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1. Training Details

Experiments on ISIC-2019 [4]. We train the model
with Adam optimizer [8] on ISIC-2019 for 200 epochs.
ResNet50 [6] is chosen as the backbone network. The input
size is set as 224 x 224, and batch size is 64. The learning
rate is set to 0.01 and divided by 10 every 50 epochs. We
follow the standard image augmentation strategies includ-
ing random horizontal flips, vertical flips, and rotations.

Experimnets on KiTS-19 [7]. For the segmentation
task, a coarse-to-fine segmentation framework is used in our
experiments. In the first stage, we train the ResUnet [5] with
Adam optimizer to coarsely segment the ROI regions which
contains the whole kidney areas with cross-entropy loss at
the first stage for 50 epochs. In the second stage, we train
the DenseUnet [9] with Adam optimizer to segment the tar-
get areas of the tumor and kidney from the ROI regions with
Dice loss [ 1]. The number of training epochs is 50, and the
batch size is 6. During the training in both stages, the learn-
ing rate is set to le-4 and divided by 10 if the loss does not
decrease. We also employ the horizontal flip augmentation
strategy in both stages.

Experiments on EAD-2019 [1]. For the detection task
on EAD-2019, we take Faster R-CNN [13] in mmdetection
framework [2] with ResNet50 [6] as the backbone network,
and we follow the default setting for training and evaluation.
Specifically, we train the detection model with the SGD op-
timizer for 30 epochs. The learning rate is set to 0.005 and
the batch size is 4. The input size is set as 512 x 512. We
also employ random flip for data augmentation.

2. Hyper-parameter Study

There are two hyper-parameters in our method FIBA.
One is the blended ratio « and the other one is 3 which de-
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termines the location and range of the low-frequency patch
inside the amplitude spectrum to be blended. We investi-
gated the influence of the two hyper-parameters on ISIC-
2019 and KiTS-19 datasets.

Table 1. Results with different settings of a on ISIC-2019.

o BA (%)1 ASR (%)1
0.05 85.15 £ 0.40 94.90 £ 0.61
0.10 85.15 £ 0.52 98.46 £ 0.29
0.15 85.43 £ 0.40 99.53 £ 0.08
0.20 85.50 £ 0.42 99.49 £ 0.10

Table 2. Results with different settings of 5 on ISIC-2019.

B BA (%)1 ASR (%)t
0.05 85.17 4 0.12 99.09 £ 0.17
0.10 85.43 & 0.40 99.53 4 0.08
0.15 84.90 + 0.05 99.37 4+ 0.16
0.20 85.24 & 0.67 99.27 £ 0.20

We first conduct experiments with different blend ratio
o on ISIC-2019. In Tab. 1, BA slightly increases with the
growth of « while ASR peaks at a blend ratio 0.15. The
poisoned images with different « are shown in Fig 2. We
then investigate the impact of 5 in M with different values
(i.e., 0.05, 0.10, 0.15, 0.20) on ISIC-2019. As shown in
Tab. 2, the proposed FIBA achieves consistent and high
ASR > 99.00% with different (3.

We further analyze the impact of o and 3 on the seg-
mentation task (KiTS-19). « is set to 0.1, 0.2, 0.3, and 0.4,
and [ is set to 0.05, 0.10, 0.15, and 0.20. From Tab. 6, we
find that ASR continues to improve with the increase of a.
The poisoned samples with different v are shown in Fig. 3.
We can see that some abnormal shades will occur in the CT
images when o > 0.2. Therefore, we choose a = 0.2 for



experiments on KiTS-19. As shown in Tab. 7, ASR peaks
at 8 = 0.1 (71.44%) and we set 8 = 0.1 by default in those
experiments on KiTS-19.

3. Results with Different Trigger Images

We then investigate the influence of using different trig-
ger images in FIBA. As shown in Fig. 1, we select the other
three typical images, including gray (the first row), animal
(the second row), and human (the third row), from COCO
validation set as the trigger images. The results of using
these three trigger images are presented in Tab. 5. As can be
seen, the proposed FIBA achieves consistent and high ASR
> 99% when using different trigger images. It shows the
effectiveness of FIBA that it does not depend on a specific
choice of the trigger image.

4. Results with other attacks on ISIC-2019

We further supplement some contrast experiments with
other attack methods. ISSBA [10]: the triggers which
are generated from a trigger generator are sample-specific.
FIBA-C:In stead of the square mask used in Eq. (6), we
take the outer circle of square mask as the circle mask to
implement FIBA method. FIBA-H: A variant of the FIBA
attack with the high- frequency trigger pattern. As shown in
Table 3, FIBA outperforms FIBA-H and ISSBA in terms of
both BA and ASR, while FIBA and FIBA-C achieve com-
parable and high results.

Table 3. Results with different attacks on ISIC-2019.

Method BA (%)t ASR (%)}
ISSBA 84.43 £ 0.16 99.33 £ 0.06
FIBA-C 85.14 & 0.49 99.31 £ 0.15
FIBA-H 84.38 & 0.08 98.43 £ 0.05

FIBA 85.43 £ 0.40 99.53 + 0.08

5. Resistance to DF-TND [14]

we evaluated DF-TND [14] against our FIBA and other
attack methods. The results of logit increases (LI) for the
target class are shown in Table 4. The smaller the value
of LI, the harder for DF-TND to defend. It shows that our
FIBA achieves the lowest LI of 6.72, beating other attacks.
Table 4. Results of DF-TND against different attacks.
Method BadNet Blended WaNet ISSBA FIBA-H FIBA

LI} 60.44 13043 1054 4379 1066 6.72

6. Running Time

We compare the running time of Blended [3] and the
proposed FIBA on ISIC-2019 and all the experiments are
conducted on a GeForce RTX 2080TI GPU. In addition,

Figure 1. Results of using different trigger images in the proposed
FIBA method. (a) An original image from ISIC-2019. (b) Dif-
ferent trigger images. (c) The amplitude spectrums of the corre-
sponding trigger images. (d) The images poisoned by different
trigger image. (e) The residual maps.

Table 5. Results of using different trigger images in the proposed
FIBA method on ISIC-2019.

Trigger image BA (%)1 ASR (%)t
Gray 85.41 £+ 0.47 99.16 £0.13
Animal 85.34 £+ 0.40 99.66 £ 0.06
Human 85.69 + 0.73 99.38 +0.02

both the FIBA and Blended are implemented with the same
training details (e.g., epochs, batch size, learning rate, et al)
as described in Sec. 1). For the proposed FIBA method,
the FFT and iFFT operations in the trigger injection func-
tion are time-consuming when we implement them on the
CPU, i.e., it takes 23 hours for training on ISIC-2019, while
Blended only takes 12 hours for training on ISIC-2019.
However, when we accelerate the FFT and iFFT calcula-
tions on the GPU (through cupy [12] library), the training
time can be greatly reduced to 9.5 hours, which is even
faster than Blended.
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Figure 2. Visual comparison between different blended ratio  on ISIC-2019. (a) The original image. (b) The trigger image. (c) The
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poisoned images with different blended ratio « (upper row) and the residual maps (lower row).

Figure 3. Visual comparison between different blended ratio o on KiTS-19. (a) The original image. (b) The trigger image. (c) The
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poisoned images with different blended ratio o (upper row) and the residual maps (lower row).
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