0% , 0.0% , 0.0% 9.3% , 5.6% , 11.7% 20.0% , 5.5% , 3.4% 67.2%, 11.1% , 18.3% 2.0% , 0.3% , 0.0% 23.3% , 38.8% , 0.0% 27.2% , 20.9% , 18.1%
MCC 80.9%,50.9%,84.1% 1.6% , 0.0% , 0.0% 12.4% , 2.2% , 4.3% 14.0% , 3.9% , 3.2% 67.5%, 36.6% , 33.2% 5.1% , 5.9% , 0.0% 14.8% , 8.1% , 19.2% 28.0% , 15.4% , 20.6%

R15−18

↓
R19−22

Source only 77.3%, 11.3% ,87.5% 1.9% , 3.1% , 0.0% 62.1%, 7.2% , 48.8% 19.2% , 3.8% , 42.9% 88.8%,58.3%,63.9% 56.8%, 10.5% , 36.0% 64.5%, 18.3% , 44.3% 52.9%, 16.1% , 46.2%

CDAN 71.8%, 30.5% , 90.8% 0.0% , 0.0% , 0.0% 44.8% , 34.3% , 39.3% 9.2% , 4.6% ,52.5% 80.4%,55.9%, 40.0% 35.4% , 13.4% , 10.8% 64.8%, 23.4% ,64.5% 43.7% , 23.2% , 42.6%
MCD 72.4%, 45.4% ,87.3% 0.0% , 0.0% , 0.0% 29.5% , 18.1% , 35.5% 18.6% , 7.1% , 25.9% 84.6%,71.7%, 46.4% 4.7% , 6.5% , 0.0% 54.6%, 21.7% , 0.0% 37.7% , 24.4% , 27.9%
MCC 67.4%, 17.1% ,88.2% 0.0% , 0.0% , 0.0% 42.9% , 32.0% , 28.9% 10.1% , 3.1% , 0.0% 78.5%,51.6%, 38.5% 24.9% , 12.2% , 0.0% 57.3%, 20.2% , 47.0% 40.1% , 19.5% , 28.9%

R19−22

↓
R15−18

Source only 69.6%, 34.9% ,89.4% 0.0% , 0.0% , 11.4% 41.5% , 15.8% , 41.5% 7.5% , 21.3% , 48.6% 95.2% , 90.2% ,72.4% 39.1% , 15.2% , 18.6% 66.5%, 9.0% ,55.4% 45.6% , 26.6% , 48.2%

CDAN 67.0%, 23.8% ,87.5% 0.0% , 0.0% , 6.8% 29.4% ,52.1%, 28.5% 1.1% , 0.0% , 43.8% 94.2% , 46.0% ,54.6% 29.5% , 7.2% , 0.0% 65.4%, 22.9% ,54.3% 40.9% , 21.7% , 39.4%
MCD 44.5% , 36.1% ,83.7% 0.0% , 0.0% , 0.0% 51.2%,51.1%, 22.3% 0.0% , 0.0% , 0.0% 94.2% ,76.0%, 4.3% 0.0% , 6.3% , 0.0% 65.4%, 38.9% , 22.2% 36.4% , 29.8% , 19.0%
MCC 64.4%,50.3%,85.7% 0.0% , 0.0% , 5.1% 18.6% , 34.8% , 19.2% 0.0% , 0.0% , 2.0% 87.7%, 39.5% , 38.8% 3.2% , 3.1% , 0.0% 57.9%, 37.2% , 43.8% 33.1% , 23.6% , 27.8%

R19−22

↓
R1−14

Source only 80.3%,60.1%,68.7% 22.1% , 15.4% , 8.7% 7.8% , 20.1% , 5.1% 0.6% , 2.2% , 9.6% 24.7% , 92.1% , 26.8% 3.1% , 22.2% , 1.7% 44.3% , 21.6% , 28.8% 26.1% , 33.4% , 21.3%

CDAN 83.7%,61.9%, 93.4% 25.2% , 0.0% , 18.5% 7.7% , 0.4% , 13.3% 0.0% , 0.0% , 5.0% 66.7%, 48.7% ,51.8% 12.8% , 0.3% , 1.1% 44.9% ,55.6%,54.8% 34.4% , 23.9% , 33.9%
MCD 74.1%, 36.4% , 94.8% 0.0% , 0.0% , 0.0% 4.1% , 0.8% , 3.1% 0.0% , 0.0% , 0.0% 61.4%,66.6%, 2.6% 0.0% , 0.0% , 0.0% 49.3% , 43.8% , 37.5% 27.0% , 21.1% , 19.7%
MCC 84.7%,57.8%,89.6% 0.0% , 0.0% , 16.1% 1.9% , 0.4% , 6.1% 0.0% , 0.0% , 0.0% 58.2%, 39.3% , 19.1% 0.0% , 3.9% , 1.1% 34.7% , 45.6% , 15.6% 25.6% , 21.0% , 21.0%

R1−14

↓
R19−22

Source only 75.7%,67.0%,84.6% 40.4% , 11.0% , 9.1% 16.8% , 3.0% , 20.4% 3.9% , 0.0% , 6.5% 93.1% ,82.1%, 30.0% 35.4% , 5.1% , 2.3% 61.3%, 31.5% , 33.3% 46.7% , 28.5% , 26.6%

CDAN 72.9%,64.7%,87.3% 14.6% , 6.3% , 3.3% 3.6% , 1.3% , 0.0% 1.1% , 9.1% , 5.7% 77.5%, 23.9% , 5.7% 30.4% , 0.8% , 0.0% 32.3% , 5.8% , 12.7% 33.2% , 16.0% , 16.4%
MCD 71.8%,65.0%,86.4% 0.0% , 6.9% , 3.5% 0.1% , 0.0% , 0.0% 0.0% , 0.0% , 0.0% 75.1%, 32.0% , 0.0% 0.0% , 0.0% , 0.0% 0.0% , 0.0% , 0.0% 21.0% , 14.8% , 12.8%
MCC 72.6%,65.3%,87.4% 11.4% , 2.7% , 3.2% 4.0% , 0.6% , 0.0% 0.7% , 9.4% , 0.0% 81.6%,55.8%, 0.0% 22.6% , 0.0% , 0.0% 37.3% , 3.2% , 22.7% 32.9% , 19.6% , 16.2%

Table V: Detailed DA method performance of device prototypes on wheat data (supplements Table 12, all results are F1-
scores, <5% , <50% , >90% ).

S→ T Method NORMAL F&S SD MY BN AP BP Total

P600
↓

G600

Source only 8.0% 25.4% 0.9% 9.2% 4.2% 21.8% 11.4% 11.6%

CDAN 26.2% 37.6% 12.6% 9.4% 28.7% 12.4% 2.9% 18.5%
MCD 84.8% 0.0% 6.3% 0.0% 10.1% 0.0% 0.2% 14.5%
MCC 51.2% 1.6% 10.3% 0.0% 21.8% 0.0% 2.0% 12.4%

G600
↓

P600

Source only 84.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 12.1%

CDAN 85.0% 0.0% 0.0% 6.2% 0.1% 0.0% 0.0% 13.0%
MCD 84.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 12.2%
MCC 84.7% 0.0% 0.0% 0.0% 2.7% 0.0% 0.0% 12.5%

G600
↓

M600

Source only 77.8% 0.0% 0.4% 0.0% 9.5% 0.6% 4.3% 13.2%

CDAN 92.9% 0.0% 0.0% 1.3% 0.0% 0.0% 0.0% 13.4%
MCD 92.0% 6.7% 10.2% 0.0% 0.0% 0.0% 0.0% 15.6%
MCC 92.5% 0.0% 0.2% 0.0% 1.4% 0.0% 0.0% 13.4%

M600
↓

G600

Source only 46.3% 8.8% 23.4% 8.9% 73.3% 9.4% 10.0% 25.7%

CDAN 89.6% 3.4% 0.0% 0.0% 9.3% 0.0% 6.5% 15.5%
MCD 83.3% 6.2% 5.1% 4.2% 1.1% 0.0% 13.3% 16.2%
MCC 89.3% 1.3% 0.7% 0.4% 15.1% 0.0% 21.4% 18.3%

M600
↓

P600

Source only 35.2% 3.4% 0.0% 0.0% 0.0% 0.0% 7.4% 6.6%

CDAN 84.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 12.1%
MCD 84.4% 0.0% 0.0% 0.0% 4.3% 0.0% 0.0% 12.7%
MCC 84.7% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 12.1%

P600
↓

M600

Source only 11.8% 2.4% 1.1% 1.0% 5.6% 1.4% 7.2% 4.4%

CDAN 82.5% 1.0% 10.7% 1.2% 9.2% 1.9% 3.1% 15.7%
MCD 91.0% 0.0% 4.0% 0.0% 11.7% 0.0% 0.0% 15.2%
MCC 42.3% 1.1% 13.0% 0.6% 5.7% 0.6% 3.8% 9.6%
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Table VI: Detailed DA method performance of device prototypes on maize data (supplements Table 12, all results are F1-
scores, <5% , <50% , >90% ).

S→ T Method NORMAL FM SD MY BN AP HD Total

P600
↓

G600

Source only 40.9% 23.4% 26.1% 3.1% 15.0% 25.3% 16.5% 21.5%

CDAN 9.1% 40.2% 9.8% 26.7% 41.7% 27.3% 22.6% 25.3%
MCD 84.1% 2.2% 1.7% 27.6% 22.6% 37.5% 15.7% 27.3%
MCC 12.2% 32.2% 27.5% 35.3% 28.4% 27.7% 24.9% 26.9%

G600
↓

P600

Source only 0.0% 37.4% 9.5% 0.0% 6.3% 0.2% 0.0% 7.6%

CDAN 50.2% 53.2% 20.7% 3.7% 35.3% 43.3% 23.1% 32.8%
MCD 76.2% 65.9% 0.0% 13.7% 55.4% 9.6% 25.0% 35.1%
MCC 0.0% 67.3% 18.9% 21.2% 44.6% 19.7% 8.6% 25.8%

G600
↓

M600

Source only 64.8% 8.8% 17.7% 37.2% 64.2% 16.7% 0.0% 29.9%

CDAN 56.8% 27.7% 2.2% 13.1% 14.0% 30.9% 0.0% 20.7%
MCD 66.1% 34.7% 0.0% 25.7% 32.6% 42.5% 9.4% 30.1%
MCC 59.6% 28.8% 17.0% 20.3% 33.2% 24.6% 18.5% 28.9%

M600
↓

G600

Source only 36.4% 12.4% 8.7% 31.9% 34.5% 15.5% 12.3% 21.7%

CDAN 41.3% 39.3% 0.5% 15.6% 30.7% 0.0% 9.3% 19.5%
MCD 66.5% 16.4% 0.0% 21.2% 48.5% 16.4% 12.0% 25.9%
MCC 7.9% 55.0% 0.5% 32.6% 41.3% 6.2% 5.9% 21.2%

M600
↓

P600

Source only 0.0% 38.3% 0.0% 11.5% 42.8% 0.0% 0.0% 13.2%

CDAN 41.7% 59.2% 8.8% 25.0% 14.1% 0.0% 5.5% 22.0%
MCD 60.6% 31.0% 5.5% 25.0% 8.1% 14.8% 9.1% 22.0%
MCC 34.4% 53.3% 0.0% 15.3% 10.3% 0.7% 7.4% 17.3%

P600
↓

M600

Source only 56.4% 18.4% 0.0% 0.0% 23.5% 27.2% 0.0% 17.9%

CDAN 60.2% 5.3% 2.0% 6.7% 39.0% 11.1% 1.6% 18.0%
MCD 58.6% 3.4% 6.2% 21.0% 12.3% 22.2% 8.7% 18.9%
MCC 28.4% 3.2% 6.6% 3.0% 25.5% 22.8% 7.8% 13.9%

Table VII: Detailed DA method performance of device prototypes on rice data (supplements Table 12, all results are F1-
scores, <5% , <50% , >90% ).

S→ T Method Malis SQ 545 HF WC HN JZ SY Total

P600
↓

G600

Source only 10.2% 15.4% 1.3% 0.0% 0.0% 20.6% 22.3% 0.0% 8.7%

CDAN 55.0% 11.3% 61.8% 54.8% 14.8% 2.2% 58.9% 59.2% 39.7%
MCD 7.1% 10.4% 38.5% 32.9% 0.0% 0.0% 0.0% 19.8% 13.6%
MCC 40.6% 1.2% 54.6% 44.4% 2.1% 1.2% 53.5% 49.1% 30.8%

G600
↓

P600

Source only 0.2% 31.3% 39.3% 1.0% 29.1% 57.8% 35.8% 22.6% 27.1%

CDAN 1.0% 42.7% 67.4% 7.0% 49.2% 43.9% 19.6% 52.4% 35.4%
MCD 35.4% 0.0% 30.2% 6.1% 0.0% 14.1% 0.0% 0.0% 10.7%
MCC 5.3% 40.2% 35.6% 11.8% 20.7% 36.5% 4.2% 34.6% 23.6%

G600
↓

M600

Source only 2.6% 29.3% 14.0% 21.0% 26.4% 22.8% 44.2% 24.1% 23.1%

CDAN 15.7% 21.3% 34.1% 18.5% 29.0% 21.9% 48.7% 35.4% 28.1%
MCD 17.2% 2.9% 20.2% 13.2% 0.0% 5.4% 0.0% 15.2% 9.3%
MCC 9.6% 26.6% 31.0% 14.8% 41.3% 37.7% 51.4% 29.1% 30.2%

M600
↓

G600

Source only 64.1% 5.8% 71.5% 52.8% 79.1% 10.3% 90.0% 78.1% 56.5%

CDAN 23.4% 24.7% 63.5% 11.2% 58.2% 23.7% 75.7% 51.6% 41.5%
MCD 38.7% 0.0% 0.0% 4.7% 8.0% 5.4% 0.1% 25.6% 10.3%
MCC 45.3% 11.5% 51.4% 14.5% 55.1% 9.1% 76.3% 56.4% 40.0%

M600
↓

P600

Source only 0.0% 0.0% 0.2% 5.1% 7.4% 22.9% 0.1% 0.4% 4.5%

CDAN 0.1% 14.8% 34.2% 17.5% 22.9% 20.0% 7.3% 5.3% 15.3%
MCD 0.0% 15.4% 37.3% 24.5% 0.0% 0.0% 34.2% 0.0% 13.9%
MCC 0.1% 14.2% 53.6% 10.7% 20.9% 28.4% 0.7% 0.5% 16.1%

P600
↓

M600

Source only 25.2% 3.5% 4.2% 2.9% 0.0% 32.1% 21.5% 1.2% 11.3%

CDAN 12.8% 14.3% 34.8% 20.6% 3.0% 0.9% 45.1% 29.6% 20.1%
MCD 28.6% 10.5% 15.8% 6.5% 0.0% 0.0% 0.0% 15.4% 9.6%
MCC 28.9% 20.6% 23.0% 16.8% 16.2% 7.8% 50.1% 27.6% 23.9%
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Table VIII: OOD method performance on G600 and M600 rice data (X denotes this group is in-distribution).

Device Method Malis SQ 545 HF WC HN JZ SY AUROC

G600

Deep SVDD
X X X 67.7%

X X X 47.7%
X X 57.3%

Rot
X X X 58.7%

X X X 51.1%
X X 56.9%

CSI
X X X 54.6%

X X X 41.3%
X X 62.0%

Device Method Malis SQ 545 HF WC HN JZ SY AUROC

M600

Deep SVDD
X X X 63.3%

X X X 49.1%
X X 58.3%

Rot
X X X 44.1%

X X X 61.3%
X X 55.8%

CSI
X X X 65.3%

X X X 53.2%
X X 47.0%

Table IX: OOD method performance on G600 and M600 wheat and maize data (X denotes this group is in-distribution).

Species Device Method Normal F&S SD MY AP BN BP AUROC

Wheat

G600

Deep SVDD X X X X 52.5%
X X X 52.5%

Rot X X X X 70.0%
X X X 61.1%

CSI X X X X 57.8%
X X X 42.3%

M600

Deep SVDD X X X X 64.0%
X X X 69.3%

Rot X X X X 83.1%
X X X 43.5%

CSI X X X X 72.5%
X X X 60.1%

Species Device Method Normal FM SD MY AP BN HD AUROC

Maize

G600

Deep SVDD X X X X 70.4%
X X X 51.8%

Rot X X X X 79.6%
X X X 49.1%

CSI X X X X 64.6%
X X X 44.5%

M600

Deep SVDD X X X X 62.2%
X X X 50.9%

Rot X X X X 66.6%
X X X 38.5%

CSI X X X X 62.4%
X X X 43.9%
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Figure VIII: Examples of single-kernel images of wheat grains.
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Figure IX: Examples of single-kernel images of maize grains.
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Figure X: Examples of single-kernel images of rice grains.
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Figure XI: Examples of raw images captured by P600, G600 and M600.
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Figure XII: CAM-based visualization of single-kernel images of wheat grains.
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Figure XIII: CAM-based visualization of single-kernel images of maize grains.
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Figure XIV: CAM-based visualization of single-kernel images of rice grains.
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