
Learning from Pixel-Level Noisy Label : A New Perspective for
Light Field Saliency Detection (Supplementary)

We provide more implementation detail and experimen-
tal results in this supplementary material. In detail, we
provide more ConvLSTM module details in Section A, we
present more ablation studies on DUT-LF [10] dataset to
thoroughly analyze our proposed modules in Section B,
we report elicitation details of cross-scene noise penalty
loss in Section C, and we present additional qualitative and
quantitative comparisons in Section D.

A. More Architecture Details
To further illustrate the proposed network, we show

more details of the ConvLSTM module [12]. The features
extracted from focal slices and all-focus central view image
in m-th layers (denoted as gm) are fed into a ConvLSTM
structure in our architecture to gradually refine the abundant
information for accurately identifying the salient objects.
The procedure is defined as:

it = σ(wxi ∗ gm + whi ∗Ht−1 + wci ⊗ Ct−1 + bi)

ft = σ(wxf ∗ gm + whf ∗Ht−1 + wcf ⊗ Ct−1 + bf )

Ct = ft ⊗ Ct−1 + it ⊗ tanh(wxc ∗ gm + whc ∗Ht−1 + bc)

ot = σ(wxo ∗ gm + who ∗Ht−1 + wco ⊗ Ct + bo)

Ht = ot ⊗ tanh(Ct)
(1)

where ⊗ denotes pixel-wise multiplication and σ(·) is soft-
max function. Memory cell Ct stores previous information.
All ∗, w∗ and b∗ represent convolution operator and convo-
lution parameters to be learned. The memory cell Ct, the
gates it, ft, ot and hidden state Ht are 3D tensors.

As shown in Fig.2 of our main paper, the weighted
focal slices features for m layers are regarded as a sequence
of inputs corresponding to consecutive time steps, feeding
into ConvLSTM modules to gradually refine their spatial
information (Fig. 1(a)). Then, the updated features F ′

m and
R′

m are further input to ConvLSTM modules to summarize
information (Fig. 1(b) and Fig. 1(c)).

B. Ablation Study
To explore the optimal hyperparameters in the proposed

cross-scene noise penalty loss and evaluate influence of
different supervision information, we conduct additional
ablation studies reported as following.

B.1. Hyperparameters of loss function
In this part, we present parameters details of cross-scene

noise penalty loss Lt. Based on ml pairs of cross-scene

Figure 1: ConvLSTM modules (denoted as CLm) used in
our framework to process the weighted focal slices F̄m (a),
the focal slices features F ′

m (b) and all-focus central view
image features R′

m (c).

samples, Lt for pixel (u, v) is defined as:
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The second term is linearly combined with two hyper-
parameters α and ml. For α, we define a dynamic hyper-
parameter recursive process as αt+1 = αt + c/mt, where
c is the maximal value of α and mt denotes the maximal
number of training iterations for each sample (mt = 30 in
our experiments). We report the affect of various value of
c on saliency detection performance in Table 1. It can be
seen that performance achieves optimal when c = 0.30.

c 0 0.10 0.15 0.20 0.25 0.30 0.35 0.40

F ↑ 0.751 0.766 0.789 0.794 0.811 0.813 0.802 0.793
M ↓ 0.168 0.144 0.112 0.114 0.102 0.091 0.052 0.026

Table 1: Experimental results of our model trained with
different settings of the hyperparameter c (the maximal value
of α) in Eq.(1) on saliency detection performance while
keeping other settings unchanged.

In addition, we conduct experiments on our framework
keeping other settings unchanged with different ml values
from 2 to 5. As shown in Table 2, we can see that more
samples can consistently boost the performance. However,
the increasing number of samples will consume a lot of
computing resources. We set ml = 4 to achieve the balance
of performance and training time in our experiment.



ml 2 3 4 5

F ↑ 0.797 0.801 0.813 0.815
M ↓ 0.096 0.090 0.091 0.090

Table 2: Model performances with regard to different num-
ber of correlation samples in Eq.(1) while keeping other
settings unchanged.

Settings Metrics DUT-LF HUFT LFSD

BaselineDSR
F ↑ 0.641 0.485 0.594
M ↓ 0172 0.253 0.191

DSR
F ↑ 0.812 0.640 0.812
M ↓ 0.104 0.121 0.094

BaselineGT
F ↑ 0.842 0.762 0.835
M ↓ 0.012 0.084 0.066

GT
F ↑ 0.851 0.760 0.844
M ↓ 0.007 0.010 0.047

Table 3: Results on the generalization capability of our
proposed method.

B.2. Learn from different noisy label generator

In the main paper, we use conventional unsupervised
method RBD [20] to generate noisy labels. We further
conduct an experiment with noisy labels generated by con-
ventional method DSR [4]. We build a concise baseline that
only contains separate features extraction branches for focal
slices and all-focus central view image in the main paper. In
this section, we treat the saliency maps generated by DSR
method as supervision, and train the model using the setting
of baseline. The results are reported in Table 3, we can find
a huge gap between DSR and BaselineDSR, indicating the
generalization capability of our method. Our method can
handle noisy pixels even the noise generation mechanism
is different. It is reasonable since that we correlate noisy
pixels across whole dataset. In our experiment, we control
the actual portion of noisy pixels by using different noisy
labelling, instead adding noise to clean data.

B.3. Learn from ground truth labels

The ground truth can be treated as a special case of noisy
label. We directly conduct experiments on ground truth
using the setting of baseline. Then, we train our proposed
model using ground truth (denoted as GT in Table 3). The
performance improvement indicates the necessary of noise
handling even training model on the ground truth.

C. Elicitation details of loss function

We define pixel (u, v) in noisy labels and ground truth
as Ŷ (u,v) and Y (u,v), then the error rate can be denoted as:

e+1 = p(Ŷ (u,v) = −1 | Y (u,v) = +1)

e−1 = p(Ŷ (u,v) = +1 | Y (u,v) = −1)
(3)

Similar to e+1 and e−1, we define the error rates for noisy
labels and the initial noisy saliency maps generated by our
method:

p(ŷ(u,v) = −1 | y(u,v) = +1) = e+1,

p(ŷ(u,v) = +1 | y(u,v) = −1) = e−1

(4)

p(s(u,v) = −1 | y(u,v) = +1) = e∗+1,

p(s(u,v) = +1 | y(u,v) = −1) = e∗−1

(5)

where ŷ(u,v) and y(u,v) represent pixel (u, v) in noisy label
and ground truth respectively.

Consider a binary segmentation case (salient object and
background): p(y(u,v) = −1) = 0.4, p(y(u,v) = +1) = 0.6,
the noise in the labels are e−1 = 0.3, e+1 = 0.4 and e∗−1 =
0.2, e∗+1 = 0.3.

Firstly, we compute the marginals of s(u,v) and ŷ(u,v) :

p(s(u,v) = −1)

=p(s(u,v) = −1 | y(u,v) = −1)p(y(u,v) = −1)

+p(s(u,v) = −1 | y(u,v) = +1)p(y(u,v) = +1)

=(1− e∗−1) · 0.4 + e∗+1 · 0.6 = 0.5,

(6)

and easily

p(s(u,v) = +1) = 1− p(s(u,v) = −1) = 0.5 (7)

for noisy labels:

p(ŷ(u,v) = −1)

=p(ŷ(u,v) = −1 | y(u,v) = −1)p(y(u,v) = −1)

+p(ŷ(u,v) = −1 | y(u,v) = +1)p(y(u,v) = +1)

=(1− e−1) · 0.4 + e+1 · 0.6 = 0.52

(8)

and

p(ŷ(u,v) = +1) = 1− p(ŷ(u,v) = −1) = 0.48 (9)

for the joint distribution,

p(s(u,v) = −1, y(u,v) = −1)

=p(s(u,v) = −1, y(u,v) = −1 | y(u,v) = −1)p(y(u,v) = −1)

+p(s(u,v) = −1, y(u,v) = −1 | y(u,v) = +1)p(y(u,v) = +1)

=(1− e∗−1)(1− e−1) · 0.4 + e∗+1 · e+1 · 0.6 = 0.296

p(s(u,v) = −1, ŷ(u,v)) = +1)

=p(s(u,v) = −1)− p(s(u,v) = −1, y(u,v) = −1)

=0.264
(10)

further,

p(s(u,v) = +1, ŷ(u,v) = −1)

=p(ŷ(u,v) = −1)− p(s(u,v) = −1, y(u,v) = −1)

=0.224

p(s(u,v) = +1, y(u,v) = +1)

=p(s(u,v) = +1)− p(s(u,v) = +1, y(u,v) = −1)

=0.216

(11)



Fully Supervised Models Conventional Model Noisy label Model Ours
RGB RGB-D Light field RGB Light field RGB

Dataset Metrics C2S DSS DHS UCF CPFP DF PDNet CTMF DLLF Mo-LF DSR DILF SBF DUSPS MNL
[5] [3] [6] [17] [18] [8] [19] [2] [11] [16] [4] [14] [13] [7] [15]

DUT-LF F ↑ 0.791 0.728 0.801 0.769 0.730 0.733 0.763 0.790 0.868 0.843 0.645 0.641 0.583 0.736 0.716 0.813
M ↓ 0.084 0.128 0.090 0.107 0.101 0.151 0.111 0.100 0.070 0.052 0.164 0.168 0.135 0.062 0.086 0.091

HFUT F ↑ 0.618 0.606 0.542 0.596 0.594 0.531 0.608 0.620 0.863 0.627 0.518 0.529 – 0.705 – 0.652
M ↓ 0.112 0.138 0.129 0.144 0.096 0.156 0.112 0.103 0.093 0.095 0.153 0.148 – 0.087 – 0.108

LFSD F ↑ 0.749 0.644 0.761 0.748 0.524 0.750 0.780 0.791 – 0.819 0.631 0.728 – 0.795 – 0.804
M ↓ 0.113 0.190 0.133 0.169 0.186 0.162 0.116 0.119 – 0.089 0.208 0.168 – 0.105 – 0.111

Table 4: Additional quantitative comparisons between our method and competing methods on three light field datasets. ↑ & ↓ denote
larger and smaller is better respectively.

Figure 2: The PR curves of our method and other methods on three light field datasets, including fully supervised RGB, RGBD and light
field models, conventional models and unsupervised RGB methods.

With above, the entries in ∆a,b can be computed easily,
for instance

∆1,1 =p(s(u,v) = −1, y(u,v) = −1)

−p(s(u,v) = −1) · p(y(u,v) = −1)

=0.296− 0.5 · 0.52 = 0.036

(12)

Then we have[
0.036 −0.036
−0.036 0.036

]
⇒ Sgn(∆)

= Ω(s(u,v), ŷ(u,v)) =

[
1 0
0 1

]
(13)

The above implies that for ∆a,b,∀a, b = {1, 2}, the
marginal correlation is positive while for off-diagonal en-
tries, they are negatively correlated.

CA [9] [1] requires each pixel in the predicted salient
map to perform multiple tasks: compute the correlation with
its corresponding noisy label and exploit the correlation
between predictions of other scenes and unpaired noisy
labels as the penalty to current scene. Ultimately the scoring
function for each task, is defined as follows:

S(s
(u,v)
i , ŷ

(u,v)
i ) = Ω(s

(u,v)
i , ŷ

(u,v)
i )− Ω(s

(u,v)
i1

, ŷ
(u,v)
i2

)
(14)

Next, we have the cross scene penalty loss defined as
Eq.(2). The terms in cross scene penalty loss is simulating
the marginal correlation probability in ∆.

D. Experiment Results

D.1. Quantitative Results

We extend the quantitative studies as a supplement to the
main paper. Firstly, we present results of additional 10 meth-
ods in Table 4, including 4 fully supervised RGB methods
(C2S [5], DSS [3], DHS [6], UCF [17]), 4 supervised RGB-
D methods (CPFP [18], DP [8], PDNet [19], CTMF [2]) and
2 conventional unsupervised methods (DSR [4], DILF [14]).
Results of competing methods are generated by authorized
codes or directly provided by authors. Our model consis-
tently achieves higher scores on all datasets across two
evaluation metrics. Secondly, we compare our method with
the state-of-the-art methods on three benchmark datasets
and the PR curves are shown in Figure 2. Compared to the
state-of-the-art fully supervised RGB and RGB-D methods,
our method achieves significant advantages with a relatively
small training set DUT-LF. It can be seen we still achieves
competitive performance when compared with a number of
fully supervised light field methods.

D.2. Qualitative Comparison

To further prove the superior of our method, we visualize
results for our method and others. As shown in Figure 3,
our results have a significant improvement for challenging
scenes compared with fully supervised RGB, RGB-D meth-
ods and unsupervised RGB method. We still show a com-
petitive performance compared with fully supervised light
field method. With our proposed method and the abundant
cues of light field data, our model has better noise invariant



Figure 3: Additional qualitative comparisons between our method and others on DUT-LF [10]. The saliency maps in the blue box are
predicted from noisy labels supervised RGB methods, the saliency maps in the red box are predicted from fully supervised light field,
RGB-D and RGB saliency method respectively and the saliency maps in the green box are predicted from conventional models.

capability for salient object detection learning from pixel-
level noisy labels.
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