
Supplementary Materials

In this supplementary materials, we provide additional de-
tails about experimental settings, and then further compare
effect of different semantic concept sources, more ablative
studies regards training, different architectural instantia-
tions, and further showcase more qualitative examples of
predicted semantic concepts.

Source VG [10] COCO [14] CC [2] SBU [19]

Image 108K 113K 3.1M 875K
Text 5.4M 567K 3.1M 875K

Table 1. Statistics of the VL pre-training datasets.

1. Pre-training VL Corpus
As previous works in [23], we carry out the pre-training

of ViTCAP on the aggregation of several common datasets,
which include COCO [14], Conceptual Caption [2], SBU
Captions [19], and Visual Genome [10]. We have the detailed
statistics of the aggregated datasets in Table 1. In total, we
use 4.2 millions of images and 9.9M captions for the pre-
training. Following [16], we de-duplicate images that exist in
both pre-training corpus and COCO Karpathy testing splits
for fair comparisons.

2. Ablative Studies
This section further presents additional ablative studies

about ViTCAP, which includes: some examples and basic
statistics about semantic concepts, the effect of different
concept sources, results of different concept classification
losses, different other training strategies.
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Figure 1. Inference speed in FLOPs (in G), number of parameters
(in M) of multiple VL models and ViTCAP.

Examples and Stats of Concepts. In practice, we experi-
ment with utilizing semantic concepts gleaned from 1). open-
form image captions by language parsing (or simple as using
all tokens as classification ground-truth) or 2). an object
detector.

As previously mentioned, we notice that the concepts
from both sides are all severely long-tailed distributed (an
example of the detector-produced concept distribution is
shown in Figure 2). Notably, certain concepts appear
more frequently across the whole COCO training split, e.g.,
“person”, “tree”, “window” obviously exist far more
frequent than the remaining. We also resort to different ob-
ject detectors to acquire high-quality semantic concepts, i.e.,
a ResNet101 base Faster-RCNN [1] that has been pre-trained
on Visual-Genome dataset [10] (denoted as BUTD), and
a ResNext152 based modified Faster-RCNN detector with
broader categories of the visual attribute as detection targets
(denoted as VinVL). These detector-produced image-level
tags are actually accurate with less noise than in captions, but
they also require a pre-defined categorical dictionary with a
fixed set of concepts. This largely limits the scope of their
applications.

In Figure 1, we present the inference speed and the num-
ber of learnable parameters of prevailing detector-based VL
models compared with ViTCAP Notably, with on-par pa-
rameters, ViTCAP consumes only ∼ 10% FLOPs of the
prevailing VL models (97G for ViTCAP vs. 1, 025G for
VinVL).

More About Concept Sources. Open-form captions are the
most ideal source to obtain semantic concepts as they natu-
rally carry abundant semantic concepts with no vocabulary
limitation. Notwithstanding that most of these descriptions
can be noisy, inaccurate, and incomplete. In practice, we
leverage different ways to extract the concepts from them
by 1) using the NLTK [15] toolkit and parsing out only the
nouns and adjectives as the semantic concepts for the classi-
fication task (see “CAPTION” baseline in main paper); 2)
we also simply attempt to leverage all tokens from the cap-
tions as concept targets in case of omitting essential words
during parsing (see “♠” in main paper). We first extract
these tags as “off-the-shelf ” annotations for the concept clas-
sification task and then apply the initialization of ViTCAP
after the first stage of training for the joint captioning train-
ing. Note that we conduct and compare all these ablations
without VL pre-training. It is beneficial to further adopt the
concept classification loss during the joint training, as the
semantic concepts in the COCO-caption dataset vary with
the concept classification dataset. Also, captions in these
two domains might vary from the aspect of textual styles: for
example, length of captions, the use of synonyms, cognate
and conjugate words, or various tenses.

Concept Classification Training. We now study the ef-
fect of different losses for the concept classification task,
namely binary cross-entropy loss and focal loss, and the ef-
fect of the initialization after the classification training. The
extremely imbalanced sample distribution usually leads to
sub-optimal classification performances, as also studied in
previous works like face recognition [17, 24] and object de-
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Figure 2. Top-150 most frequently appeared semantic concepts
produced by VinVL’s object detector. The produced tags are
severely long-tail distributed and certain concepts dominates across
all samples. This arises the necessity to apply focal loss as counter-
measure.

tection [12, 20], etc. As countermeasures, there exist works
designing advanced losses [13, 24] re-weighting different
samples. In Table 2, we list the performances of ViTCAP
using different losses. In specific, the top-two rows are the
baseline results 1). Baseline: vanilla Encoder-Decoder ar-
chitecture without CTN branch, and 2). Encoder-Decoder
architecture using VinVL’s OD tags as [11]. “Tag” denotes
the results are reported using concepts as the offline tags

COCO Captioning

EPOCH B@4 M R C S
Baseline - 33.9 27.8 56.4 114.8 21.3

VinVL-Tag - 35.4 28.1 57.2 117.7 21.3

BCETag 10 33.9 27.9 56.5 115.0 21.4

FOCALTag 10 35.2 28.0 57.0 117.1 21.4

FOCALTag+Init 10 36.0 28.4 57.5 120.5 22.0

FOCALInit 10 35.0 28.2 57.1 118.0 21.6

FOCALTag+Init 40 35.9 28.4 57.6 121.1 22.1

Table 2. Performances of ViTCAP using focal loss, binary classifi-
cation loss as concept classification training target.

without concept classification & its initialization. We ob-
serve that by applying the BCE loss trained offline concepts
as offline tags, the results are only incrementally improved
over the baseline, and it still shows a great performance gap
w.r.t. the VinVL’s tag. Notably, using focal loss obviously
improves the quality of produced concepts, reaching 117.1
CIDEr scores. To this end, we apply the concept classifi-
cation pre-trained initialization, and this further improves
the performances to a great extent. It is discernible that the
experiment “Init” gives worse result than the “Tag+Init”. This
validates that both the concept classification task and the pre-
dicted concepts are helpful for the captioning task. Results
show that they are complementary to each other.

Tokenization
COCO Captioning

B@4 M R C S
Caption Tokenizer 35.5 28.5 57.5 119.7 21.8

Classifier Tokenizer 35.6 28.4 57.4 119.8 21.8

Independent Tokenizer 35.9 28.5 57.6 120.1 21.9

Table 3. Performances of ViTAP using different strategies for
concept tokenization.

Representing Concepts as Tokens. There are multiple
ways to encode the predicted concepts as continuous em-
bedding for the decoding stage. We study three different
ways of encoding and present the results in Table 3, namely,
1). use the tokenizer for captioning, 2). use the concept
classifier’s tokenizer (in concept classification, we simply
use the BERT tokenizer to encode the semantic concepts),
3). use an independent and untrained tokenizer. Though
in practice, all three tokenizers are implemented based on
the BERT tokenizer [3], the embeddings from the three are
entirely different. From the results, we observe a fairly neg-
ligible performance gap: using an independent tokenizer
only yields a 0.4 higher CIDEr score. Though adopting an
independent tokenizer yield the best result, it introduces ad-
ditional parameters and thus we choose to share the tokenizer
for captioning instead.



COCO Captioning

B@4 M R C S
GT Concepts 35.5 28.4 57.3 119.1 21.7

GT + PRED. Concepts 35.2 28.5 57.3 119.2 21.8

PRED. Concepts 36.1 28.6 57.6 120.6 21.7

Table 4. Performances of VitCAP using either ground-truth con-
cepts for captioning, the concept network predicted concept tokens
or the mixture of them during training.

We experiment with different ways to train with the con-
cept tokens. In Table 4, we list the results of training us-
ing GT semantic concepts encoded as tokens, GT concepts
mixed with predicted concepts, and fully predicted concepts.
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Figure 3. The overall training paradigm of ViTCAP can be un-
derstood as the knowledge distillation procedure where a detector-
based Teacher VLM to assist the training of ViTCAP as a knowl-
edge distillation paradigm. The CTN branch in ViTCAP learns to
predict the semantic concepts as conceptual tokens for captioning.

We find that by using the predicted concepts for training
leads to optimal results. This is mostly because the pre-
trained CTN can already produce reasonable concepts at the
captioning fine-tuning stage.

ViTCAP Architecture. To give a more detailed explanation
of the architecture of ViTCAP: it consists of a stem image en-
coder with 8 transformer blocks (shared for both grid feature
extractor and CTN), a CTN branch with 4 transformer blocks,
and a grid feature extractor with 4 transformer blocks, the
multi-modal module is also a 4 transformer blocks module.
When M1 = 12, the model can be understood as consisting
of two parallel branches, with one for concept prediction
and one for grid representation. We does find that mini-
mizing the shared blocks can bring extra performance gains

Architecture
COCO Captioning

B@4 M R C S
SIN-TOW32×32 32.5 27.1 55.4 109.5 20.2

+EFF. OD-Tags 32.8 27.4 55.5 110.9 20.6

+VinVL-Tags 33.5 27.8 56.1 114.6 21.1

ENC-DEC32×32 33.4 27.5 56.0 112.1 20.6

+EFF. OD-Tags 33.8 27.9 56.4 114.6 21.3

+VinVL-Tags 34.4 27.9 56.6 115.8 21.1

+ViTCAP-Tags 34.0 27.7 56.3 114.2 20.8

SIN-TOW16×16 33.8 27.8 56.2 113.9 21.0

+EFF. OD-Tags 33.8 27.9 56.4 114.6 21.3

+VinVL-Tags 34.3 28.2 56.7 117.4 21.7

ENC-DEC16×16 33.9 27.8 56.4 114.8 21.3

+VinVL-Tags 35.4 28.1 57.2 117.7 21.3

+ViTCAP-Tags 35.2 28.0 57.0 117.1 21.4

ViTCAP 35.7 28.8 57.6 121.8 22.1

Table 5. We compare different instantiations of ViTCAP with
architectural variations of ViT based captioning model: single-
tower (SIN-TOW), encoder-decoder structure (ENC-DEC), two-
tower ViTCAP, and ViTCAP with various numbers of sharing
blocks in stem image encoder. All experiments are conducted
without VL pre-training and are trained by cross-entropy loss.

but this inevitably increases the model size very obviously.
We only adopt this two-tower design in the experiment with
large scale pre-training where we follow a two-step training
schema as OSCAR [11]: we first leverage the CTN to predict
the semantic concepts of all pre-training images; Then, we
use these concepts as the off-the-shelf tags (similar as the
object detector tags) for the pre-training.

Architectural Variations. We then experiment with dif-
ferent architectural variations of ViTCAP and report their
performances on COCO-caption in Table 5. The baseline
models include single-tower (SIN-TOW) that shares the ViT
backbone for both modalities; Encoder-decoder (ENC-DEC)
that use a ViT as visual encoder and 4 separate transformer
blocks as modal fusion. This is similar to [9], however,
we modify it by using seq-to-seq attention maps for the
captioning training which prevents the model from seeing
bidirectional context; Two-tower (TWO-TOW) uses an in-
dependent ViT/b architecture as a conceptual token network
and another architecture as the visual encoder.
More Evaluations. In addition to previous benchmarks, we
also use the recently proposed rule-based SMURF metric
which demonstrates SOTA correlation with human judgment
and improved explainability. SMURF is the first caption
evaluation algorithm to incorporate diction quality into its
evaluation. We observe that our method preserves both se-
mantic performance and the descriptiveness of terms used in
the sentence.



Methods SMURF

w/ only periods removed
VinVL 0.66
M2 Transformer 0.49
X-Transformer 0.51
ViTCAP 0.55

w/ all punctuation removed
VinVL 0.59
M2 Transformer 0.42
X-Transformer 0.46
ViTCAP 0.49

Table 6. Performance of ViTCAP comparing with previous models
under SMURF [7] metric. Note that this results is evaluated using
ViTCAP without pre-training.

3. Discussions

Qualitative Examples. We demonstrate more qualitative ex-
amples of the attention maps produced by ViTCAP together
with their predicted semantic concepts in Figure 4.

Can ViTCAP Ground Concepts? Interestingly, we ob-
serve that the attention maps produced from transformer
blocks closely relate to the concepts and various layers have
different focuses while the averaged attention maps cover
broad holistic regions. We present more visualizations in Fig-
ure 5 which contain a single object per image for more direct
analysis. The topmost row is a picture with multiple “wild
gooses” and all regions of them are highlighted according
to the attention maps. Despite so, it seems ViTCAP suffers
from identifying the clear borders of the object that it may
only recognize part of the objects, e.g., ViTCAP only high-
lights the part of the “traffic light” and the “tie”.
This indicates the potential application of ViCAP for weakly
supervised textual grounding tasks for the image [4,6,21,22]
and video [5, 8, 18].

VL Distillation Schema. Our distillation schema can be
indeed viewed as an extension of the VL distillation schema,
where the Student model not only mimics the predicted
masked token probability but also learns from the Teacher
OD’s object tags. As is shown in Figure 3. Note that our
distillation technique is only applied on the ViTCAP with VL
pre-training, as the teacher VL model contains knowledge
acquired from large-scale pre-training and so it is unfair
to compare the ViTCAP with other methods without VL
pre-training.

Detector Tags vs. Caption Extracted Concepts. Empirical
studies show that the caption extracted concepts lead to
better ViTCAP. We conjecture that this is mainly because
the captions contain much broader image concepts contained

in open-form texts, yet the detector tags are pre-defined with
much more limited vocabulary. However, perfectly aligned
image-text pairs are not always attainable considering that
most existing image-level annotations are collected from the
Web. These image captions can be as noisy as alt text or
short phrases, from which the extracted concepts only cover
part of the image content. Thus in practice, it is also an
important aspect to explore the feasibility of adopting the
non-caption-extracted concepts, e.g., from an object detector
as a substitution. This provides a flexible source of the
concepts.



ATT. Lay. 1 ATT. Lay. 2 ATT. Lay. 4 ATT. Lay. 8 AVG. Lay.<=4 AVG. Lay.<=12

Predicted Concepts: [ motorcycle, road, man, dirt, bike, mountain, red, muddy ]

Predicted Concepts: [ table, cake, food, girl, woman, young, person, ice, bowl ]

Predicted Concepts: [ kitchen, sink, window, counter, large, stove, house, wooden ]

Predicted Concepts: [ train, man, bike, red, bicycle, front, passenger, track ]

Predicted Concepts: [ table, wooden, wood, room, old, kitchen, set, chair ]

Predicted Concepts: [ bathroom, shower, glass, toilet, sink, large, modern, bath ]

Predicted Concepts: [ toilet, sink, bathroom, white, mirror, wall, paper, cabinet ]

Predicted Concept: [ airport, plane, airplane, window, large, terminal, jet, rain ]

Figure 4. ViTCAP produced class-agnostic attention maps and their associated semantic concepts of random images from COCO caption
dataset. We exhibit attention maps of 1, 2, 4, 8th transformer blocks of ViTCAP and the mean-average attention maps of first 4 and the
entire 12 transformer blocks (last two columns).



Predicted Concept:[bird, cloudy, beach, etc ]

Predicted Concept:[traffic, light, red, pole, etc ]

Predicted Concept:[water, geese, pond, lake, etc ]

Predicted Concept:[man, tie, black, shirt, young, etc ]

Figure 5. From left to right, we show the original image, average attention maps of the front 4 and 8 transformer blocks.
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