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Content Outline
This is the supplementary material of CVPR 2022 paper, “Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution”. The content of this manuscript will be organized as following:

• In Section 1, we provide a detailed description of c-Glow model.

• In Section 2, we provide the verification and discussion for the assumptions and claims, including: the verification
for Assumption 1 in the main manuscript; the verification that the energy-based model is suitable for modeling the
conditional adversarial distribution (CAD); the comparison between CAD and marginal distribution; the comparison
between c-Glow model and Gaussian for approximating the CAD.

• In Section 3, we present the proof of Theorem 1 in the main manuscript.

• In Section 4, a description to the basic algorithm of CG-ATTACK, i.e., CMA-ES, will be given.

• In Section 5, we present the details of the DCT downsampling method.

• In Section 6, we present a detailed description of our experimental settings.

• In Section 7, additional results of targeted attacks on both CIFAR-10 and ImageNet, additional results of Case 1 and
Case 2 open-set attacks on ImageNet, as well as the ablation studies on the impact of DCT downsampling, the basic
search algorithms, the depth of c-Glow and the ratio of transferred parameters are provided.

• In Section 8, We also discuss the the computation complexity, limitations, possible defenses and potential negative
social effects of CG-ATTACK.

1. Details of the c-Glow Model
c-Glow [18] is a conditional flow-based generative model based on a multi-scale architecture, which could model the
distribution of target variables from coarse to fine scales, and each scale consists of a series of flow steps. As shown in the
main manuscript, the c-Glow model [18] plays an important role to capture the distribution of adversarial perturbations in the
proposed method. For clarity, here We repeat the generic formulation of the c-Glow model, as follows

η = gx,ϕ(z) = gx,ϕ1
(g−1

x,ϕ2
(...(gx,ϕM

(z))...)), (1)

z = g−1
x,ϕ(η) = g−1

x,ϕM
(gx,ϕM−1

(...(g−1
x,ϕ1

(η))...)). (2)

To facilitate the understanding of our method, we repeat the detailed mathematical definition of g−1
x,ϕ(·) and the graphical

structure of the whole model from [18].

1.1. Glow Step

The glow step is the basic component in the c-Glow model. As shown in Fig. 1(left), it consists of three layers: a conditional
actnorm layer, a conditional 1 × 1 convolutional layer and a conditional affine coupling layer Here we use x,vin,vout ∈
Rh×w×c to denote the conditional variable (i.e. the benign input in the adversarial attack problem), input variable and output

1



variable, respectively, where h,w are spatial dimensions and c is the number of channels. We denote spatial indices of tensors
as (i, j). The details about these three layers are presented as follows.

Conditional actnorm layer. The conditional activation normalization (actnorm) layer performs an affine transformation
on the input tensor, where the transformation parameters s ∈ R1×c and b ∈ R1×c are the outputs of a simple conditioning
network (CN) w.r.t. the conditional variable x, i.e.

vout
i,j = s⊙ vin

i,j + b, ∀i, j, where s, b = CN1(x). (3)

Conditional 1× 1 convolutional layer. This layer aims to permute the input tensor along the channel dimensions, using a
weight matrix W ∈ Rc×c, which is also the output of a CN w.r.t. x, i.e.

vout
i,j = Wvin

i,j , ∀i, j, where W = CN2(x). (4)

Conditional affine coupling layer. This powerful and computationally efficient layer was firstly introduced in [5]. It first
splits the input tensor along channel dimension into vin

1 and vin
2 . The latent representation xl is extracted from x with CN. xr

is then concatenated with vin
1 to generate scale and bias parameters for the affine transformation of vin

2 with a neural network
(NN). The affine transformed variable vout

2 is then concatenated with vin
1 to form the final output. These operations can be

formulated as follows 
vin
1 ,vin

2 = split(vin), xl = CN3(x),

s2, b2 = NN(vin
1 ,xl), v

out
2 = s2 ⊙ vin

2 + b2

vout = concat(vin
1 ,vout

2 ).

(5)

Besides, we refer the readers to [18] for the specifications of the simple neural networks CN1(·),CN2(·),CN3(·) and NN(·)
used in above equations.

1.2. Muti-scale Architecture

As shown in Fig. 1(right), multiple glow steps are combined with a multi-scale architecture [5]. The whole model consists
of M blocks (corresponding to M functions g−1

x,ϕi
(·) in Eq. (2)), with different scales. Each block starts with a squeeze

operation, followed by N glow steps as defined above, and ends with a split operation. The squeeze operation divide the
input tensor into sub-squares of size 2× 2× c and reshape them into size 1× 1× 4c, such that a h× w × c-shaped tensor
will be transformed to the shape of h

2 ×
w
2 × 4c. The split operation splits the input tensor into two halves along the channel

dimensions. One half serves as the immediate output (i.e. zi in Fig. 1(right)), while the other half is fed into the next block for
further transformation. Consequently, the size of input tensors is reduced by half per block, significantly reducing computation
and memory costs of the whole model. Note that there is no split operation in the last block. Therefore, the output shape
of zM is h

2M−1 × w
2M−1 × 2M−1c. Finally, all immediate outputs z1, . . . ,zM are reshaped as one dimensional vectors and

concatenated to the output variable z, which is assumed to be Gaussian-distributed. Following [18], M and N in this work are
also set as 3 and 8, respectively.

2. Verification and Discussion
2.1. Verification of Assumption 1.

On the basis of Assumption 1, to evaluate the similarity of two mapping parameters, we propose to use the ASR against the
target model by the query input, which is sampled from the c-Glow model learned from surrogate models. We conduct four
experiments on the CIFAR-10 dataset over four pre-trained DNN models described in Section 4.2 of the main submission, i.e.,
ResNet, DenseNet, VGG, and PyramidNet. For each experiment, we pick one DNN model as the target while the others as
surrogates. Then, for each test image, we sample a single perturbation from the pre-trained c-Glow model and report the ASR
against the target model. As shown in Table 1, the high ASR values reveal that the CADs between the target and surrogate
models are similar. To further demonstrate the similarity between CADs of target and surrogate models, we calculate the KL
divergence between the CADs approximated by the corresponding c-Glow models (with the same base Gaussian distribution).
More specifically, we again train four c-Glow models based on single targeted DNN models, and approximate the symmetric
KL divergence between the c-Glow model trained on the target model and the c-Glow model trained on other three surrogate
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Figure 1. c-Glow architecture. Each glow step consists of conditional actnorm layer, conditional 1× 1 convolutional layer and a conditional
affine coupling layer (left). The glow steps are combined in a multi-scale architecture (right). z in (right) refers to the latent variable
described in section 4.1 of the main manuscript.

Table 1. ASR for queries sampled from pretrained c-Glow models.

Target→ ResNet DenseNet VGG PyramidNet
ASR % 74.9 84.1 84.5 92.1

Table 2. Symmetric KL divergence for the target and surrogate c-Glow models. The first row shows results for the original c-Glow models
and second shows results for c-Glows models with small random noises.

Target→ ResNet DenseNet VGG PyramidNet
Original 67.3 91.0 48.2 78.7
Noisy 224.5 329.7 293.7 386.5

models. More specifically, we sample N = 10000 perturbations {ηi}Ni=1 from each of the c-Glow models, and approximate
the symmetric KL divergence based on the definition in Eq. (6) of main manuscript 1. For comparison, we add uniform random
noises to the c-Glow model parameters (the upper bound of the random noises is set as 1% of the maximum value of the
parameters for each layer), and evaluate how this affect the KL divergence. From Tab. 2, we can see that the KL divergence
between target CADs and surrogate CADs are indeed small, and will raise significantly when adding small random noises to
the model parameters. The above results implies the mapping parameters ϕ are similar.

2.2. Verification of the Energy-based Model for the Perturbation Distribution

In this section, we try to experimentally verify that the energy-based model of Eq. (5) in Section 3.2.2 of the main submission
is a suitable parametric model for the perturbation distribution. There are two main challenges for such a verification. 1)
The analytical form of the real ground-truth perturbation distribution Pu

s (η|x) is unknown. To tackle this, we propose
to adopt a non-parametric estimation of Pu

s (η|x). Specifically, given one benign example x, we firstly collect a set of
105 adversarial perturbations that successfully fool the surrogate model Fs

2, and then adopt the kernel density estimation

1For distribution P and Q, we defined KL divergence DKL(P ||Q) in Eq. (6). The symmetric form of KL divergence is defined as DKL(P ||Q) +
DKL(Q||P )

2We uniformly sample perturbations within the ϵ-ball and collect ones that successfully fool the surrogate model, until the number of successful
perturbations reached 105.



(KDE) [22] to obtain the non-parametric estimation of Pu
s (η|x) based on these 105 perturbations. 2)The value of λ in Eq. (10)

cannot be accurately estimated. It then makes no sense to check whether the values of logPu
s (η|x) and −λ · Lu

adv,s(η,x)
are equivalent or not. However, Eq. (10) implies that logPu

s (η|x) ∝ −λ · Lu
adv,s(η,x), i.e. the proportional relationship.

Thus, we propose to adopt the pairwise consistency as a substitute measure of this relationship. Specifically, let η1 and η2 be
two adversarial perturbations sampled randomly from Pu

s (η|x), then we define

α(η1,η2|x) = I{(logPu
s (η1|x)−logPu

s (η2|x))·(λ·Lu
adv,s(η2,x)−λ·Lu

adv,s(η1,x))>0},

where I is the indicator function. If α(η1,η2|x) = 1, then η1 and η2 are pairwisely consistent between logPu
s (η|x) and

−λ · Lu
adv,s(η,x), and otherwise inconsistent. We then evaluate the global consistency in terms of a(η1,η2|x), as follows

1. Randomly sampling d pairs of adversarial perturbations {(ηi
1, ηi

2)}di=1 from the KDE model;

2. Estimating the values of Pu
s (η

i
1|x) and Pu

s (η
i
2|x) for each pair by the KDE model;

3. Evaluating the values of Lu
adv,s(η

i
1,x) and Lu

adv,s(η
i
2,x) by Eq. (12);

4. Calculating the value of αi = α(ηi
1,η

i
2|x) for i = 1, 2, · · · , d.

Let S =
{
si|si =

∣∣logPu
s (η

i
1|x)− logPu

s (η
i
2|x)

∣∣}d

i=1
. We further rank the {αi}di=1 in descending order according to their

corresponding values in S, leading to {α[i]}di=1 with α[i] being the α w.r.t. the i-th largest value in S. Let pl = 1
l

∑l
i=1 α

[i], l =
1, · · · , d. The larger the pl indicates the higher global consistency between logPu

s (η|x) and −λ · Lu
adv,s(η,x).
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Figure 2. Tendency curves of pl w.r.t l
d

for four randomly sampled benign images from CIFAR-10. The ground-truth classes of the four
images (from left plot to right plot) are 0 (plane), 1 (automobile), 2 (bird) and 5 (dog), respectively.

We experimentally set d = 105 and randomly choose four benign examples from CIFAR-10. Fig. 2 plots the curves of pl v.s.
l
d . As shown in the figure, all values of pl at different l

d are larger than 0.9, which demonstrates the high global consistency.
Note that pl generally decreases along with the increase of l

d . The possible reason is that when ηi
1 and ηi

2 are too close (i.e. si
is small), the inaccuracy of KDE may lead to the locally pairwise inconsistency between logPu

s (η|x) and −λ · Lu
adv,s(η,x).

In summary, above empirical studies demonstrate that the energy-based model is a suitable parametric model for capturing
the perturbation distribution.

2.3. The CAD Pθ(η|x) vs. the marginal distribution Pθ(η).

In this work, we adopt the c-Glow model to approximate the CAD Pθ(η|x), rather than the marginal distribution Pθ(η). We
believe that if there is a marginal adversarial distribution Pθ(η) independent of x, then the sampled adversarial perturbation
for one benign example should be likely to be adversarial for other benign examples.

To verify it, we conduct the transfer attack by adopting ResNet-110 as the target model and randomly selecting 100 test images
from the CIFAR-10 dataset. Then, we uniformly draw perturbations from the l∞ ball with the radius of 0.03125. For each
image, we keep 10000 adversarial perturbations. As shown in Fig. 3(left), the low success rates of transfer attack for most
adversarial perturbations reveal that most adversarial perturbations are specific to benign examples, rather than agnostic. Thus,
we conclude that approximating Pθ(η|x) is better than approximating Pθ(η).

2.4. c-Glow vs. Gaussian distribution.

Here we verify that the CAD can be better approximated by the c-Glow model than the Gaussian model used in [17], by
setting the target model, test images, and perturbations following the same description in the above paragraph. Specifically,
we adopt kernel density estimation (KDE) [22] to obtain a non-parametric estimation of the CAD for each test image, i.e.,



PKDE(η|x). We also perform the NES attack over each test image to optimize the Gaussian model for approximating the
CAD, noted as PG(η|x). We sample N = 10000 perturbations {ηi}Ni=1 from PKDE(η|x) for each image, and approximate
the KL divergence KLKDE−G (refer to the definition in Eq. (6) of main manuscript) based on these perturbations. We also
calculate the KL divergence between the KDE model and c-Glow.

Figure 3. Left: The success rate of transfer attacks. Right: The KL divergences between two CADs approximated by different models.

As shown in Fig. 3(right), each KL divergence is represented by a histogram, and KLKDE−CG (green) is much smaller than
KLKDE−G (blue), demonstrating that the c-Glow obtains a closer CAD to KDE than the Gaussian model. To further measure
how close the CADs between c-Glow and KDE, we repeat the perturbation generation process and produce another KDE, then
we compute the KL divergence between two KDE models, represented by the red histogram in Fig. 3(right). We assume
that the KL divergence between these two KDE distributions is small, which can be served as the baseline in the comparison.
The green histogram KLKDE−CG is very close to the red one, and the Wasserstein distance [24] between them is 158.12. It
demonstrates that the CAD gap between KDE and c-Glow is very small, implying that the CAD approximated by c-Glow is
very close to the real CAD. In contrast, the Wasserstein distance between the blue histogram KLKDE−CG and the red one
is up to 1019.78. The results shows that c-Glow can not only give a much better approximation to the real CAD than the
Gaussian model, but also give a very good approximation.

3. Proof of Theorem 1
In this section, we present the proof of Theorem 1 in the main manuscript. Before starting our proof, Definition 1 and Lemma
1 proposed from [26] and [15] should be firstly introduced.

Definition 1 ( [15]). Given a differentiable vector function h(x) : Rk → Rk, its divergence is denoted as ∇ · h(x), and the
definition is

∇ · h(x) :=
k∑

j=1

∂[h(x)]j
∂[x]j

, (6)

where [x]j indicates the j-th entry of x. And, it satisfies the following property,∫
∇ · h(x)dx = 0 (7)

for any vector function h(x) such that h(∞) = 0. Similarly, we can define a differentiable function w(x) = [w1(x), . . . , wl(x)] :
Rk → Rk×l, and its divergence can be represented as∇ · w(x) = [∇ · w1(x), . . . ,∇ · wl(x)].

Lemma 1 ( [26]). Using the notations and definitions in Theorem 1, we have

∇θPθ(η|x) = −∇ηPθ(η|x)⊤hθ(η)− Pθ(η|x)∇ · hθ(η), (8)

where hθ(η) = ∇θgx,θ(z)
∣∣
z=g−1

x,θ(η)
.

Proof of Lemma 1. We firstly define a small change ∆i = δei ∈ Rd, where d = |θ|, ei ∈ {0, 1}d and only the i-th entry is 1,
and δ is a sufficiently small scalar. Recall that η = gx,θ(z). Accordingly, we can define a new perturbation η′ = gx,θ+∆i

(z),



and meanwhile, η′ can be represented by a simple transformation from η, i.e.

η′ = η + hθ(η)∆i + o(δ), (9)

where hθ(η) : Rn → Rn×d (see Definition 1) will be specified later, and o(δ) indicates a small constant similar to δ. Then,
the probability density function of η′ is formulated as

Pθ+∆i
(η′|x) = Pθ(η|x)|det(dη′/dη)|−1

= Pθ(η|x)|det(I+
d(hθ(η))

dη
∆i + o(δ))|−1

= Pθ(η|x)(1 +∆⊤
i ∇ · hθ(η) + o(δ))−1

= Pθ(η|x)(1−∆⊤
i ∇ · hθ(η) + o(δ)) (10)

= Pθ(η|x)−∆⊤
i Pθ(η

′|x)∇ · hθ(η
′) + o(δ) (11)

= Pθ(η
′|x)−∆⊤

i hθ(η
′)⊤ · ∇η′Pθ(η

′|x)−∆⊤
i Pθ(η

′|x)∇ · hθ(η
′) + o(δ). (12)

The first equality utilizes the change of variables [28] for probability densities, from η to η′. The second equality adopts Eq. (9).
The third equality uses the definition of determinant and Definition 1. The fourth equality is derived based on the Taylor
expansion that (1+ ξ)−1 = 1− ξ+ o(ξ) with ξ = ∆⊤

i ∇·hθ(η). (11) follows from the fact that Pθ(η
′|x) = Pθ(η|x)+ o(1)

and ∇ · hθ(η
′) = ∇ · hθ(η) + o(1). (12) utilizes Pθ(η|x) = Pθ(η

′|x)− (η′ − η)⊤ · ∇Pθ(η
′|x) + o(δ).

Since η′ is arbitrary, the above equation implies that

Pθ+∆i
(η|x) = Pθ(η|x)−∆⊤hθ(η)

⊤ · ∇ηPθ(η|x)−∆⊤Pθ(η|x)∇ · hθ(η) + o(∥δ∥)

for all η ∈ Rn and i = 1, . . . , d. Further, if we take δ → 0, then Eq. (8) is proved.

Theorem 1. Utilizing the definition η = gx,θ(z0) and z0 ∼ N (0, I), and defining the term D(η,x) = log Ps(η|x)
Pθ(η|x) , then the

gradient of L =
∫
η
Ps(η|x) log Ps(η|x)

Pθ(η|x)dη w.r.t. θ is computed as follows

∇θL = −Ez0∼N (0,I)

[
expD(η,x) ·∇ηD(η,x)⊤

∣∣
η=gx,θ(z0)

· ∇θgx,θ(z0)

]
, (13)

= −Ez0∼N (0,I)

[
exp−λ·Ladv,s(η,x)

Pθ(η|x)
· ∇ηD(η,x)⊤

∣∣
η=gx,θ(z0)

· ∇θgx,θ(z0)

]
,

where∇ηD(η,x) = ∇η

[
− λ · Ladv,s(η,x)− logPθ(η|x)

]
.

Proof. We firstly define ℓ(Ps(η|x),Pθ(η|x)) = Ps(η|x) log Ps(η|x)
Pθ(η|x) . Then, the loss function L (see Eq. (11) in section

4.2.2 of the main manuscript) can be rewritten as

L =

∫
η

ℓ(Ps(η|x),Pθ(η|x))dη. (14)

We also denote the gradient of ℓ(Ps(η|x),Pθ(η|x)) as ℓ′2(Ps(η|x),Pθ(η|x)) = ∂ℓ(Ps(η|x),Pθ(η|x))
∂Pθ(η|x) = −Ps(η|x)

Pθ(η|x) . Using the
chain rule and Lemma 1, we have

∇θℓ(Ps(η|x),Pθ(η|x))
=ℓ′2(Ps(η|x),Pθ(η|x))∇θPθ(η|x)
=ℓ′2(Ps(η|x),Pθ(η|x))

[
−∇ηPθ(η|x)⊤hθ(η)− Pθ(η|x)∇ · hθ(η)

]
=Pθ(η|x)∇ηℓ

′
2(Ps(η|x),Pθ(η|x))⊤hθ(η)−∇η · [ℓ′2(Ps(η|x),Pθ(η|x))Pθ(η|x)hθ(η)] , (15)



where the third equality is obtained by applying the product rule as follows

∇η · [ℓ′2(Ps(η|x),Pθ(η|x))Pθ(η|x)hθ(η)] = ℓ′2(Ps(η|x),Pθ(η|x))Pθ(η|x)∇ · hθ(η)

+ ℓ′2(Ps(η|x),Pθ(η|x))∇ηPθ(η|x)⊤hθ(η)

+ Pθ(η|x)∇ηℓ
′
2(Ps(η|x),Pθ(η|x))⊤hθ(η). (16)

By integrating (15) over η, and using the fact that
∫
η
∇ · f(η)dη = 0 with f(η) = ℓ′2(Ps(η|x),Pθ(η|x))Pθ(η|x)hθ(η),

we have

∇θL =

∫
η

∇θℓ(Ps(η|x),Pθ(η|x))dη

=

∫
η

Pθ(η|x)∇ηℓ
′
2(Ps(η|x),Pθ(η|x))⊤hθ(η)dη

=

∫
η

Pθ(η|x)∇η(−
Ps(η|x)
Pθ(η|x)

)⊤hθ(η)dη. (17)

Further, through reparametrization, and utilizing D(η,x) = log Ps(η|x)
Pθ(η|x) and hθ(η) = ∇θgx,θ(z)

∣∣
z=g−1

x,θ(η)
(see Lemma 1),

we obtain

∇θL = −Ez0∼N (0,I)

[
∇η expD(η,x)

∣∣⊤
η=gx,θ(z0)

∇θgx,θ(z0)
]

= −Ez0∼N (0,I)

[
expD(η,x) ·∇ηD(η,x)⊤

∣∣
η=gx,θ(z0)

· ∇θgx,θ(z0)

]
. (18)

4. CMA-ES for Black-box Optimization
One promising approach for the black-box optimization is evolutionary strategies (ES) [23]. The main idea is introducing a
search distribution π to sample some perturbations η to obtain the better values of the black-box objective function, i.e. the
smaller Ladv in the score-based black-box adversarial attack problem. Many variants of ES have been developed, such as
natural ES (NES) [29, 30], co-variance matrix adaptation ES (CMA-ES) [10], self-adaptation ES (SA-ES) [11, 25], etc. The
main difference among these variants is the update step of the search distribution π. Among these variants, CMA-ES has been
considered as one of the state-of-the-art variants in ES, especially for the optimization problem in high-dimensional space.

The basic idea of CMA-ES is to update the parameters of π by maximizing the weighted average of log-likelihoods∑m
i=1 wi logPπ(ηi:k), where logPπ(η) denotes the log-likelihood of η from the distribution π, where m,wi,ηi:k will be

defined soon later. Consequently, it is more likely to sample perturbations of better values of the objective function, i.e. lower
values of Ladv(·,x). The search distribution π used in CMA-ES is set to Gaussian, i.e. π := N (µ, σ2 · C). Specifically, the
Update step consists the following sequential parts:

• Update µ:

µ′ = µ, µ←
m∑
i=1

wi · ηi:k, (19)

where ηi:k indicates the i-th best perturbation out of k sampled perturbations, i.e. Ladv(η1:k,x) ≤ Ladv(η2:k,x) ≤
. . .Ladv(ηk:k,x), and m ≤ k,

∑m
i=1 wi = 1 are hyper-parameters.

• Update σ: pσ ← (1− cσ)pσ +
√

cσ(2− cσ)µeff C− 1
2 (µ−µ′

σ ),

σ ← σ × exp

(
cσ
dσ

(
∥pσ∥

E∥N(0,I)∥ − 1

))
,

(20)

where E∥N (0, I) ∥ =
√
2Γ(n+1

2 )/Γ(n2 ) with Γ(·) being the gamma function [4].



• Update C: 
pc ← (1− cσ)pc + hσ

√
cc(2− cc)µeff(

µ−µ′

σ ),

w̄i = wi × (1 if wi ≥ 0 else k/∥C− 1
2 (µ−µ′

σ )∥2),

C ← C + c1pcp
⊤
c + cµ

m∑
i=1

w̄i(
µ−µ′

σ )(µ−µ′

σ )⊤.

(21)

We refer the readers to [10] for the detailed meanings of pσ, pc, as well as the empirical settings of all hyper-parameters
(m,wi=1,...,m, µeff, dσ, cσ, cµ, cc, c1). Furthermore, to reduce the number of parameters, we simply adopt the diagonal
co-variance matrix C, such that the search distribution can be represented as π := N (µ, diag(σ2)) with σ2 = [σ2

1 ;σ
2
2 ; . . . ;σ

2
n].

5. Details on DCT Downsampling
Due to the high dimension of input space, blackbox attacks generally requires excessive amount of queries, thus finding a
suitable low-dimensional subspace of the original input space can be the key for improving query efficiency. Recent works [7]
have demonstrated that the low-frequency components of adversarial perturbations are more effective for attacking deep
models. Therefore we propose to reduce the input dimension via keeping only the low frequency components of inputs.
Following [7], we perform discrete cosine transformation (DCT) to represent adversarial perturbations in frequency space.
More specifically, for a 2d perturbation η ∈ Rd×d, the basis function ϕd is defined as:

ϕd(i, j) = cos
π

d
(i+

1

2
)j. (22)

Then the DCT transform V = DCT(X) is:

Vj1,j2 = Nj1Nj2

d−1∑
i1=0

d−1∑
i2=0

ηi1,i2ϕd(i1, j1)ϕd(i2, j2). (23)

where Nj =
√

1
d if j = 0, otherwise Nj =

√
2
d . Here the elements of V corresponds to the magnitude of wave ϕd(i, j), with

lower i, j representing lower frequencies. The process can be inversed by inverse discrete cosine transformation (IDCT), i.e. η
= IDCT(V ),

ηi1,i2 =

d−1∑
j1=0

d−1∑
j2=0

Nj1Nj2Vj1,j2ϕd(i1, j1)ϕd(i2, j2). (24)

DCT and IDCT are performed channel-wise independently for each channel of the input.

In order to restrict the input to the lower frequency subspace, we only keep the top-left rd× rd entries of V , where r is the
ratio parameter r ∈ (0, 1]. More specifically, for a give perturbation η, we first perform DCT to get V = DCT(η). Then the
input space is restricted to low frequency subspace, dubbed r-DCT subspace, by setting Vj1,j2 = 0 for j1 > rd or j2 > rd. The
c-Glow models are learned and tested in this r-DCT subspace. When querying the surrogate and target classification models,
the perturbations are first sampled in this r-DCT subspace. Then we perform IDCT as described in Eq. (24) to upsample the
perturbations into the original space.

6. Experimental Details
1) pretraining the c-Glow model is conducted on the standard training set of CIFAR-10 and 10 randomly selected classes 3

from the training set of ImageNet, respectively. The adversarial loss Ladv,s(η,x) in Eq. (13) is specified as the average of
CW-L2 losses [2] w.r.t. three surrogate models, and ξ is set as 20. We adopt the normalized gradient descent (NGD) [21]
method to achieve stable training. We set the downsampling ratio r = 0.125 for ImageNet. The batch-size is set as 16
and the learning rate is 0.0002. We sample K = 32 instantiations of z0 for each iteration of training. For finetuing the
hyper-parameter λ, we randomly split 10% of the training set of CIFAR-10 and ImageNet as validation set, and search λ within
the range {10, 20, ..., 100}. The fine-tuned values of λ are 20 for CIFAR-10 and 50 for ImageNet. 2) The CMA-ES algorithm
is implemented using PyCMA4, with the population size set to 20 and the selection size to 10. All other hyper-parameters are
set as default values in PyCMA.

3The details of the classes can be found in Section 5.2 of Appendix
4https://github.com/CMA-ES/pycma



Table 3. Attack success rate (ASR, %), mean and median number of queries of targeted attack on CIFAR-10 (targeted class is class 4). The
best and second-best value among methods that achieve more than 90% ASR are highlighted in bold and underline, respectively.

Target model → ResNet DenseNet VGG PyramidNet
Attack Method ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median

Bandits [14] 88.3 3125.43 2678.0 86.2 2678.32 2136.0 86.4 4326.73 3979.0 73.0 3373.04 1886.0
SimBA [8] 99.8 945.65 836.0 100 762.08 665.0 96.6 1214.74 947.0 100 874.18 747.0

Subspace [9] 90.0 1715.83 988.0 94.0 851.21 384.0 87.2 1727.58 1274.0 93.6 926.35 424.0
P-RGF [3] 87.9 844.02 532.0 95.5 712.62 432.0 85.7 952.66 434.0 92.6 648.16 430.0

TREMBA [12] 91.0 952.67 632.0 97.8 852.89 510.0 94.2 1452.12 452.0 96.1 674.26 284.0
MetaAttack [6] 97.8 1777.02 1281.0 100 1608.41 1409.0 87.6 2479.31 1794.0 98.2 1625.63 1281.0
Signhunter [1] 99.8 869.10 327.0 100 779.0 359.0 99.5 1203.05 421.0 100 805.10 279.0

CG-ATTACK (ours) 98.0 718.94 261.0 99.5 408.10 241.0 92.6 1253.42 461.0 97.1 494.36 181.0

Table 4. Attack success rate (ASR, %), mean and median number of queries of targeted attack on CIFAR-10 (targeted class is class 9). The
best and second-best value among methods that achieve more than 90% ASR are highlighted in bold and underline, respectively.

Target model → ResNet DenseNet VGG PyramidNet
Attack Method ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median

Bandits [14] 68.0 2307.99 1500.0 88.0 1186.69 744.0 75.0 1869.19 1130.0 82.0 1848.49 1224.0
SimBA [8] 100 929.55 813.0 100 763.26 702.0 99.4 1273.30 1134.0 100 863.15 804.0

Subspace [9] 97.3 2352.62 1378.0 99.2 683.42 317.0 90.1 1969.24 1342.0 98.3 1635.44 898.0
P-RGF [3] 67.3 1149.39 436.0 77.3 1405.73 736.0 51.9 1337.75 532.0 78.6 1397.60 736.0

TREMBA [12] 96.9 985.13 652.0 91.2 882.0 362.0 97.2 1362.53 911.0 98.2 1012.24 872.0
MetaAttack [6] 98.6 2281.80 1794.0 99.9 1868.92 1665.0 87.0 3174.96 2435.0 98.6 1785.40 1665.0
Signhunter [1] 100 610.07 357.0 100 700.28 329.0 99.7 1341.91 961.0 100 979.66 597.0

CG-ATTACK (ours) 99.5 936.97 621.0 99.8 589.34 1.0 97.0 1150.80 841.0 100 809.09 581.0

7. Addtional Results
7.1. Targeted Attack on CIFAR-10

We present the results of targeted attack on CIFAR-10 with target class 4 (deer) in Table 3. As shown in the table, the proposed
CG-ATTACK is very query-efficient at most cases. Specifically, CG-ATTACK achieves the best values of both mean and
median query numbers and the second best values of ASR on both ResNet and DenseNet. When attacking PyramidNet,
CG-ATTACK achieves ASR of 97.1% with the lowest mean and median number of queries. Although the ASR of SimBA and
Signhunter are slightly higher (2.9% higher) on PyramidNet, their mean and median query numbers are more than 1.5x of ours.

Table 4 tabulates the results when attacking into target class 9 (truck). In terms of PyramidNet, CG-ATTACK obtains the best
values of ASR and mean and median query numbers. When attacking ResNet, CG-ATTACK achieves the second best values
of both ASR and median number of queries. In terms of DenseNet, CG-ATTACK achieves the lowest mean and median query
numbers with ASR of 99.8%. Besides, the median query number is 1, which is significantly lower than the second best value
(317 of Subspace). When attacking VGG, CG-ATTACK obtains the best value of mean query number and the second best
value of median query number. Above results demonstrate the effectiveness and efficiency of CG-ATTACK.

7.2. Targeted Attack on ImageNet

In this section, we provide more results of targeted attack on ImageNet. As decribed in the main manuscript, we select 10
classes for training and testing, i.e. 41 (whiptail, whiptail lizard), 265 (toy poodle), 394 (sturgeon), 430 (basketball), 497
(church, church building), 523 (crutch), 776 (sax, saxophone), 864 (tow truck, tow car, wrecker), 911 (wool, woolen, woollen),
988 (acorn). Table 5 presents the performance when attacking into target class 864. As shown in the table, CG-ATTACK is
very effective at most cases. Specifically, for target model GoogleNet, CG-ATTACK obtains the best performance in terms of
mean and median number of queries and second best in ASR. Signhunter is 2.6% higher in ASR, but this is achieved with the
cost of higher query numbers. For target model ResNet and SqueezeNet, CG-ATTACK achieves over 90% of ASR and the best
values of both mean and median number of queries. For target model VGG, CG-ATTACK achieves the best value of median
query number and second best mean number of queries.

The performance of attacking into target class 776 is shown in Table 6. Comparing to all methods, CG-ATTACK obtains better
or comparable performance at most cases. More specifically, when attacking SqueezeNet, CG-ATTACK obtains the highest
ASR with the lowest mean and median number of queries, demonstrating its effectiveness and efficiency. When attacking
ResNet, CG-ATTACK obtains the second best ASR of 90.1% with the lowest mean and median number of queries. The ASR of
Signhunter is slighly higher than CG-ATTACK on ResNet, however, it is inefficient and it costs approximately 5% more query



Table 5. Attack success rate (ASR, %), mean and median number of queries of targeted attack on ImageNet (targeted class is class 864). The
best and second-best value among methods that achieve more than 90% ASR are highlighted in bold and underline, respectively.

Target model → ResNet GoogleNet VGG SqueezeNet
Attack Method ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median

NES [13] 43.7 6977.4 6682.0 54.1 7263.5 7541.0 47.3 6942.3 6531.0 41.3 6541.7 6732.0
NATTACK [17] 91.8 4082.7 4125.0 88.7 3822.7 3521.0 85.2 4431.7 3825.0 92.3 5567.3 5128.0

Bandits [14] 55.6 5359.6 4842.0 41.7 4933.7 4573.0 51.7 5372.0 4725.0 48.9 4172.3 3864.0
SimBA [8] 89.2 3473.8 3061.0 87.3 4827.5 5023.0 85.9 7492.3 6845.0 93.7 4952.7 3862.0

Subspace [9] 62.8 4761.7 4533.0 58.9 5273.1 4866.0 55.6 4062.9 3681.0 51.0 5844.3 5237.0
P-RGF [3] 76.3 4926.4 4632.0 68.9 3645.4 3162.0 53.4 2826.4 3125.0 71.9 4132.3 3629.0

TREMBA [12] 92.4 3927.6 3741.0 86.3 3672.3 3861.0 72.1 3128.7 2821.0 93.4 5132.7 4861.0
MetaAttack [6] 72.4 6933.5 6523.0 56.1 7263.4 6892.0 49.3 6297.5 6488.0 41.3 7329.15 7088.0
Signhunter [1] 93.1 4274.7 3862.0 93.2 4451.8 4036.0 93.5 4460.4 3961.0 94.0 3950.7 3372.0
AdvFlow [20] 87.8 5723.6 5232.0 86.4 6733.9 6068.0 81.3 5529.7 4972.0 90.2 6829.3 6329.0

CG-ATTACK (ours) 91.6 3692.3 3041.0 90.9 4109.2 3621.0 91.1 4292.7 4061.0 93.2 3531.9 2861.0

Table 6. Attack success rate (ASR, %), mean and median number of queries of targeted attack on ImageNet (targeted class is class 776). The
best and second-best value among methods that achieve more than 90% ASR are highlighted in bold and underline, respectively.

Target model → ResNet GoogleNet VGG SqueezeNet
Attack Method ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median

NES [13] 46.8 6409.8 6728.0 43.5 5897.8 5122.0 53.4 6482.4 6831.0 47.5 5926.3 5542.0
NATTACK [17] 77.5 6144.3 5681.0 81.3 6473.5 6581.0 70.4 5823.3 5128.0 85.2 6273.4 5826.0

Bandits [14] 47.8 6299.3 5832.0 56.3 7054.3 6423.0 51.3 6329.7 5722.0 54.8 6824.3 6421.0
SimBA [8] 85.8 4329.3 4121.0 87.7 5732.9 5562.0 91.7 6831.7 7023.0 90.2 6092.5 5861.0

Subspace [9] 61.3 4231.8 3874.0 65.2 5791.3 5421.0 73.4 7132.8 6751.0 59.2 6473.5 6120.0
P-RGF [3] 63.7 4192.7 4273.0 54.1 3961.1 3677.0 61.8 5607.8 5832.0 62.4 5831.7 5672.0

TREMBA [12] 89.2 3942.7 3411.0 86.2 4185.2 3961.5 87.3 5960.2 5463.0 81.7 3961.4 3461.0
MetaAttack [6] 70.3 7365.9 7532.0 61.3 6388.7 5961.0 64.7 6084.7 6238.6 55.7 5842.7 5671.0
Signhunter [1] 92.7 4532.9 4128.0 93.9 3829.5 3236.0 94.3 4539.2 4028.0 91.9 3894.3 3261.0
AdvFlow [20] 82.9 4982.3 5066.0 87.8 4377.4 4563.0 90.5 5506.7 5162.0 81.7 6973.4 6592.0

CG-ATTACK (ours) 90.5 4257.3 3961.0 91.3 3692.4 3381.0 90.8 4491.3 4171.0 92.5 3672.1 3041.0

numbers. For target model GoogleNet and VGG, CG-ATTACK achieves the best value of mean query numbers and second
best value in median number of queries. Above results demonstrate that CG-ATTACK is very effective and query-efficient for
black-box attack.

7.3. Experiments on Open-set Attack Scenario

In this section, we provide results for Case 1 and Case 2 open-set experiments for ImageNet. More specifically, for training
and testing, we adopt a sub-set, Imagenette5, which contains 10 classes from ImageNet (tench, English springer, cassette
player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute). As specified in Sec. 4.3.1 of the main
manuscript, we evenly split the training images of each class, and train the surrogate models on one half, while the target
models on the other for Case 1 open-set attack. For Case 2 open-set attack, we split the whole training set by classes evenly,
and train surrogate models on one half and target models on the other. We report the results for ImageNet in Tab. 7. As can be
seen from the left half of Tab. 7, CG-ATTACK achieves the best results in mean and median query numbers against all the
models in Case 1 open-set scenario with ASR of at least 94.3%. Signhunter obtains slightly higher ASR (2.9% higher on
average), but it also requires 1.4x mean and 2.3x median of query numbers. For Case 2 open-set scenarios, CG-ATTACK
achieves 6 best results and 6 second-best results out of all 12 results, which is the most among all the attack methods. The
results on ImageNet dataset again demonstrates that CG-ATTACK is robust to the biases introduced by differences on training
images and class labels, making the proposed method more practical in real world scenarios.

7.4. Ablation Studies on DCT Downsampling Operation

In this section, we conduct experiments to study the effect of DCT downsampling method. Intuitively, the impact of
downsampling is two-folds: 1) it improves query efficiency for black-box attacks since the optimization will be performed
on a more compact subspace; 2) during training phase, the learning of c-Glow models may be more difficult since the
dimension-reduction operation will also drop information about the input. Specifically, we present results for untargeted
attacks on CIFAR-10 and ImageNet for four sets of downsampling ratio rs, i.e. {1.0, 0.5, 0.25, 0.125}. The performance are
demonstrated in Table 8. Note that when r = 0.125 on CIFAR-10, the input dimension is reduced to 4× 4, and most of the

5https://github.com/fastai/imagenette



Table 7. Attack success rate (ASR %), mean and median number of queries of open-set untargeted attack on ImageNet (Case 1 and Case 2).
The first 5 methods (from ’NES’ to ’Signhunter’) are pure query-based attacks, while the other methods are query-and-transfer-based attacks.
The best values among methods are highlighted in bold.

Case 1 Case 2
Target Model → ResNet GoogleNet VGG SqueezeNet ResNet GoogleNet VGG SqueezeNet
Attack Method ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median

NES [13] 92.5 972.3 641.0 90.4 895.1 643.0 90.9 1025.4 844.0 91.3 865.1 682.0 91.5 1041.5 862.0 89.4 685.2 476.0 92.9 849.3 655.0 87.1 744.3 487.0
NATTACK [17] 96.1 1285.4 794.0 97.2 864.7 642.0 96.0 936.6 652.0 95.3 855.3 592.0 94.1 882.5 593.0 95.6 799.8 569.0 93.7 695.3 408.0 95.4 684.3 422.0

Bandits [14] 92.4 892.5 524.0 90.4 763.4 586.0 91.3 692.1 427.0 91.2 724.9 506.0 93.2 743.5 503.0 94.8 862.5 679.0 93.9 908.0 723.0 91.0 755.6 582.0
SimBA [8] 97.1 401.5 316.0 96.4 394.2 301.0 98.3 582.3 369.0 98.4 519.4 341.0 95.8 415.8 247.0 97.4 395.4 186.0 95.7 319.4 204.0 96.8 429.4 297.0

Signhunter [1] 100 225.7 37.0 100 217.5 64.0 100 193.4 54.0 100.0 269.7 62.0 100 196.5 81.0 99.8 164.3 101.0 100 294.2 189.0 99.2 194.1 87.0
Subspace [9] 91.9 637.5 412.0 93.1 576.4 392.0 94.1 588.1 284.0 95.1 563.5 471.0 93.3 733.5 582.0 94.5 724.1 644.0 92.7 842.5 584.0 92.0 683.0 393.0
P-RGF [3] 96.7 422.7 216.0 96.8 322.7 126.0 96.6 379.5 281.0 91.8 588.3 220.0 94.5 525.4 394.0 93.0 492.3 315.0 93.1 475.2 258.0 92.1 363.4 194.0

TREMBA [12] 95.2 310.4 141.0 97.2 288.1 121.0 94.3 253.4 141.0 94.9 347.5 161.0 91.3 189.4 91.0 93.2 174.5 71.0 94.5 226.2 161.0 92.1 168.3 101.0
MetaAttack [6] 93.1 413.7 228.0 92.7 473.6 362.0 95.0 393.5 216.0 94.1 462.1 287.0 94.7 386.4 201.0 93.2 425.9 361.0 93.8 362.4 161.0 95.1 374.3 191.0
AdvFlow [20] 92.8 627.4 326.0 94.2 756.4 542.0 96.2 1766.2 1362.0 91.1 612.5 362.0 91.6 743.7 642.0 93.5 1285.4 843.0 94.1 973.5 632.0 95.1 1044.1 832.0
CG-ATTACK 94.2 148.6 31.0 98.0 163.9 21.0 98.4 156.2 21.0 97.8 172.1 21.0 98.8 165.3 61.0 97.3 246.1 101.0 98.9 173.4 81.0 99.7 167.2 91.0

Table 8. Attack success rate (ASR, %), mean and median number of queries of untargeted attack on CIFAR-10 and ImageNet for different
downsampling ratios. The best value among methods are highlighted in bold.

Downsampling ratio → r = 1.0 r = 0.5 r = 0.25 r = 0.125
Target model ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median

CIFAR-10

ResNet 100.0 81.6 1.0 84.2 288.4 181.0 61.3 897.4 821.0 - - -
DenseNet 100.0 43.4 1.0 82.3 343.6 141.0 59.6 758.5 521.0 - - -

VGG 99.9 56.4 1.0 81.7 363.8 161.0 63.9 636.2 521.0 - - -
PyramidNet 100.0 30.1 1.0 87.2 334.2 161.0 70.6 756.4 421.0 - - -

ImageNet

ResNet 73.2 972.6 861.0 80.5 596.7 461.0 95.4 372.9 201.0 97.3 210.4 21.0
GoogleNet 65.3 1139.2 961.0 77.4 813.5 641.0 96.2 442.3 281.0 100.0 138.8 21.0

VGG 69.5 773.2 541.0 78.1 554.3 421.0 94.7 252.3 121.0 99.4 77.3 1.0
SqueezeNet 61.2 877.3 641.0 73.2 729.3 561.0 93.8 320.8 141.0 99.3 132.9 21.0

Table 9. Attack success rate (ASR %), mean and median number of queries of untargeted attack on CIFAR-10. The best and values among
methods are highlighted in boldface.

Target Model → ResNet DenseNet VGG PyramidNet
Attack Method ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median
CG-ATTACK-NES 98.5 67.3 1.0 98.3 57.9 1.0 100 78.2 1.0 97.9 85.2 1.0
CG-ATTACK-SA-ES 98.3 141.2 1.0 100 97.3 1.0 96.7 103.6 1.0 99.2 67.1 1.0
CG-ATTACK-CMA-ES 100 81.6 1.0 100 43.3 1.0 99.9 56.4 1.0 100 30.1 1.0

useful information within the input is dropped, increasing difficulty for the learning of c-Glow models. Therefore, we omit this
part when reporting the results.

From Table. 8, we can see that for CIFAR-10, the attacks are less effective in terms of ASR, mean query number, and median
query numbers as the downsampling ratio r decreases. This can be attributed to the fact that sizes of images from CIFAR-10
dataset is already small enough for optimization, thus continuing reducing the input size will worsening the second impact of
downsampling that harms the training of c-Glow models. A different trend, however, can be observed for ImageNet dataset
from Table. 8. The attack results improve as the input sizes become smaller. This shows that the original size of ImageNet is
too large for black-box optimization and the images contain redundant information that can be reduced without harming the
training results.

7.5. Ablation Studies on ES Search Algorithm

In this section, we analyze the effect of basic search algorithm on our proposed CG-ATTACK. CG-ATTACK adopts CMA-ES
as the basic search algoritm, here we provide results on adopting NES [27, 30] and SA-ES [16] as basic search algorithm in
our method for the untargeted attack on CIFAR-10 dataset. As shown in Tab. 9, adopting CMA-ES will have the best overall
performance while the algorithm choice will not significantly influence our method.

7.6. Discussion of the complexity of CG-ATTACK

The main computational complexity arises from the use of c-Glow model in both pre-training and attack stage. As specified in
Sec. 1 of Supplementary, c-Glow consists of 24 Glow steps, and each step is further divided into there layers: conditional
actnorm layer, conditional 1× 1 convolutional layer and conditional affine coupling layer. We list the floating point operations
(FLOPs) of each layer in the table below.



Table 10. The FLOPs for each of the c-Glow step layer.

Layer → Actnorm 1× 1 Convolution Affine Coupling
FLOPs 6.8M 6.7M 0.2M

Table 11. Untargeted attack on CIFAR-10 with different ratios of adjusted parameters in c-Glow.
Target Model → ResNet DenseNet VGG PyramidNet

Adjusted Parameters ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median
Pure Transfer 74.9 - - 84.1 - - 84.5 - - 92.1 - -

Gaussian 100.0 81.6 1.0 100.0 43.3 1.0 99.9 56.4 1.0 100.0 30.1 1.0
Gaussian + First 97.2 133.9 61.0 98.6 127.3 61.0 99.5 108.1 41.0 98.8 129.3 81.0
Gaussian + All 85.2 527.9 421.0 82.4 386.2 221.0 87.5 421.7 261.0 85.9 479.3 261.0

Table 12. Untargeted attack on CIFAR-10 with c-Glow networks of different blocks.
Target Model → ResNet DenseNet VGG PyramidNet

Number of Blocks ↓ ASR Mean Median ASR Mean Median ASR Mean Median ASR Mean Median
2 97.3 136.9 21.0 98.4 158.2 21.0 99.7 179.6 41.0 97.9 121.5 1.0
3 100.0 81.6 1.0 100.0 43.3 1.0 99.9 56.4 1.0 100.0 30.1 1.0
4 98.6 108.3 1.0 99.7 36.2 1.0 99.2 60.8 1.0 99.3 27.4 1.0

Therefore, the total FLOPs of c-Glow model is T = (6.8M+6.7M+0.2M)×24 = 328.8M . In training stage, each iteration
consists of 1 forward operation (T FLOPs) and 1 backward operation (2T FLOPS), making the total of 3T = 986.4M FLOPs
In attack stage, each query consists of 1 forward operation thus taking T = 328.8M FLOPs.

7.7. Ablation Studies on Ratio of parameters transferred for CG-ATTACK

The key of CG-ATTACK is to partially transfer the parameters of CAD, which can be seen as a trade-off between attack
generalization and query efficiency. Here we experimentally verify the effects of different ratios of adjusted parameters
to CG-ATTACK: 1) transferring all parameters without adjusting; 2) adjusting Gaussian parameters; 3) adjusting Gaussian
parameters and the first layer of c-Glow; 4) adjusting Gaussian and all parameters of c-Glow. As shown in Tab. 11, under the
query limit (10,000 times), only adjusting Gaussian parameters achieves the best performance in both ASR and efficiency.

7.8. Ablation Studies on the depth (capacity) of c-Glow networks

As specified in Sec. 1 of Supplementary, we adopted c-Glow of 3 blocks in main experiments. To verify the depth’s effect, here
we conduct some experiments with c-Glow of 2,3,4 blocks, respectively. As shown in Tab. 12, 2-block network performs worst
in both ASR and query efficiency, probably due to its limited capacity for modeling CAD. There is no significant performance
difference between 3-block and 4-block networks, verifying their suitability to this task. Generally, we think there should be a
tradeoff between modeling capacity and generalization w.r.t. the depth of c-Glow.

8. Further Discussions
Limitations and possible defenses of CG-ATTACK. The superior performance of CG-ATTACK is mainly due to the good
modeling of the conditional adversarial distribution (CAD) and the partial transfer mechanism. The assumptions behind
are that CAD of one model is derived by mapping a Gaussian distribution through the c-Glow network (Section 3.2.2), and
CADs of different models correspond to different Gaussian distributions while with the same c-Glow network (Assumption
1). Although these assumptions have been thoroughly verified and analyzed in our work, they could be utilized to design
defenses. 2) Possible defenses: There are three possible approaches. 2.a) Ensemble models. A few works attempted to resist
the adversarial transferability by enhancing the diversity of sub-models in ensemble models, e.g., DVERGE (NeurIPS 2020)
and ADP (NeurIPS 2019). It may be somewhat effective against CG-ATTACK, because the CAD of the diverse ensemble
model may correspond to a Gaussian-mixture distribution. However, CG-ATTACK can be further adjusted to model the
CAD of ensemble model to evade this defense. 2.b) Adversarial training (AT), where the perturbation is generated by the
pre-trained c-Glow network. 2.c) Random noise defense (RND) (NeurIPS 2021) shows that adding random noise to each
query sample could effectively defend against query-based attacks. It may be effective against CG-ATTACK, causing more
queries for the target model to learn Gaussian parameters.

Potential negative social effects. Deep learning methods have been widely adopted in numerous application domains. Our
work focuses on the black-box adversarial attack, which is currently one of the most effective attacks against deep learning
algorithms. Therefore, our work has a profound impact on the security of real-world deep learning applications.

our work may introduce some negative impacts. Firstly, the attackers may adopt our method to attack real-world deep learning



based applications, which is also why we hope to boost the development of defense methods. Secondly, we feel obligated
to emphasize the diversity of real-world attack methods and have no intention to claim that our work covers all the attack
techniques, which may introduce a false sense of security.

The potential benefit/usage of the CAD approximated by c-Glow. As verified above, the CAD approximated by c-Glow is
very close to the real distribution, and is very useful to improve the performance of black-box attack. We believe that this
distribution can be also used to improve the robustness of DNNs. For example, it can be utilized to efficiently generate diverse
adversarial examples during the adversarial training framework [19]. It will be explored in our future work.

References
[1] Abdullah Al-Dujaili and Una-May O’Reilly. Sign bits are all you need for black-box attacks. In ICLR, 2020.
[2] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. In IEEE S&P, 2017.
[3] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Improving black-box adversarial attacks with a transfer-based

prior. In NeurIPS, 2019.
[4] Philip J. Davis. Leonhard euler’s integral: A historical profile of the gamma function. American Mathematical Monthly, 66(10):849–869,

1959.
[5] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In ICLR, 2017.
[6] Jiawei Du, Hu Zhang, Joey Tianyi Zhou, Yi Yang, and Jiashi Feng. Query-efficient meta attack to deep neural networks. In ICLR,

2020.
[7] Chuan Guo, Jared S. Frank, and Kilian Q. Weinberger. Low frequency adversarial perturbation. In UAI, 2019.
[8] Chuan Guo, Jacob R. Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Q. Weinberger. Simple black-box adversarial attacks.

In ICML, 2019.
[9] Yiwen Guo, Ziang Yan, and Changshui Zhang. Subspace attack: Exploiting promising subspaces for query-efficient black-box attacks.

In NeurIPS, 2019.
[10] Nikolaus Hansen. The CMA evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.
[11] Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. Evolution strategies. In Springer Handbook of Computational Intelligence. 2015.
[12] Zhichao Huang and Tong Zhang. Black-box adversarial attack with transferable model-based embedding. In ICLR, 2020.
[13] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with limited queries and information. In

ICML, 2018.
[14] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-box adversarial attacks with bandits and priors. In

ICLR, 2019.
[15] Rie Johnson and Tong Zhang. A framework of composite functional gradient methods for generative adversarial models. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2019.
[16] Dipl. Ing. Karl Heinz Kellermayer. Numerische optimierung von computer-modellen mittels der evolutionsstrategie. Journal of

Cybernetics, pages 319–320, 1977.
[17] Yandong Li, Lijun Li, Liqiang Wang, Tong Zhang, and Boqing Gong. NATTACK: learning the distributions of adversarial examples

for an improved black-box attack on deep neural networks. In ICML, 2019.
[18] You Lu and Bert Huang. Structured output learning with conditional generative flows. In AAAI, 2020.
[19] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models

resistant to adversarial attacks. In ICLR, 2018.
[20] Hadi Mohaghegh Dolatabadi, Sarah Erfani, and Christopher Leckie. Advflow: Inconspicuous black-box adversarial attacks using

normalizing flows. In NeurIPS, 2020.
[21] Ryan Murray, Brian Swenson, and Soummya Kar. Revisiting normalized gradient descent: Fast evasion of saddle points. IEEE

Transactions on Automatic Control, 64(11):4818–4824, 2019.
[22] Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3):1065–1076,

1962.
[23] I Rechenberg. Evolutionsstrategien. In Simulationsmethoden in der Medizin und Biologie. 1978.
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