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These supplementary materials have four sections in total, giving the additional information not covered in the main body

of the paper. Section S1 provides proofs for the contents of Section 4.1 in the main paper, and we also display explicit

Jacobian matrices there. Section S2 gives the proofs of Theorems 1 and 2. Section S3 gives the proofs of Theorems 3 and

4. In Section S3, we also describe the steps for computing the degenerate X.5-point curves based on solving polynomial

systems by homotopy continuation. Last, additional experimental results are given in Section S4. For reproducibility, code

for this paper is available at https://github.com/HongyiFan/minimalInstability.

S1. Proofs for “Section 4.1: Condition Number Formulas”

In this section, we prove Propositions 1 and 2 from the main body, and we display explicit Jacobian matrices.

S1.1. Preliminaries on Tangent Spaces, Inner Products and Orthonormal Bases

First we collect together basic facts about the relevant Riemannian manifolds.

• Special orthogonal group. Consider SO(3). By linearizing the equations RR
⊤ = R

⊤
R = I ,

T (SO(3),R) = {δR ∈ R
3×3 : (δR)R⊤ +R(δR)⊤ = R

⊤(δR) + (δR)⊤R = 0} ⊆ R
3×3.

This tangent space may be parameterized as R multiplied by skew-symmetric matrices:

T (SO(3),R) = {[s]×R : s ∈ R
3} or T (SO(3),R) = {R[s]× : s ∈ R

3}, (S1)

where [s]× :=




0 −s3 s2
s3 0 −s1
−s2 s1 0


 for s =



s1
s2
s3


. The Riemannian metric’s inner product on the tangent space is the

restriction of the Frobenius inner product on R
3×3,

⟨[s]×R, [s̃]×R⟩ := trace(([s]×R)⊤[s̃]×R) = trace([s]⊤×[s̃]×) = 2⟨s, s̃⟩,
where the rightmost inner product is the standard one on R

3. An orthonormal basis for T (SO(3),R) is

1√
2
[e1]×R, [e2]×

1√
2
R,

1√
2
[e3]×R, (S2)

where e1, e2, e3 is the standard basis on R
3.

• Unit sphere. Consider the two-dimensional unit sphere S
2. Its tangent space are the perpendicular spaces:

T (S2, T̂) = T̂
⊥ := {T̃ ∈ R

3 : ⟨T̂, T̃⟩ = 0} ⊆ R
3.

The Riemannian metric’s inner product arises by restricting of the Euclidean inner product on R
3 . We fix

T̂
⊥
1 , T̂

⊥
2 ∈ R

3 (S3)

to be an orthonormal basis for T (S2, T̂).



• Projective space. Consider the real projective space of 3× 3 matrices, P(R3×3). The map

S
8 = {M ∈ R

3×3 : ∥M∥F = 1} −→ P(R3×3), M 7→ [M ] (S4)

witnesses P(R3×3) as a quotient of S8 by Z/2Z acting via a sign flip. By [6, Exam. 2.34 and Prop. 2.32], this induces the

structure of a Riemannian manifold on P(R3×3) such that (S4) is locally an isometry. At a given point in P(R3×3) we can

choose a representative M ∈ S
8 and the tangent space can be identified as follows:

T (P(R3×3), [M ]) ∼= T (S8,M) = M⊥ = {M̃ ∈ R
3×3 : ⟨M, M̃⟩ = 0} ⊆ R

3×3. (S5)

The Riemannian metric’s inner product is the Frobenius inner product on M⊥.

• Essential matrices. Consider the manifold of real essential matrices,

E ⊆ P(R3×3).

(This departs from the notation in the main body.) It is known that E is a compact smooth real manifold of dimension 5.

Lemma 1 At each point in SO(3)× S
2, the differential of the map

SO(3)× S
2 → E , (R, T̂) 7→ [T̂]×R

has rank 5. Thus the map is a submersion onto the manifold of real essential matrices E ⊆ P(R3×3).

Proof: The map is linear separately in R and T̂. So by the product rule, at (δR, δT̂) ∈ T (SO(3),R)×T (S2, T̂) its differ-

ential evaluates to 1√
2
[T̂]×(δR)+ 1√

2
[δT̂]×R ∈ T (E , [T̂]×R) ⊆ T (P(R3×3)), [T̂]×R = T (S8, 1√

2
[T̂]×R) = (R[T̂]×)⊥ ⊆

R
3×3, where we used (S5). We need to show that this quantity equals 0 only if δR = 0 and δT̂ = 0. By (S1), δR = R[s]×

for some s ∈ R
3 and δT̂ is perpendicular to T̂. Substituting these in gives the condition

1√
2
[T̂]×[s]×R+ 1√

2
[δT̂]×R = 0.

Right-multiplying by
√
2R⊤, this is equivalent to

[T̂]×[s]× + [δT̂]× = 0. (S6)

If we multiply on the left by T̂, it follows that T̂[δT̂]× = 0. But if δT̂ ̸= 0, then [δT̂]× is rank-2 with kernel spanned by δT̂

which is perpendicular to T̂. The last two sentences give a contradiction. Thus we must have δT̂ = 0. So now (S6) reads

[T̂]×[s]× = 0. (S7)

Assume s ̸= 0. Then [s]× is a rank 2 matrix of size 3 × 3. Since [T̂]× is rank 2 and 3 × 3 as well (recall T̂ ∈ S
2 so that

T̂ ̸= 0), the product [T̂]×[s]× must have rank at least 1. This contradicts (S7), so s = 0, and the lemma follows. □

Lemma 1 lets us write down tangent spaces to the essential matrices:

T (E , [T̂]×R) = { 1√
2
[T̂]×[s]×R+ 1√

2
[δT̂]×R : s ∈ R

3, δT̂ ∈ R
3, ⟨δT̂, T̂⟩ = 0} ⊆ R

3×3.

The Riemannian metric’s inner product is the restriction of the Frobenius inner product on R
3×3. We get an orthonormal

basis for the tangent space by orthonormalizing the image of (S2) and (S3), i.e., by orthonormalizing

1

2
[T̂]×[e1]×R,

1

2
[T̂]×[e2]×R,

1

2
[T̂]×[e3]×R,

1√
2
[T̂⊥

1 ]×R,
1√
2
[T̂⊥

2 ]×R. (S8)

Elementary linear algebra implies that if α ∈ R
5 expresses an element of T (E , [T̂]×R) in terms of the basis (S8) then G1/2α

expresses the same tangent vector in terms of an orthonormal basis for T (E , [T̂]×R), where G is the Grammian matrix for

the matrices in (S8) with respect to the Frobenius inner product. Explicitly, G equals

G =

(
A B
B⊤ C

)
(S9)



where

A =




1
2 T̂

2
1 +

1
4 T̂

2
2 +

1
4 T̂

2
3

1
4 T̂1T̂2

1
4 T̂1T̂3

1
4 T̂1T̂2

1
4 T̂

2
1 +

1
2 T̂

2
2 +

1
4 T̂

2
3

1
4 T̂2T̂3

1
4 T̂1T̂3

1
4 T̂2T̂3

1
4 T̂

2
1 +

1
4 T̂

2
2 +

1
2 T̂

2
3


 (S10)

B =




1
2
√
2
T̂3(T̂

⊥
1 )2 − 1

2
√
2
T̂2(T̂

⊥
1 )3

1
2
√
2
T̂3(T̂

⊥
2 )2 − 1

2
√
2
T̂2(T̂

⊥
2 )3

− 1
2
√
2
T̂3(T̂

⊥
1 )1 +

1
2
√
2
T̂1(T̂

⊥
1 )3 − 1

2
√
2
T̂3(T̂

⊥
2 )1 +

1
2
√
2
T̂1(T̂

⊥
2 )3

1
2
√
2
T̂2(T̂

⊥
1 )1 − 1

2
√
2
T̂1(T̂

⊥
1 )2

1
2
√
2
T̂2(T̂

⊥
2 )1 − 1

2
√
2
T̂1(T̂

⊥
2 )2


 (S11)

C =

(
1 0
0 1

)
(S12)

• Projection Matrices. For the uncalibrated cameras, as described in the main text, the world scene spaceW is defined as

W = R
3×4 × R

3×4 × (R3)×7 = {P, P̄,Γ1, . . . ,Γ7)}, (S13)

where P and P̄ are 3×4 projection matrix of the cameras. For a pinhole camera model, the projection matrix is computed as

P = K
[
R T

]
(S14)

where K is a 3 × 3 intrinsic matrix of the camera; R and T are the absolute rotation and translation. Our analysis needs to

represent the relative pose in an (almost everywhere) one-to-one way using a minimal number of parameters. However, it

turns out that our main results are independent of the coordinate system choice we make forW , thus we will represent the

relative pose by the open dense subset of R7 = {b = (b1, . . . , b7)} where

M(b) :=




1 b1 b2 b3
b4 b5 b6 b7
0 0 0 1


 (S15)

has rank 3. In the supplementary materials, we prove that this set gives a normal form for almost all uncalibrated relative

poses, i.e. for an open dense subset of pairs of uncalibrated camera matrices we can uniquely bring the projection matrices

{P, P̄} to the form [I 0] ∈ R
3×4 and M(b) ∈ R

3×4 by multiplying the pair on right by an appropriate projective world

transformation in PGL(4) = {g ∈ P(R4×4) : det(g) ̸= 0}.
Here we justify the claim that for (P1,P2) lying in a certain open dense subset U of the set of pairs of uncalibrated

cameras:

C = {((P, P̄) ∈ P(R3×4)×2 : rank(P1) = rank(P̄) = 3},
there exists a unique world transformation g ∈ PGL(4) and vector of parameters b ∈ R

7 such that

((Pg, P̄g) = ([I 0],M(b)) ∈ P(R3×4)×2 (S16)

where M(b) ∈ P(R3×4) is as defined in Eq. 17 of the main text. Specifically, we claim that we can take the set to be

U = {((P, P̄) ∈ C : det[(P, P̄(3, :)] ̸= 0, B(1, :)([(P; P̄(3, :)]−1(:, 1)) ̸= 0}, (S17)

where we are using Matlab notation to denote submatrices and matrix concatenations.

Firstly, we note that the conditions in Eq. (S17) are independent of the choice of scales in P and P̄ , so they describe a

well-defined subset of projective space. Indeed if λ and µ are nonzero scalars, then

det[λP; (µP̄)(3, :)] = λ3µ det[P; P̄(3, :)],
(µP̄)(1, :)([λP; (µP̄)(3, :)]−1(:, 1)) = µλ−1P̄(1, :)([P; P̄(3, :)]−1(:, 1)). (S18)

Next, let (P, P̄) ∈ U . Note that Eq. (S16) holds if and only there exist scales for P, P̄, g such that in affine space we have

[P; P̄]g = [[I 0];M(b)] ∈ R
6×4. (S19)

Comparing rows 1, 2, 3, 6 in Eq. (S19), we must have g = [P; P̄(3, :)]−1. Then (P̄g)(1, 1) ̸= 0 by (S18), and we can choose

scales for P, P̄ so that (P̄g)(1, 1) = 1 by Eq. (S18).



• Fundamental matrices. Consider the manifold of real fundamental matrices,

F ⊆ P(R3×3).

It is known that F is a non-compact smooth real manifold of dimension 7. One can build the fundamental matrix with the

R
7 parameterization b as [5, Eq. 17.3]:

Fji := (−1)i+j det

(
[I 0] with row i omitted

M(b) with row j omitted

)
. (S20)

We will work with F using the parameterization from R
7 given by Eq. (S20). This sends b ∈ R

7 to

F (b) :=




b4 b5 b6
−1 −b1 −b2

−b3b4 + b7 −b3b5 + b1b7 −b3b6 + b2b7


 . (S21)

Lemma 2 At each point b ∈ R
7 where the camera matrix M(b) in (S15) has full rank, the differential of the map F : R7

99K

F has rank 7. Thus F is a submersion on the open set where it is defined.

Proof: The differential of F at b evaluated at δb ∈ R
7 equals









(δb)4 (δb)5 (δb)6

0 −(δb)1 −(δb)2

−(δb)3b4 − b3(δb)4 + (δb)7 −(δb)3b5 − b3(δb)5 + (δb)1b7 + b1(δb)7 −(δb)3b6 − b3(δb)6 + (δb)2b7 + b2(δb)7









. (S22)

Equating this with 0, the first two rows show that 0 = (δb)1 = (δb)2 = (δb)4 = (δb)5 = (δb)6. Then the last row reads:



−b4 1
−b5 b1
−b6 b2



(
(δb)3
(δb)7

)
= 0. (S23)

The coefficient matrix in (S23) consists of the first two rows of F (b) transposed and negated. However the first two rows of

F (b) span the row space of F (b), since the third row of F (b) is −b3 times the first row added to −b7 times the second row.

Because F (b) has rank 2, (δb)3 = (δb)7 = 0. All together, δb = 0 whence DF (b) is injective. □

Lemma 2 lets us write down the tangent spaces to fundamental matrices. They are spanned by the matrices (S22) as δb
ranges over a standard basis e1, . . . , e7 for R7. The Riemannian metric’s inner product is the restriction of the Frobenius

inner product. We get an orthonormal basis for T (F , F (b)) by orthonormalizing

1

∥F (b)∥F
∂F (b)

∂b1
, . . . ,

1

∥F (b)∥F
∂F (b)

∂b7
. (S24)

Elementary linear algebra implies that if α ∈ R
7 expresses an element of T (F , F (b)) in terms of the basis (S24) then G1/2α

expresses the same tangent vector in terms of an orthonormal basis for T (F , F (b)), where G is the Grammian matrix for the

matrices in (S24) with respect to the Frobenius inner. Explicitly, G equals

1

∥F (b)∥2F




b27 + 1 0 −b5b7 0 −b3b7 0 b1b7

0 b27 + 1 −b6b7 0 0 −b3b7 b2b7

−b5b7 −b6b7 b24 + b25 + b26 b3b4 b3b5 b3b6 −b1b5 − b2b6 − b4

0 0 b3b4 b23 + 1 0 0 −b3

−b3b7 0 b3b5 0 b23 + 1 0 −b1b3

0 −b3b7 b3b6 0 0 b23 + 1 −b2b3

b1b7 b2b7 −b1b5 − b2b6 − b4 −b3 −b1b3 −b2b3 b21 + b22 + 1




. (S25)



S1.2. Proof of Proposition 1

Proof: Uniqueness of the reconstruction map is by Lemma 1 (which is a restatement of the inverse function theorem).

This is because we are assuming that the world scene w ∈ SO(3) × S
2 × (R3)×5 is not ill-posed. Eq. 18 in the main paper

expresses the condition number of S as the largest singular value of the product of a 5×20 matrix and the inverse of a 20×20
matrix:

∥DΨ(w) ◦DΦ(w)−1∥.
We need to make this formula explicit. Here the forward map is given by Eq. 3 in the main body:

Φ(R, T̂,Γ1, . . . ,Γ5) = ((π(Γ1), π(RΓ1 + T̂)), . . . (π(Γ5), π(RΓ5 + T̂))), (S26)

where π : R3
99K R

2 is the projection π(a1, a2, a3) = (a1/a3, a2/a3) defined whenever a3 ̸= 0. It is natural to factor

Φ = Φ2 ◦ Φ1 as the composition of a map Φ1 : SO(3)× S
2 × (R3)×5 → (R3 × R

3)×5 given by

Φ1(R, T̂,Γ1, . . . ,Γ5) := ((Γ1,RΓ1 + T̂), . . . , (Γ5,RΓ5 + T̂)),

followed by an almost-everywhere-defined map Φ2 : (R3 × R
3)×5

99K (R2 × R
2)×5 given by

Φ2((Z1, Z̃1), . . . , (Z5, Z̃5)) := ((π(Z1), π(Z̃1)), . . . , (π(Z5), π(Z̃5))).

where Zi = Γi and Z̃i = RΓi + T̂.

By the chain rule, DΦ(w) = DΦ2(Φ(w)) ◦DΦ1(w). This writes the forward Jacobian matrix as the product of a 20× 30
matrix multiplied by a 30×20 matrix. Let us explicitly write down DΦ1(w) in terms of the orthonormal bases for the tangent

spaces from the previous section, with columns ordered according to δΓ1, . . . , δΓ5, δR, δT̂ (corresponding to an orthonormal

basis for T (SO(3) × S
2 × (R3)×5, w)), and rows ordered according to δZ1, . . . , δZ5, δZ̃1, . . . , δZ̃5 (corresponding to a

standard basis on (R3×R3)×5). Since Φ1 is separately linear in Γ1, . . . ,Γ5,R, T̂, we can compute the following block form:

DΦ1(w) =




I 15×15 015×5

R
1√
2

(
[e1]×RΓ1 [e2]×RΓ1 [e3]×RΓ1

)
T̂

⊥
1 T̂

⊥
2

. . .
...

...
...

R
1√
2

(
[e1]×RΓ5 [e2]×RΓ5 [e3]×RΓ5

)
T̂

⊥
1 T̂

⊥
2




30×20

. (S27)

The Jacobian matrix DΦ2 has the following block-diagonal form with respect to the standard bases:

DΦ2(Φ1(w)) =




∂π
∂Z1

. . .
∂π
∂Z5

∂π
∂Z̃1

. . .
∂π
∂Z̃5




20×30

. (S28)

Here, e.g. ∂π
∂Z1

denotes the 2× 3 Jacobian matrix of π(Z1) =
(

(Z1)1
(Z1)3

(Z1)2
(Z1)3

)⊤
with respect to Z1. Explicitly,

∂π

∂Z1
=




1
(Z1)3

0 −(Z1)1
(Z1)23

0 1
(Z1)3

−(Z1)2
(Z1)23






and likewise for the other blocks. In (S28), the Jacobian is evaluated at Φ(w), i.e. Z1 = Γ1, . . . , Z5 = Γ5 and Γ̃1 =

RΓ1 + T̂, . . . , Z̃5 = RΓ5 + T̂. Multiplying (S27) with (S28) and then inverting gives the 20× 20 matrix (DΦ(w))−1.

Next consider differential of the epipolar map, i.e. the 5× 20 matrix DΨ(w). Here Ψ factors as the coordinate projection

(Γ1, . . . ,Γ5,R, T̂) 7→ (R, T̂) followed by the map (R, T̂) 7→ [T̂]×R. Of course, the Jacobian of the projection is

(
05×15 I5×5

)
.

As for (R, T̂) 7→ [T̂]×R, if we express its Jacobian so that the rows correspond to the non-orthonormal basis (S8) for the

tangent space T (E , [T̂]×R), then we simply get I5. Then re-expressing this in terms of an orthonormal basis for the tangent

space, we need to multiply by a positive-definite square root G1/2 for the 5× 5 Grammian matrix in (S9).

All together, the product DΨ(w) ◦ (DΦ(w))−1 is computed by multiplying (S28) with (S27) (in that order); inverting the

product; selecting the last 5 rows of the inverse; and finally multiplying on the left by G1/2. The condition number of the

solution map is the largest singular value of the resulting 5× 20 matrix. This finishes Proposition 1. □

Before proceeding, we record an easy fact that will be useful in Section S2.

Remark 1 The kernel of the 2× 3 matrices ∂π
∂Zi

and ∂π
∂Z̃i

in (S28) are spanned by Zi and Z̃i respectively.

S1.3. Proof of Proposition 2

Proof: This is very similar to Proposition 1. Uniqueness of the reconstruction map is by Lemma 1. We obtain explicit

Jacobian formulas by first factoring Φ = Φ2 ◦ Φ1 where Φ1 : R7 × (R3)×7 → (R3 × R
3)×7 is given by

Φ1(b,Γ1, . . . ,Γ7) = ((Γ1,M(b)

(
Γ1

1

)
), . . . , (Γ7,M(b)

(
Γ7

1

)
))

and Φ2 : (R3 × R
3)×7

99K (R2 × R
2)7 is given by

Φ2((Z1, Z̃1), . . . , (Z7, Z̃7)) = ((π(Z1), π(Z̃1)), . . . , (π(Z7), π(Z̃7))).

The chain rule gives DΦ(w) = DΦ2(w) ◦DΦ1(w). Here all spaces involved in the forward map are Euclidean spaces, so

we use the standard orthonormal bases to write down the matrices.

The first matrix DΦ1(w) is 42 × 28. Ordering its columns according to δΓ1, . . . , δΓ7, δb and its rows according to

δZ1, . . . , δZ7, δZ̃1, . . . , δZ̃7, it reads

DΦ1(w) =




I 21×21 021×7

M(b)(1 : 3, 1 : 3) ∂M(b)
∂b1

(
Γ1

1

)
· · · ∂M(b)

∂b7

(
Γ1

1

)

. . .
...

...

M(b)(1 : 3, 1 : 3) ∂M(b)
∂b1

(
Γ7

1

)
· · · ∂M(b)

∂b7

(
Γ7

1

)




42×28
(S29)

The bottom-left 21 × 21 submatrix is block-diagonal with seven 3 × 3 blocks, each of which is M(b)(1 : 3, 1 : 3) denoting

the first three columns of M(b). In the bottom-right 21×7 submatrix, note that each matrix
∂M(b)
∂bi

is zero in all but one entry

where it takes the value of 1.



The second Jacobian matrix DΦ2(Φ1(w)) is 28 × 42. It is block-diagonal with fourteen blocks each of size 3 × 2,

analogously to (S28) with Remark 1 still applying:

DΦ2(Φ1(w)) =




∂π
∂Z1

. . .
∂π
∂Z7

∂π
∂Z̃1

. . .
∂π
∂Z̃7




28×42

. (S30)

Multiplying (S29) with (S30) and inverting the product gives the 28× 28 matrix (DΦ(w))−1.

Next we consider the differential of the epipolar map, i.e. the 7 × 28 matrix DΨ(w). Here Ψ factors as the coordinate

projection (Γ1, . . . ,Γ7, b) 7→ b followed by the map b 7→ F (b) given by (S21). Of course, the Jacobian of the projection is

(
07×21 I7×7

)
.

The Jacobian matrix of b 7→ F (b) is simply I7, if we express it with respect to bases so that the rows correspond to the

non-orthonormal basis (S24) for the tangent space T (F , F (b)). Re-expressing it in terms of an orthonormal basis for the

tangent space, we need to multiply by a positive-definite square root G1/2 for the 7× 7 Grammian matrix in (S25).

All together, the product DΨ(w) ◦ (DΦ(w))−1 is computed by multiplying (S29) with (S30) (in that order); inverting the

product; selecting the last 7 rows of the inverse; and finally multiplying on the left by G1/2. The condition number of the

solution map is the largest singular value of the resulting 7× 18 matrix. This finishes Proposition 2. □

S2. Proofs for “Section 4.2: Ill-Posed World Scenes”

In this section, we characterize the degenerate world scenes for the 5-point and 7-point minimal problems in terms of

quadric surfaces in R
3.

Remark 2 Our definition of “quadric surface” given in the main body in Eq. 22 includes the case of affine planes (which

occur when the top-left 3 × 3 submatrix of Q in Eq. 22 is zero). This choice is deliberate, and needed for full accuracy in

Theorems 1 and 2. Likewise, by “circle” in the statement of Theorem 1 we mean a plane conic defined by

{
(a1, a2) ∈ R

2 :
(
a 1

)
Q

(
a
1

)
= 0

}
, (S31)

for some symmetric matrix Q ∈ R
3×3 such that Q11 = Q22 and Q12 = Q21 = 0. Eq. (S31) includes the cases of affine lines

and points, interpreted as circles of radius∞ and 0 respectively.

S2.1. Proof of Theorem 1

Proof: The assumption that the forward map Φ is defined at the world scene w implies that the points Γi and RΓi + T̂ in

R
3 do not have a vanishing third coordinate for each i = 1, . . . , 5.

Let ∆ :=
(
δΓ1 . . . δΓ5 δr1 δr2 δr3 δT̂1 δT̂2

)⊤ ∈ R
20. Our task is characterize for which scenes w does

there a nonzero solution to the linear system DΦ(w)∆ = 0, where the variable is ∆. Let us massage this equation repeatedly.

Firstly using the factorization DΦ = DΦ2 ◦ DΦ1 from the previous section, the explicit Jacobian matrix expressions

(S27) and (S28), and Remark 1 characterizing the kernel of DΦ2, we equivalently have the system of equations

{
δΓi ∝ Γi for all i,

R(δΓi) + [s]×RΓi + T̂
⊥
∗ ∝ RΓi + T̂ for all i.

(S32)

Here ‘∝’ indicates a proportionality, s := 1√
2

(
δr1 δr2 δr3

)⊤ ∈ R
3 and T̂

⊥
∗ := δT̂1T̂

⊥
1 + δT̂2T̂

⊥
2 ∈ R

3. We need to

characterize when (S32) admits a nonzero solution in the variables δΓ1, . . . , δΓ5, s, T̂
⊥
∗ .



Let λi ∈ R denote the proportionality constants in the first line of (S32), and likewise µi ∈ R for the second line. Then

the first line of (S32) reads δΓi = λiΓi. Substituting this into the second line of (S32) gives

λiRΓi + [s]×RΓi + T̂
⊥
∗ = µiRΓi + µiT̂ for all i. (S33)

We need to characterize when (S33) admits a solution in λ1, . . . , λ5, µ1, . . . , µ5, s, T̂
⊥
∗ nonzero in λ1, . . . , λ5, s, T̂

⊥
∗ . (Note

λi ̸= 0⇔ δΓi ̸= 0 since (Γi) ̸= 0.) It is the same to ask the solution to (S33) be not all-zero in λ1, . . . , λ5, µ1, . . . , µ5, s, T̂
⊥
∗

(with µ’s included), for if λ1, . . . , λ5, s, t are all zero then (S33) implies µi = 0, since (RΓi + T̂)3 ̸= 0.

We can simplify Eq. (S33) by changing notation as follows:





λi ←− λi − µi

µi ←− µi

T̂
⊥
∗ ←− −T̂⊥

∗
[s]× ←− R[s]×R⊤

Γi ←− RΓi

R ←− I3.

(S34)

The first four lines in (S34) describe an invertible linear change of variables for (S33). This does not affect whether there

exists a nonzero solution to (S33). The last lines in (S34) rotate the world points Γ1, . . . ,Γ5, and this operation does not affect

whether there exists a quadric surface in R
3 satisfying the claimed condition in Theorem 1. So indeed, the transformation

(S34) is without loss of generality. In updated notation, (S33) reads

λiΓi + [s]×Γi = µiT̂+ T̂
⊥
∗ for all i. (S35)

Applying a further rotation in R
3, we can assume that T̂ = e3 and T̂

⊥
1 = e1 and T̂

⊥
2 = e2 in (S35) without loss of

generality. Since T̂ and T̂
⊥
∗ are perpendicular, we can eliminate µi from (S35), because it is equivalent to equate the first

two coordinates of both sides of (S35):

λi

(
(Γi)1
(Γi)2

)
+

(−s3(Γi)2 + s2(Γi)3
s3(Γi)1 − s1(Γi)3

)
=

(
δT̂1

δT̂2

)
for all i. (S36)

We need to characterize when the system (S36) has a nonzero solution in λ1, . . . , λ5, s1, s2, s3, δT̂1, δT̂2.

Rewrite (S36) as follows:

λi

(
(Γi)1
(Γi)2

)
+ s3

(−(Γi)2
(Γi)1

)
+ (Γi)3

(
s2
−s1

)
−
(
δT̂1

δT̂2

)
= 0 for all i. (S37)

Now eliminate λi from (S37). Indeed, we claim that (S37) admits a nonzero solution in λ1, . . . , λ5, s1, s2, s3, δT̂1, δT̂2 if

and only if the system obtained by multiplying (S37) on the left by
(
−(Γi)2 (Γi)1

)
(each i) admits a nonzero solution in

s1, s2, s3, δT̂1, δT̂2. That is, we claim we can reduce to:

s3((Γi)
2
1 + (Γi)

2
2) − s2(Γi)2(Γi)3 − s1(Γi)1(Γi)3 + δT̂1(Γi)2 − δT̂2(Γi)1 = 0 for all i. (S38)

To justify this, note that if

(
(Γi)1
(Γi)2

)
̸= 0 for each i, then the vectors

(
(Γi)1
(Γi)2

)
and

(
−(Γi)2
(Γi)1

)
give an orthogonal basis for

R
2 for each i. In this case, changing to this basis from the standard basis, (S37) becomes (S38) together with

λi((Γi)
2
1 + (Γi)

2
2) + s2(Γi)1(Γi)3 − s1(Γi)2(Γi)3 − δT̂1(Γi)1 − δT̂2(Γi)2 = 0 for all i. (S39)

Clearly (S39) determines λi in terms of s1, . . . , δT̂2, so (S38) and (S39) have a nonzero solution in λ1, . . . , δT̂2 if and only

if (S38) does in s1, . . . , δT̂2. Meanwhile, if

(
(Γi)1
(Γi)2

)
= 0 for some i, then both (S37) and (S38) admit nonzero solutions:

for (S37), we can explicitly set λi = 1 and all other nine variables equal to 0; for (S38), once we remove the i-th equation



(which is trivial) this leaves an undetermined linear system of four equations in five unknowns, which must have a nonzero

solution. Thus, we need to characterize when (S38) admits a nonzero solution in s1, s2, s3, δT̂1, δT̂2.

To complete the proof, we argue that we simply need to geometrically reinterpret (S38). Letting z1, z2, z3 be variables on

R
3, consider the following linear subspace of inhomogeneous quadratic polynomials:

span
{
z21 + z22 , z2z3, z1z3, z2, z1

}
⊆ R[z1, z2, z3] (S40)

Then (S38) states that there exists a quadric surface Q ⊆ R
3, cut out by some nonzero polynomial in (S40), passing through

the points Γ1, . . . ,Γ5 ∈ R
3. However, (S40) precisely describes the quadric surfaces in R

3 that contain the baseline

Span(−R⊤
T̂) = Span(e3) ⊆ R

3, and are such that intersecting the quadric with any affine plane in R
3 which is per-

pendicular to the baseline results in a circle (with the caveats of Remark 2 applying). Indeed (S40) exactly corresponds to the

subspace of 4× 4 real symmetric matrices of the following form:

Q =




q1 0 q2 q3
0 q1 q4 q5
q2 q4 0 0
q3 q5 0 0


 for some q1, . . . , q5 ∈ R.

Precisely such matrices give quadrics containing Span(R3) (because of the zero bottom-right 2 × 2 submatrix), and also

intersecting planes parallel to Span(e1, e2) in circles (because of the top-right 2× 2 submatrix). This finishes Theorem 1. □

S2.2. Proof of Theorem 2

Proof: This argument is similar to the proof of Theorem 1, although somewhat more computational. Here the forward

map Φ is given by Eq. 7, and the assumption that Φ is defined at w implies that the points Γi and M(b)

(
Xi

1

)
in R

3 do not

have a vanishing third coordinate for each i = 1, . . . , 7. Let ∆ :=
(
δΓ1 . . . δΓ7 δb1 . . . δb7

)⊤ ∈ R
28. Our task is

characterize for which scenes w does there a nonzero solution to the linear system DΦ(w)∆ = 0, where the variable is ∆.

Using the factorization DΦ = DΦ2 ◦DΦ1 from the previous section, the explicit Jacobian matrix expressions (S29) and

(S30), and Remark 1 characterizing the kernel of DΦ2, we equivalently have the system





δΓi ∝ Γi for all i




1 b1 b2

b4 b5 b6

0 0 0


 δΓi +




0 δb1 δb2 δb3

δb4 δb5 δb6 δb7

0 0 0 0



(
Xi

1

)
∝




1 b1 b2 b3

b4 b5 b6 b7

0 0 0 1



(
Xi

1

)
for all i.

(S41)

Comparing the third coordinate of both sides, we see that the proportionality constant in the second line of (S41) must be 0
for each i. Let λi ∈ R be the proportionality constant in the first line of (S41) for each i. Rewrite (S41) as





δΓi = λiΓi for all i,

(
1 b1 b2

b4 b5 b6

)
δΓi +

(
0 δb1 δb2 δb3

δb4 δb5 δb6 δb7

)(
Γi

1

)
= 0 for all i.

(S42)

In (S42), we substitute the first line into the first term of the second line and we rearrange the second term in the second line:

λi

(
1 b1 b2
b4 b5 b6

)
Γi +

(
(Γi)2 (Γi)3 1 0 0 0 0
0 0 0 (Γi)1 (Γi)2 (Γi)3 1

)
δb = 0 for all i. (S43)

We need to characterize when the system (S43) has a nonzero solution in λ1, . . . , λ7, δb1, . . . , δb7. (That this is equivalent to

the characterization for (S41) uses that δΓi ̸= 0⇔ λi ̸= 0, because δΓi = λiΓi and (Γi)3 ̸= 0.)

Now we eliminate λi from (S43), following what we did for (S37) above. Here it is equivalent to multiply (S43) on the

left by the transpose of (
−b4(Γi)1 − b5(Γi)2 − b6(Γi)3
(Γi)1 + b1(Γi)2 + b2(Γi)3

)
,



which is normal to

(
1 b1 b2
b4 b5 b6

)
Γi. Then we need to characterize when the resulting 7 × 7 linear system has a nonzero

solution in δb1, . . . , δb7. So we reduce to:




−b4(Γi)1(Γi)2 − b5(Γi)
2
2 − b6(Γi)2(Γi)3

−b4(Γi)1(Γi)3 − b5(Γi)2(Γi)3 − b6(Γi)
2
3

−b4(Γi)1 − b5(Γi)2 − b6(Γi)3

(Γi)
2
1 + b1(Γi)1(Γi)2 + b2(Γi)1(Γi)3

(Γi)1(Γi)2 + b1(Γi)
2
2 + b2(Γi)2(Γi)3

(Γi)1(Γi)3 + b1(Γi)2(Γi)3 + b2(Γi)
2
3

(Γi)1 + b1(Γi)2 + b2(Γi)3




⊤ 


δb1

δb2

δb3

δb4

δb5

δb6

δb7




= 0 for each i. (S44)

To complete the proof, we only need to reinterpret (S44) geometrically. Let z1, z2, z3 be variables on R
3. Then (S44)

states that there exists a quadric surface Q ⊆ R
3 (with the caveats of Remark 2), passing through X1, . . . , X7 ∈ R

3 and cut
out by a nonzero element of the following subspace of quadratic polynomials:

span{b4z1z2 + b5z
2
2 + b6z2z3, b4z1z3 + b5z2z3 + b6z

2
3 , b4z1 + b5z2 + b6z3, z

2
1 + b1z1z2 + b2z1z3,

z1z2 + b2z
2
2 + b2z2z3, z1z3 + b1z2z3 + b2z

2
3 , z1 + b1z2 + b2z3} ⊆ R[z1, z2, z3]. (S45)

We just need to verify the subspace (S45) consists precisely of the inhomogeneous quadratic polynomials vanishing on all of

the baseline. Let check this by direct calculation over the next three paragraphs.

The center of the first camera
(
I3 0

)
is
(
0 0 0

)⊤ ∈ R
3. By Cramer’s rule, the center of the second camera M(b) is

the following point at infinity:


− det



b1 b2 b3
b5 b6 b7
0 0 1


 det




1 b2 b3
b4 b6 b7
0 0 1


 − det




1 b1 b3
b4 b5 b7
0 0 1


 det




1 b1 b2
b4 b5 b6
0 0 0





⊤

=
(
b2b5 − b1b6 −b2b4 + b6 b1b4 − b5 0

)⊤ ∈ P
3.

Thus the baseline is

{λ
(
b2b5 − b1b6 −b2b4 + b6 b1b4 − b5

)⊤
: λ ∈ R} ⊆ R

3. (S46)

Substituting (S46) into (S45) shows that all these polynomials indeed vanish identically on the baseline.

Next, note that the seven polynomials in (S45) are linearly independent in R[z1, z2, z3]. Indeed, suppose α ∈ R
7 satisfies

α1

(
b4z1z2 + b5z

2
2 + b6z2z3

)
+ α2

(
b4z1z3 + b5z2z3 + b6z

2
3

)
+ α3 (b4z1 + b5z2 + b6z3) + α4

(
z21 + b1z1z2 + b2z1z3

)

+ α5

(
z1z2 + b2z

2
2 + b2z2z3

)
+ α6

(
z1z3 + b1z2z3 + b2z

2
3

)
+ α7 (z1 + b1z2 + b2z3) = 0 ∈ R[z1, z2, z3]. (S47)

From the coefficient of z21 , we see α4 = 0. Since we are assuming that M(b) has rank 3, it follows that

(
1 b1 b2
b4 b5 b6

)
has

rank 2. So implies that third and seventh polynomials in (S47) are linearly independent, and since their monomial support

is disjoint from that of the other polynomials in (S47), we have α3 = α7 = 0. This leaves the first, second, fifth and sixth

polynomials in (S47). Writing out what remains in terms of the monomials z1z2, z1z3, z
2
2 , z2z3, z

2
3 gives




b4 0 1 0

0 b4 0 1

b5 0 b1 0

b6 b5 b2 b1
0 b6 0 b2







α1

α2

α5

α6


 = 0. (S48)

Actually, assumption that rank(M(b)) = 3 implies that the coefficient matrix in (S48) has rank 4. Indeed, one verifies using

computer algebra, e.g. Macaulay2 [4], that in the ring R[z1, z2, z3] the radical of the ideal generated by the 4 × 4 minors of

the matrix in (S48) equals the ideal generated by the 3× 3 minors of M(b). This forces α1 = α2 = α5 = α6 = 0.



Last, notice that requiring a quadric in R
3 to contain a given line is a codimension 3 condition on the quadric. Indeed by

projective symmetry, the codimension is independent of the specific choice of fixed line; and if we choose the z3-axis, this

amounts to requiring the vanishing of the bottom-left 2× 2 submatrix of the quadric’s 4× 4 symmetric coefficient matrix.

Combining the last three pagragraphs, (S45) consists of the quadratic polynomials vanishing on the baseline as desired. □

S3. Proofs for “Section 4.3: Ill-Posed Image Data”

In this section, we describe the locus of ill-posed image data for the 5-point and 7-point minimal problems in terms of the

X.5-point curves. The logic is to use the classical epipolar relations in multiview geometry to relate these minimal problems

to the task of intersecting a fixed complex projective algebraic variety with a varying linear subspace of complementary

dimension. Then we apply tools from computational algebraic geometry, which were developed to analyze this task [2, 9].

S3.1. Background from algebraic geometry

Consider complex projective space Pn
C

. The set of subspaces of Pn
C

of codimension d is naturally an irreducible projective

algebraic variety, called the Grassmannian:

Gr(Pn−d
C

,Pn
C) = {L ⊆ P

n
C : dim(L) = n− d}.

We use two classic coordinate systems for the Grassmannian. If a point L ∈ Gr(Pn−d
C

,Pn
C
) is written as the kernel of a

full-rank matrix M ∈ C
d×(n+1), then the primal Plücker coordinates for L are defined to be the maximal minors of M :

p(L) =

(
pI(L) = det(M(:, I)) : I ∈

(
[n+ 1]

d

))
(S49)

This gives a well-defined point in P
(n+1

d )−1

C
independent of the choice of M . Meanwhile, if we write L as the row span of a

full-rank matrix N ∈ C
(n−d+1)×(n+1), then the dual Plücker coordinates for L are defined to be the maximal minors of N :

q(L) =

(
qJ (L) = det(N(:,J )) : J ∈

(
[n+ 1]

n+ 1− d

))
. (S50)

Again this gives a well-defined point P
(n+1

d )−1

C
independent of the choice of N . The primal and dual coordinates agree up to

permutation and sign flips, namely for each L ∈ Gr(Pn−d
C

,Pn
C
) it holds

(
pI(L) : I ∈

(
[n+ 1]

d

))
=

(
(−1)n+|I|q[n+1]\I(L) : I ∈

(
[n+ 1]

d

))
, (S51)

where |I| :=∑i∈I i.
Next let X ⊆ P

n
C

be an irreducible complex projective algebraic variety of dimension d. There exists a positive integer

p, called the degree of X , such that for Zariski-generic subspaces of complementary dimension, L ∈ Gr(Pn−d
C

,Pn
C
), the

intersection of L ∩ X consists precisely p reduced (complex) intersection points. Here, one says that an intersection point

x ∈ L ∩X is reduced if L ∩ TxX consists of one point, where TxX is the Zariski tangent space to X at x given by

TxX =



v ∈ P

n
C :

(
∂fi(x)

∂xj

)

i=1,...,t
j=0,...,n

v = 0



 ⊆ P

n
C

for generators f1, . . . , ft ∈ C[x0, . . . , xn] of the prime ideal of X .

The Hurwitz form of X is defined to be the set of linear subspaces which are exceptional with respect to the property in

the preceding paragraph. More precisely, it is

HX =
{
L ∈ Gr(Pn−d

C
,Pn

C) : L ∩X does not consist of p reduced intersection points
}
⊆ Gr(Pn−d

C
,Pn

C).

We will use the following result in the proofs of Theorems 3 and 4.



Theorem 1 [9, Thm. 1.1] Let X be an irreducible subvariety of Pn
C

with dimension d, degree p and sectional genus g. Assume

that X is not a linear subspace. Then HX is an irreducible hypersurface in Gr(Pn−d
C

,Pn
C
), and there exists a homogeneous

polynomial HuX in the (primal) Plücker coordinates for L ∈ Gr(Pn−d
C

,Pn
C
) such that

L ∈ HX ⇔ HuX (p(L)) = 0.

Further if the singular locus of X has codimension at least 2, then the degree of HuX in Plücker coordinates is 2p+ 2g− 2.

S3.2. Proof of Theorem 3

Proof: Let EC ⊆ P
8
C

be the Zariski closure of the set of real essential matrices E inside complex projective space. It

is known that EC is an irreducible complex projective variety, and its prime ideal is minimally generated by the ten cubic

polynomials in Eq. 4 in the main paper. By a computer algebra calculation, EC has complex dimension d = 5, degree p = 10
and sectional genus g = 6. By [3, Prop. 2(i)], the singular locus of EC is a surface isomorphic to P

1
C
× P

1
C

with no real

points, and in particular has codimension 3 in EC. Therefore Theorem 1 applies, and tells us that the Hurwitz form HEC
is

a hypersurface in the Grassmannian Gr(P3
C
,P8

C
) cut out by a polynomial HuEC

which is degree 2 · 10 + 2 · 6 − 2 = 30 in

Plücker coordinates.

For each x = ((γ1, γ̄1), . . . , (γ5, γ̄5)) ∈ (R2 × R
2)×5, we define the subspace

L(x) := kernel




(γ1)1(γ̄1)1 (γ1)2(γ̄1)1 (γ̄1)1 (γ1)1(γ̄1)2 (γ1)2(γ̄1)2 (γ̄1)2 (γ1)1 (γ1)2 1

...
...

...
...

...
...

...
...

...

(γ5)1(γ̄5)1 (γ5)2(γ̄5)1 (γ̄5)1 (γ5)1(γ̄5)2 (γ5)2(γ̄5)2 (γ̄5)2 (γ5)1 (γ5)2 1




5×9

⊆ P
8
C.

(S52)

Then we define P as follows:

P(γ1, . . . , γ̄5) := HuEC
(p(L(x))),

where p(L(x)) are the primal Plücker coordinates of L(x). In other words, P is obtained by substituting the
(
9
5

)
= 126

maximal minors of the matrix in (S52) into HuEC
. Note P has degree 30 separately in each of the ten points γ1, . . . , γ̄5,

because HuEC
has degree 30 in Plücker coordinates and each Plücker coordinate is separately linear in each xi and each yi.

We shall verify P has the property in the third sentence of the theorem statement. For the remainder of the proof, fix

image data x = ((γ1, γ̄1), . . . , (γ5, γ̄5)) ∈ (R2 × R
2)×5 such that P(γ1, . . . , γ̄5) ̸= 0. We need to show that at every world

scene that is compatible with x the forward Jacobian is invertible.

We show this using the epipolar constraints for two-view geometry [5, Part II]. We consider the following system in w:

{
Φ(w) = x

w ∈ W,
(S53)

and the following system in E: 



(
γ̄i

1

)⊤
E

(
γi

1

)
= 0 ∀ i = 1, . . . , 5

E ∈ E .
(S54)

Each solution to (S54) corresponds to four solutions to (S53) via Ψ, and there are no other solutions to (S53). Moreover w
depends smoothly on E, see [5, Result 9.19].

However solutions to (S54) are the real intersection points in

L(x) ∩ EC ⊆ P
8
C, (S55)

because E = EC ∩ P
8
R

(see [3, Sec. 2.1]). But we know (S55) consists of 10 reduced intersection points, by definition

of P and the Hurwitz form. Denote these {E1, . . . , E10} where the real intersection points are E1, . . . , Ea. Using an

appropriate version of the implicit function theorem (see [8, App. A]), there exists an open neighborhood U of x in X and



differentiable functions Ẽ1, . . . , Ẽ10 : U → EC such that: (i) Ẽi(x) = Ei for each i = 1, . . . , 10; (ii) for each x′ ∈ U we

have L(x′) ∩ EC = {Ẽ1(x
′), . . . , Ẽ10(x

′)}, these intersection points are all reduced, and the only the first a points are real.

Combining the last two paragraphs, there exists differentiable functions w̃1, . . . , w̃4a : U → W such that for each x′ ∈ U ,

{w ∈ W : Φ(w) = x′} = {w̃1(x
′), . . . , w̃4a(x

′)} . (S56)

Therefore Φ ◦ w̃i = idU for each i. Differentiating this and evaluating at x ∈ X gives

(DΦ)(w̃i(x)) ◦ (Dw̃i)(x) = I20,

so that, in particular, (DΦ)(w̃i(x)) is invertible for each i.
This proves that every world scene compatible with x has an invertible forward Jacobian as we needed. For a discussion

of how to plot the 4.5-point curve using homotopy continuation, see “Numerical Computation of the X.5-Point Curves”. □

S3.3. Proof of Theorem 4

Proof: This is similar to the proof of Theorem 3, although somewhat easier. Let FC ⊆ P
8
C

be the Zariski closure of the set

of real fundamental matrices F inside complex projective space. Then FC consists of all rank-deficient 3 × 3 matrices. So

FC is an irreducible complex projective hypersurface, defined by the determinantal cubic equation. It has dimension d = 7,

degree p = 3 and sectional genus g = 1. The singular locus of FC consists of all rank 1 matrices, and in particular has

codimension 3. Therefore Theorem 1 applies, and tells us that the Hurwitz form HFC
is a hypersurface in the Grassmannian

Gr(P1
C
,P8

C
) cut out by a polynomial HuFC

which is degree 2 · 3 + 2 · 1− 2 = 6 in Plücker coordinates.

For each x = ((γ1, γ̄1), . . . , (γ7, γ̄7)) ∈ (R2 × R
2)×7, we define the subspace

L(x) := kernel




(γ1)1(γ̄1)1 (γ1)2(γ̄1)1 (γ̄1)1 (γ1)1(γ̄1)2 (γ1)2(γ̄1)2 (γ̄1)2 (γ1)1 (γ1)2 1

...
...

...
...

...
...

...
...

...

(γ7)1(γ̄7)1 (γ7)2(γ̄7)1 (γ̄7)1 (γ7)1(γ̄7)2 (γ7)2(γ̄7)2 (γ̄7)2 (γ7)1 (γ7)2 1




7×9

⊆ P
8
C.

(S57)

Then we define P as follows:

P(γ1, . . . , γ̄7) := HuFC
(p(L(x))),

where p(L(x)) are the primal Plücker coordinates of L(x). In other words, P is obtained by substituting the
(
9
7

)
= 36

maximal minors of the matrix in (S57) into HuFC
. Note P has degree 6 separately in each of the fourteen points x1, . . . , y7,

because HuFC
has degree 6 in Plücker coordinates and each Plücker coordinate is separately linear in each xi and each yi.

The argument that P does the job is analogous to that for the calibrated case. One uses the epipolar constraints for the

fundamental matrix, and the correspondence between fundamental matrices and world scenes (which this time is 1-1 due

to [5, Sec. 9.5.2]). Given x ∈ X such that P(x) ̸= 0, each compatible fundamental matrix F ∈ F is a locally defined smooth

function of x, by our choice of P and the definition of the Hurwitz form. The corresponding world scene w ∈ W is smooth

as a function of F , and therefore a locally defined smooth function of x. Then we conclude with the chain rule again.

□

S3.4. Numerical Computation of the X.5­Point Curves

In the body of the paper, we specified that for the 5-point problem and 7-point problem, if we fix “4.5” and “6.5” corre-

spondences as described in the body, then we can find a degree 30 and 6 curve on the second image indicating the ill-posed

positions for the last image point. In this section, the generation of the X.5-point curves will be introduced in depth.

Suppose we have two images I and Ī . Consider the essential matrix E and fundamental matrix F representing their

relative pose in calibrated and uncalibrated cases respectively.

For the uncalibrated case, to generate the 6.5-point curve, six known point correspondences (γ⊤
i = [(γi)1, (γi)2], γ̄

⊤
i =

[(γ̄i)1, (γ̄i)2]), i = 1, . . . , 6, are needed. These point correspondences satisfy

(
γ̄i

1

)⊤
F

(
γi

1

)
= 0, i = 1, . . . , 6.



This equation can then be rewritten as a linear system:





f⊤ = (F11, F12, F13, F21, F22, F23, F31, F32, F33)

wT
i f = 0, i = 1, . . . , 6

w⊤
i = ((γi)1(γ̄i)1, (γi)2(γ̄i)1, (γ̄i)1, (γi)1(γ̄i)2, (γi)2(γ̄i)2, (γ̄i)2, (γi)1, (γi)2, 1) .

(S58)

Note that the equations wT
i F̃ = 0, i = 1, . . . , 6 can then be rearranged into the form Wf = 0, where W is a 6 × 9 matrix.

We extract a basis for the null space of this linear system, by computing three right singular vectors of W with 0 singular

value. So the fundamental matrix can be reconstructed as

F = α1F1 + α2F2 + F3, (S59)

where F1, F2 and F3 are the basis of the nullspace reshaped into 3×3 matrices; and α1 and α2 are free parameters in building

the fundamental matrix F . From [7, Thm. 1], the fundamental matrix should satisfy

det(F ) = 0,

so that we have a polynomial with respect to α1 and α2:

det(α1F1 + α2F2 + F3) = 0. (S60)

Now consider the final seventh “0.5” point correspondence between the images, (γ7 = ((γ7)1, (γ7)2) , γ̄
⊤
7 = ((γ̄7)1, (γ̄7)2)),

where γ7 is known but γ̄7 is not. We seek the values of γ̄7 such that all of the image data becomes ill-posed. To cut down

on the number of variables, our strategy is to fix various numerical values for (γ̄7)1 and then determine the corresponding

degenerate values for the last coordinate (γ̄7)2. Firstly we have the additional linear constraint

(
γ̄7

1

)⊤
(α1F1 + α2F2 + F3)

(
γ7

1

)
= 0. (S61)

Combining (S60) and (S61), we have two equations in the three unknowns α1, α2, (y7)2:

{
det(α1F1 + α2F2 + F3) = 0

((γ̄7)1, (γ̄7)2, 1)(α1F1 + α2F2 + F3)(γ7, 1)
⊤ = 0.

(S62)

To find the points on the 6.5-point degenerate curve, we need to also enforce rank-deficiency of the Jacobian of the system

(S62) with respect to α1, α2. This Jacobian reads

J =




∂ det(α1F1+α2F2+F3)
∂α1

∂ det(α1F1+α2F2+F3)
∂α2

∂((γ̄7)1,(γ̄7)2,1)(α1F1+α2F2+F3)(γ7,1)
⊤

∂α1

∂[(γ̄7)1,(γ̄7)2,1](α1F1+α2F2+F3)(γ7,1)
⊤

∂α2


 . (S63)

To express rank-deficiency, we introduce a dummy scalar variable d1 to represent the non-trivial null space for J . All together

we have the following system of equations now:





det(α1F1 + α2F2 + F3) = 0

((γ̄7)1, (γ̄7)2, 1)(α1F1 + α2F2 + F3)(γ7, 1)
⊤ = 0

J(d1, 1)
⊤ = 0.

To plot the 6.5-point curve, we set the parameter (γ̄7)1 to different real values, e.g. to horizontally range over all the pixels

in the second image. For each fixed value of (γ̄7)1, (S64) becomes a square polynomial system in the variables α1, α2, (γ̄7)2.

The real solutions correspond to the intersection of the 6.5-point curve and the corresponding column of the image. The curve

inside the image boundaries can be obtained by solving these various systems independently, see Figure S1(a). We choose

to solve the polynomials using homotopy continuation [8] as implemented in the Julia package [1]. By linearly connecting

the intersection points, the 6.5-point curve is rendered. In some possible applications, a full plot of the curve may not be

required. For example, consider checking the distance from a given point to the curve. In that case, we can simply compute



(a) (b)

Figure S1. (a) To generate the X.5-point curves on the second image, we can sweep the image column-wise and compute the intersection

with vertical lines by solving (S62). (b) Given a candidate correspondence, we can scan just a neighborhood around the candidate point.

the intersection points as (γ̄7)1 ranges over a small interval around the correspondence candidate, see Figure S1(b). Finally,

computations for different columns of the image are independent, so the described procedures are easily parallelized.

For the calibrated case (similarly to the uncalibrated case), with four known correspondences, we can build a linear

system analogous to (S58) in the variable E. Here the null space is 5-dimensional, so we represent the essential matrix as

E = α1E1 + α2E2 + α3E3 + α4E4 + E5. (S64)

where Ei provide a basis of the null space. From [7], the essential matrix should also satisfy the following polynomial

constraints:

det(E) = 0 and E(E⊤E)− 1

2
trace(EE⊤)E = 0,

which are in total 10 cubic equations. Similarly to uncalibrated case, to find the degenerate configurations, the Jacobian of
these constraints with respect to α1, . . . , α4 should be rank-deficient. The Jacobian can be built as follows:

J =











∂ det(E)
∂α1

∂ det(E)
∂α2

∂ det(E)
∂α3

∂ det(E)
∂α4

∂((γ̄5)1,(γ̄5)2,1)E(γ5,1)
!⊤

∂α1

∂((γ̄5)1,(γ̄5)2,1)E(γ5,1)
⊤

∂α2

∂((γ̄5)1,(γ̄5)2,1)E(γ5,1)
⊤

∂α3

∂((γ̄5)1,(γ̄5)2,1)E(γ5,1)
⊤

∂α4

∂ vec(E(E⊤E)− 1
2
trace(EE⊤)E)

∂α1

∂ vec(E(E⊤E)− 1
2
trace(EE⊤)E)

∂α2

∂ vec(E(E⊤E)− 1
2
trace(EE⊤)E)

∂α3

∂ vec(E(E⊤E)− 1
2
trace(EE⊤)E)

∂α4











Here vec(·) represents the vectorization of a 3×3 matrix into a 9×1 vector, so that J is a 11×4 matrix. Then, we introduce
dummy variables d1, d2, d3 to express rank-deficiency of J and build the following system of equations:























det(E) = 0

((γ̄5)1, (γ̄5)2, 1)E(γ5, 1)⊤ = 0

E(E⊤E)− 1
2
trace(EE⊤)E = 0

J(d1, d2, d3, 1)⊤ = 0

where E = α1E1 + α2E2 + α3E3 + α4E4 + E5. Note that we have in total 22 equations and 8 unknowns. The variables

are α1, α2, α3, α4, (γ̄5)1, (γ̄5)2, d1, d2 and d3. The solutions to this system define the 4.5-point curve.

By setting (γ̄5)1 to various different values, we can find the zero-dimensional solution sets following the same approach

as in Figure S1. The real solutions for (γ̄5)2 correspond to the intersection of the 4.5-point curve and a column of the image.

The solutions to these systems are easily computed using HomotopyContinuation.jl. Note that the systems have 30 complex

solutions, so that we will have at most 30 real intersection points with the various columns of the second image.



S4. Additional Experimental Results

S4.1. Extra Curve Samples

The main body showed four sample X.5-point curves for the calibrated and uncalibrated minimal problems. Figure S2

shows more synthetic curves. We have included different cases corresponding to stable and unstable problem instances.

(a)

(b)

Figure S2. Sample renderings of the X.5-point curve. Points used in computing the curve are shown as green; the red point is the 5th/7th

correspondence on the second image for calibrated/uncalibrated relative pose estimation; the red curve is the X.5-point curve we computed

using homotopy continuation. (a) 6.5-point curves for the uncalibrated case. (b) 4.5-point curves for the calibrated case.

S4.2. Stability of Curves for Calibrated Case

Here we show sample perturbation results for the 4.5-point curve. For the synthetic dataset described in the main paper,

we add N (0, 0.5)-noise on each of the correspondences, then compute the resulting degenerate curve. In the main paper,

Figure 6 shows the sample perturbation for the uncalibrated case. The corresponding cases for the calibrated case are in

Figure S3. The statistics for the calibrated cases were already included in Figure 7.

S4.3. More Real Image Examples

Figure 8 in the main body showed an example using the X.5-point curve to indicate unstable configurations on real images.

In this section, we display more examples on real images, see Tables S1 and S2. Note that our method is an indication of the

stability of a minimal problem instance. Here we selected only all-inlier minimal problem instances whose reprojection error

using the ground truth essential matrix is below a threshold (3 pixels are used). Then we computed the X.5-point curve on

the second image. As mentioned in the body, the distance from the point to the curve can be used as a criteria to predict the

stability. For highly unstable problem instances, the solution corresponding to the ground truth may suffer from large errors.



(a) (b)

(c) (d)

Figure S3. Illustrative result indicating the stability of the 4.5-point curve. (a) The degenerate curve for an unstable instance of E

estimation. (c) The degenerate curve for a stable instance of E estimation. (b) (d) Adding different noise, the curves do not change much.
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Ground Truth Epipolar Geometry Estimated Epipolar Geometry Degenerate Curve

Table S1. Further examples of the 6.5-point degenerate curve computed on real images. The estimated epipolar geometry is the estimate

closest to the ground truth amongst the multiple solutions to the minimal problem.



Ground Truth Epipolar Geometry Estimated Epipolar Geometry Degenerate Curve

Table S2. Further examples of the 4.5-point degenerate curve computed on real images. The estimated epipolar geometry is the estimate

closest to the ground truth amongst the multiple solutions to the minimal problem.


