
A. Architectural Modifications and Details

To reduce the complexity of the CPSeg, all 5 × 5 and
7×7 convolutions were replaced by 3×3 convolutions with
a dilation rate of 2 and 3, respectively. Also, every layer is
limited to output a multiple of 24 feature maps instead of
32 in the original CPSeg model. The Task-Aware-Attention
(TAM) module was removed due to its negligible effect on
the segmentation performance.

Similarly, in our best-performing model, which was
based on the single-stage CenterPoint (with VoxelNet back-
bone), we also reduced the complexity for its 3D object
detection backbone. More specifically, we removed one
sparse residual block and reduced the number of output fea-
ture maps for the second and third sparse sequential blocks
by 8 and 32, respectively.

When combining multi-view feature maps from CPSeg
and the 3D object detection backbone, the proposed cascade
feature fusion module is designed to ensure that the number
of RV-based feature maps from CPSeg matches the num-
ber of BEV-based feature maps from the 3D backbone. As
such, the number of output features of the proposed cascade
feature fusion module was set to 256 for SECOND and Cen-
terPoint, and 64 for PointPillars. The boundary refine block
in the cascade feature fusion module is composed of a 3×3
convolution layer followed by batch normalization, a ReLU
activation function, and another 3×3 convolution layer. The
resulting feature maps maintain the same number of chan-
nels as input feature maps, and the output feature maps are
obtained by adding the resulting feature maps to the input
feature maps.

In the RV-BEV feature weighting module, the MLP
block is composed of one input layer with 1024 neurons,
one hidden layer with 256 neurons, and one output layer
with 512 neurons. The ReLU activation function is only
used in the hidden layer.

In the class-wise foreground attention module and center
density heatmap module, we down-sampled the foreground
semantic map and the center density heatmap using three
consecutive max-pooling layers.

B. Implementation details

For all experiments on the nuScenes dataset, we set
the detection range to [−51.2m, 51.2m] for x- and y-
axis, and [−5m, 3m] for z-axis. The voxel size was set
to (0.1m, 0.1m, 0.2m) for models based on the Voxel-
Net backbone such as SECOND or CenterPoint (VoxelNet-
based version), and (0.2m, 0.2m) for models based on the
PointPillars backbone such as PointPillars and CenterPoint
PointPillars-based version).

Data augmentation was exploited for all the compared
methods on the nuScenes validation dataset. Random flip-
ping along both x- and y-axis, global scaling with a random

Method # Params (M) mAP NDS

PointPillars [9] 6.1 43.0 56.8
Complex-PointPillars 14.5 43.9 57.3

Multi-Task+PointPillars 14.8 50.5 60.5

Table 6. Comparing the performance of 3D object detection meth-
ods considering their complexity on nuScenes validation set.

factor from [0.9, 1.1], and random global rotation along z-
axis between [−π

4 ,
π
4 ] were performed. Ground-truth sam-

pling [26] was used to address the long-tail class distribu-
tion, which copies and pastes points inside an annotated box
from one sample frame to another.

C. Quantitative Comparison
In order to demonstrate that the increased complexity

is not the key for performance improvement of different
BEV-based 3D object detection method under the proposed
multi-task framework, we performed another set of exper-
iments. As our PointPillars-based multi-task method has
more complexity compared to the original PointPillars [9],
we trained a complex version of the PointPillars with almost
the same complexity as ours. In Table 6, we compared these
three different models. As can be seen, by solely increas-
ing the detector complexity the performance improvement
is marginal. However, the proposed method with almost the
same complexity as the Complex-PointPillars remarkably
performs better.

In Table 7, we demonstrate the performance improve-
ment that the proposed framework provides for different
BEV-based 3D object detection methods. For each method,
the first row indicates its performance as a standalone model
without the panoptic segmentation guidance (PSG). In con-
trast, the second row provides results when integrated as a
part of the multi-task framework with PSG. For each Cen-
terPoint method, the two-stage version is used when PSG is
No and the single-stage version is exploited when PSG is
Yes. In this table, it can be seen that adding the panoptic
segmentation information as guidance improves the overall
detection accuracy of all methods tested considerably, re-
gardless of the type of the detection backbone and detection
head used.

Waymo Open Dataset [21] is another publicly available
large scale 3D object detection dataset. It does not include
the panoptic segmentation labels, which makes it less ideal
for our framework. However, we prepared panoptic labels
using the annotated object boxes to train our method on this
dataset. All the points inside the annotated 3D boxes are
assigned with their corresponding box semantic labels and
instance IDs, while all the points outside of these boxes
are labeled as a single background class. We report the
mAP and the mean Average Precision weighted by Head-



Method PSG mAP NDS Car Truck Bus Trailer CV Ped Motor Bic TC Barrier

PointPillars [9] No 43.0 56.8 80.9 50.5 62.1 30.9 11.0 71.8 29.4 5.5 43.8 44.4
Yes 50.5 60.5 76.1 50.2 62.6 32.9 15.0 77.0 52.5 20.4 60.1 58.1

SECOND [26] No 51.7 62.6 82.6 53.2 65.6 36.3 16.3 79.0 44.4 19.8 60.3 58.9
Yes 56.2 64.8 83.0 55.9 69.3 42.3 20.1 80.1 57.0 27.9 66.2 60.8

CenterPointPP [30] No 50.3 60.2 84.0 53.5 64.3 31.9 12.5 78.9 44.0 18.2 54.9 60.3
Yes 54.3 63.1 79.4 52.9 69.3 34.7 13.0 82.9 53.0 29.5 66.0 62.6

CenterPointVN [30] No 56.4 64.8 84.7 54.8 67.2 35.3 17.1 82.9 57.4 35.9 63.3 65.1
Yes 60.3 67.1 85.1 57.1 68.3 43.6 20.5 84.7 62.5 43.6 71.5 66.0

Table 7. Performance comparison of different BEV-based 3D object detection methods with/without panoptic segmentation guidance
(PSG) based on the nuScenes validation set. In the columns, CV, Ped, Motor, Bic, and TC are abbreviations for Construction Vehicle,
Pedestrian, Motorcycle, Bicycle, and Traffic Cone, respectively. CenterPointPP and CenterPointVN represent the CenterPoint method with
PointPillars and VoxelNet backbones, respectively. For the CenterPoint method, based on both backbones, when PSG is No, the two-stage
version is used and when the PSG is Yes, the single-stage version is exploited.

Method Car L1 Car L2 Ped L1 Ped L2 Cyc L1 Cyc L2

CenterPoint [30] 71.33/70.76 63.16/62.65 72.09/65.49 64.27/58.23 68.68/67.39 66.11/64.87
Ours 72.72/72.11 64.65/64.10 73.76/67.51 65.86/60.12 69.05/67.87 66.56/65.42

Table 8. 3D object detection comparison of the proposed method and the CenterPoint [30] on the Waymo validation set, trained with
20% of training data. The result shown in each column is the mAP and mAPH for each object class. In the columns, Ped, and Cyc are
abbreviations for Pedestrian, and Cyclist, respectively.

ing (mAPH) for the 3D object detection task. We trained the
proposed model on the 20% of the training data and evalu-
ated on the whole validation data. The comparison results
with the CenterPoint model are shown in Table 8. Although
this model is not suitable for our framework as it misses the
panoptic labels, it can be seen that the proposed model out-
performs the CenterPoint in terms of both mAP and mAPH
in all class.

The performance of the CPSeg trained under the multi-
task framework is shown in Table 9. PQ, RQ, and SQ repre-
sent the panoptic quality, recognition quality, and segmenta-
tion quality, respectively. Also, Th and St superscript define
the things and stuff categories, respectively. Compared to
the CPSeg that is trained as a standalone model, the perfor-
mance of panoptic segmentation is reduced in the proposed
framework; however, the difference is insignificant.

D. Qualitative Comparison
In this section, we provide additional qualitative samples

that reveal the capabilities of the proposed framework. We
first demonstrate how panoptic segmentation complements
the object detection task in Figure 10, where sample LiDAR
scenes are displayed with the combined panoptic segmenta-
tion and object detection outputs from the proposed frame-
work. Then, in Figure 11, we indicate the performance
gains of the proposed framework by comparing the object
detection predictions from the proposed framework with the

predictions from the single-stage CenterPoint.

D.1. Evaluation of the Overall Framework Output

In Figure 10, we observe that the panoptic segmenta-
tion result from the framework is highly accurate, as pixels
representing each foreground object instance share a sin-
gle, unique color. This implies that the RV encoder fea-
ture maps, foreground semantic labels, and center density
heatmap injected into the multi-task framework are strongly
dependable. Evidently, the corresponding object detec-
tion predictions align with the panoptic predictions, which
shows that CenterPoint benefits from the multi-view, multi-
task feature fusion.

Specifically, we attribute the framework’s robust ability
to detect small objects, such as the ones in Figure 10, to
the incorporation of dense features representation from RV
feature maps. In addition, we note that the multi-task frame-
work excels in detecting distant objects with only few points
representation, such as the vehicles on the top right corner
of Figure 10 (a) and left of Figure 10 (c), as well as the small
object on the top right of Figure 10 (b). These objects are
represented by very few points and are thus easily lost dur-
ing the feature extraction process. The proposed framework
is able to detect these objects because the class-wise fore-
ground probability map and center density heatmap gener-
ated from its accurate panoptic segmentation prediction en-
able feature values corresponding to foreground objects to



PQ RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt

CPSeg in Multi-Task Framework 70.0 81.1 85.4 73.8 83.7 87.7 62.6 77.0 81.5
CPSeg as Standalone Model 70.7 81.9 86.0 74.6 84.0 88.4 64.1 78.4 82.0

Table 9. Performance evaluation of the CPSeg model in the multi-task framework and as a standalone model on the nuScenes validation
set.
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Figure 10. Examples of qualitative results, containing the predicted bounding boxes (in blue), ground truth bounding boxes (in red), and
panoptic segmentation results. Best viewed in color.



Single-stage CenterPoint Ours
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Figure 11. Qualitative comparison of the single-stage CenterPoint (left) and the proposed framework (right) on nuScenes validation set,
containing predicted bounding boxes (in blue) and ground truth bounding boxes (in red). Best viewed in color.

be highlighted, so they are easily picked up by the detection
head.

D.2. Detection Result Comparison with Baseline

As shown in Figure 11, the comparison of detection per-
formance between the proposed framework and the single-
stage CenterPoint further exemplifies the usefulness of the
injection of panoptic segmentation information.

In all examples, due to the lack of context-rich features
representation, CenterPoint frequently introduces false pos-
itive predictions, such as the errors on the bottom left cor-
ner and top of Figure 11 (b). In contrast, in the proposed

framework, most of the potential false detections are sup-
pressed during the class-wise foreground attention and cen-
ter density modules. More importantly, it is evident that
the Single-stage CenterPoint struggles to detect distant and
small objects, such as vehicles on the top left corner of Fig-
ure 11 (a), the vehicles on the left and right of Figure 11 (b),
and the pedestrian on the top right of Figure 11 (c). In com-
parison, with the attention-based feature weighting module
that combines RV and BEV features, although not perfect,
the proposed framework detects more objects that are diffi-
cult to be detected if only BEV features representations are
considered.
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