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In this document, we describe details of Region Adap-
tive Hierarchical Transform (RAHT) and then describe net-
work architecture details of our algorithm. We provide ad-
ditional experiments on MPEG/JPEG point cloud compres-
sion database to validate the effectiveness of our approach,
compare our method with learning-based baselines and also
benchmark the runtime of our method to show its potential
for real-world applications. Moreover, we show additional
qualitative results on ScanNet and SemanticKITTI. Finally,
we discuss the limitations and broader impact of our ap-
proach.

1. Additional RAHT Details
RAHT is a variation of Haar wavelet transform tailored

for 3D point clouds. It first voxelizes point clouds and trans-
forms point cloud attributes to low- and high-frequency co-
efficients along three dimensions repeatedly (e.g., along the
x axis first, then the y axis and the z axis) until all points
are merged to the entire 3D space. Here, we show the de-
tails about transforming two low-frequency coefficients to
low and high-frequency coefficients.

Two neighboring points are merged during encoding and
low- and high-frequency coefficients are generated from the
corresponding low-frequency coefficients with the follow-
ing transform:[

ld+1,x,y,z

hd+1,x,y,z

]
= Tw1,w2
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where ld,2x,y,z and ld,2x+1,y,z are low-frequency coeffi-
cients of two neighboring points along the x dimension, and
ld+1,x,y,z and hd+1,x,y,z are the decomposed low-frequency
and high-frequency coefficients. For the first depth level,
point cloud attributes are regarded as low-frequency coeffi-
cients. Here, Tw1

is defined as
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where w1 and w2 are the weights (i.e., the number of
leaf nodes) of ld,2x,y,z and ld,2x+1,y,z , respectively. Low-
frequency coefficients are directly passed to the next level if
the point does not have a neighbor.

2. Additional Architecture Details

RAHT tree node context. For a given RAHT tree node,
the context information contains the depth level, (i.e., depth
of the node in the RAHT tree), the weight w, (i.e., the num-
ber of child nodes), the reconstructed low-frequency coeffi-
cients l (i.e., the accessible low-frequency coefficients dur-
ing decoding) and the reconstructed attributes a, (i.e., mean
attributes of all points in the corresponding subspace). Note
that the reconstructed attributes can be obtained by a = l√

w
.

Architecture Details. For context feature extraction from
high-frequency nodes and inter-channel coefficient correla-
tion, we use a 3-layer MLP (8, 16 and 8 dimensional hidden
features) with context of high-frequency nodes and previous
encoded coefficients as input, respectively. For context fea-
ture extraction from low-frequency nodes and inter-channel
spatial correlation, we adopt torchsparse [6] to construct 4
3D sparse convolution layers (3, 3, 6 and 8 dimensional hid-
den features, and convolution stride as 2) and use trilinear
interpretation to obtain latent features from output feature
volume of each convolution layer. Besides, latent feature
aggregation is realized by a 3-layer MLP (8, 16 and 8 di-
mensional hidden features) for both initial coding context
module and inter-channel correlation module.
Implementation Details. Our network is implemented in
PyTorch and trained with one NVIDIA 1080TI GPU. We
train our model over 20 epochs using the Adam optimizer
with an initial learning rate of 0.01.

3. Additional Experiments

MPEG/JPEG database. We also conduct experiments on
MPEG/JPEG point cloud compression datasets, including
MVUB [3], Owlii [7] and 8iVFB [2]. All these datasets
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Figure 1. Additional experiments on MPEG/JPEG database. Quantitative results of different attribute compression approaches on the
MVUB (a), Owlii (b) and 8iVFB (c) datasets.

contain four to five dynamic human point cloud sequences.
We voxelize point clouds of these dataset with a 9-level oc-
tree. For MVUB, we use subjects, Andrew, David, Phil and
Ricardo for training and Sara for testing. For Owlii, we use
basketball player, dancer, exercise for training and model
for testing. For 8iVFB, we use longdress, loot, redandblack
for training and soldier for testing.

The quantitative attribute compression results on
MPEG/JPEG database are shown in Fig. 1. Our 3DAC
achieves better compression performance with other base-
lines on MVUB and Owlii. Due to the huge diversity of
attributes in 8iVFB, our method has a small performance
gap compared with the standard point cloud compression
software, G-PCC, while it is still much better than RAHT.
The results on these point cloud compression datasets fur-
ther illustrate the effectiveness of our method.
Comparison with learning-based methods. In order to
demonstrate the superiority of our method, we addition-
ally compare our 3DAC with other complex learning-based
baselines. In particular, we additionally include a concur-
rent work, DeepPCAC [5], on ScanNet. As shown in Figure
2, our 3DAC significantly outperforms all other learning-
based baselines.

Figure 2. Quantitative results of different learning-based attribute
compression approaches on the ScanNet dataset.

Run time. We benchmark runtime of our method on Scan-
Net with an Intel Core i7-8700 CPU and a Nvidia GeForce

GTX 1060 6GB GPU. In our experiments, the arithmetic
coder is implemented in C++, and the initial coding method
and our entropy model are implemented in python. We set
the quantization parameter as 10. The encoding and decod-
ing time of our method are 3.21s and 3.27s, respectively,
and those of G-PCC [4], which is implemented in C++, are
0.36s and 0.31s. Although our method is slower than G-
PCC, we believe that it is possible to speed up our method
with parallel computation and an optimization in data I/O.

4. Additional Qualitative Results
We show additional qualitative results on ScanNet and

SemanticKITTI to show our compression performance in
Fig. 3. As shown in the figure, our method can retain better
reconstruction quality as well as reducing bitrates.

5. Limitations and Broader Impact
In the current experimental setup, our algorithm only

achieves lossy point cloud compression. In specific, we
voxelize point clouds with an octree (which leads to geome-
try distortion), and then adopt RAHT and uniform quantiza-
tion to process the voxlized point clouds (which leads to at-
tribute distortion). Due to these operations, our framework
can not realize lossless compression. A possible solution is
to upsample compressed attributes form voxelized points to
original points through interpolation, and then transmit the
residual of attributes. We leave the attribute interpolation
and the residual coding as a future study.

Our point cloud attribute compression algorithm directly
helps to 3D data compression, storage and transmission.
Thus, we do not foresee any direct negative societal impact
of our method. However, the compression and transmission
of point cloud data, such as human body and human face,
may indirectly lead to invasion of privacy. Thus, we need to
be aware of some malicious applications of our method.



(a) Ground Truth (b) Spconv AE (c) RAHT (d) G-PCC

BPP: 6.40 PSNR𝑦: 26.71 BPP: 2.96 PSNR𝑦: 35.36 BPP: 1.62 PSNR𝑦: 35.33 BPP: 1.54 PSNR𝑦: 35.36

BPP: 17.40 PSNR𝑦: 26.93 BPP: 13.89 PSNR𝑦: 53.07 BPP: 10.44 PSNR𝑦: 52.09 BPP: 7.54 PSNR𝑦: 53.07

(e) Ours

Semantic KITTI

BPP: 2.64 PSNR𝑦: 33.59 BPP: 2.03 PSNR𝑦: 33.49 BPP: 2.01 PSNR𝑦: 33.59BPP: 2.91 PSNR𝑦: 19.60

BPP: 6.44 PSNR𝑦: 53.35 BPP: 6.16 PSNR𝑦: 51.71 BPP: 5.22 PSNR𝑦: 53.35BPP: 7.62 PSNR𝑦: 22.88

Figure 3. Additional qualitative results achieved by our method and other baselines including Spconv AE, RAHT [1] and G-PCC [4]. We
visualize ScanNet scans with RGB colors and Semantic KITTI with the intensity of reflectance at relatively low and high bitrates. It is
clear that our method can achieve the best compression quality (PSNR sores) with the lowest bitrates.
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