
Rethinking Efficient Lane Detection via Curve Modeling
Supplementary Material

This supplementary material is organized as follows:
Section 1 describes the FPS test protocol and environments;
Section 2 introduces implementation details for each com-
pared method (including ours in Section 2.8); Section 3
provides implementation details for Bézier curves, includ-
ing sampling, ground truth generation and transforms; Sec-
tion 4 formulates the IoU loss for Bézier curves and dis-
cusses why it failed; Section 5 explores matching priors
other than the centerness prior; Section 6 presents quali-
tative results from our method, visualized on three datasets.
Section 7 shows extra ablation studies on datasets other than
CULane [10], to verify the generalization of feature flip fu-
sion. Section 8 discusses limitations and recognizes new
progress in the lane detection field.

1. FPS Test Protocol
Let one Frames-Per-Second (FPS) test trial be the aver-

age runtime of 100 consecutive model inference with its Py-
Torch [12] implementation, without calculating gradients.
The input is a 3x360x640 random Tensor (some use all
1 [17], which does not have impact on speed). Note that all
methods do not use optimization from packages like Ten-
sorRT. We wait for all CUDA kernels to finish before count-
ing the whole runtime. We use Python time.perf counter()
since it is more precise than time.time(). For all methods,
the FPS is reported as the best result from 3 trials.

Before each test trial, at least 10 forward pass is con-
ducted as warm-up of the device. For each new method
to be tested, we keep running warm-up trials of a recorded
method until the recorded FPS is reached again, so we can
guarantee a similar peak machine condition as before.
Evaluation Environment. The evaluation platform is a
2080 Ti GPU (standard frequency), on a Intel Xeon-E3 CPU
server, with CUDA 10.2, CuDNN 7.6.5, PyTorch 1.6.0.
FPS is a platform-sensitive metric, depending on GPU fre-
quency, condition, bus bandwidth, software versions, etc.
Also using 2080 Ti, Tabelini et al. [17] can achieve a better
peak performance for all methods. Thus we use the same
platform for all FPS tests, to provide fair comparisons.
Remark. Note that FPS (image/s) is different from
throughput (image/s). Since FPS restricts batch size to
1, which better simulates the real-time application scenario.

While throughput considers a batch size more than 1. LSTR
[9] reported a 420 FPS for its fastest model, which is actu-
ally throughput with batch size 16. Our re-tested FPS is 98.

2. Specifications for Compared Methods

2.1. Segmentation Baseline

The segmentation baseline is based on DeeplabV1 [3],
originally proposed in SCNN [10]. It is essentially the orig-
inal DeeplabV1 without CRF, lanes are considered as dif-
ferent classes, and a separate lane existence branch (a se-
ries of convolution, pooling and MLP) is used to facilitate
lane post-processing. We optimized its training and testing
scheme based on recent advances [19]. Re-implemented in
our codebase, it attains higher performance than what recent
papers usually report.
Post-processing. First, the existence of a lane is determined
by the lane existence branch. Then, the predicted per-pixel
probability map is interpolated to the input image size. Af-
ter that, a 9× 9 Gaussian blur is applied to smooth the pre-
dictions. Finally, for each existing lane class, the smoothed
probability map is traversed by pre-defined Y coordinates
(quantized), and corresponding X coordinates are recorded
by the maximum probability position on the row (provided
it passes a fixed threshold). Lanes with less than two quali-
fied points are simply discarded.
Data Augmentation. We use a simple random rotation with
small angles (3 degrees), then resize to input resolution.

2.2. SCNN

Our SCNN [10] is re-implemented from the Torch7 ver-
sion of the official code. Advised by the authors, we added
an initialization trick for the spatial CNN layers, and learn-
ing rate warm-up, to prevent gradient explosion caused by
recurrent feature aggregation. Thus, we can safely adjust
the learning rate. Our improved SCNN achieves signifi-
cantly better performance than the original one.

Some may find reports of 96.53 accuracy of SCNN on
TuSimple. However, that was a competition entry trained
with external data. We report SCNN with ResNet back-
bones, trained with the same data as other re-implemented
methods in our codebase.
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Post-processing. Same as Section 2.1.
Data Augmentation. Same as Section 2.1.

2.3. RESA

Our RESA [19] is implemented based on its published
paper. A main difference to the official code release is we
do not cutout no-lane areas (in each dataset, there is a cer-
tain height range for lane annotation). Because that trick
is dataset specific and not generalizable, we do not use that
for all compared methods. Other differences are all vali-
dated to have better performance than the official code, at
least on the CULane val set.
Post-processing. Same as Section 2.1.
Data Augmentation. Same as Section 2.1. The original
RESA paper [19] also apply random horizontal flip, which
was found ineffective in our re-implementation.

2.4. UFLD

Ultra Fast Lane Detection (UFLD) [13] is reported from
their paper and open-source code. Since TuSimple FP and
FN information is not in the paper, and training from source
code leads to very high FP rate (almost 20%), we did not
report their performance on this dataset. We adjusted its
profiling scripts to calculate number of parameters and FPS
in our standard.
Post-processing. Since this method uses gridding cells
(each cell is equivalent to several pixels in a segmentation
probability map), each point’s X coordinate is calculated
as the expectation of locations (cells from the same row),
i.e. a weighted average by probability. Differently from
segmentation post-processing, it is possible to be efficiently
implemented.
Data Augmentation. Augmentations include random rota-
tion and some form of random translation.

2.5. PolyLaneNet

PolyLaneNet [16] is reported from their paper and open-
source code. We added a profiling script to calculate num-
ber of parameters and FPS in our standard, by help of the
paper authors.
Post-processing. This method requires no post-processing.
Data Augmentation. Augmentations include large random
rotation (10 degrees), random horizontal flip and random
crop. They are applied with a probability of 10
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2.6. LaneATT

LaneATT [17] is reported from their paper and open-
source code. We adjusted its profiling scripts to calculate
parameters and FPS in our standard, by help of the authors.
Post-processing. Non-Maximal Suppression (NMS) is im-
plemented by a customized CUDA kernel. An extra inter-
polation of lanes by B-Spline is removed both in testing and

profiling, since it is slowly executed on CPU and provides
little improvement (∼ 0.2% on CULane).
Data Augmentation. LaneATT uses random affine trans-
forms including scale, translation and rotation. While it also
uses random horizontal flip.
Followup. We did not have time to validate the re-
implementation of LaneATT in our codebase, prior the sub-
mission deadline. Therefore, the LaneATT performance is
still reported from the official code. Our re-implementation
indicates that all LaneATT results are reproducible except
for the ResNet-34 backbone on CULane, which is slightly
outside the standard deviation range, but still a reasonable
number.

2.7. LSTR

LSTR [9] is re-implemented in our codebase. All ResNet
backbone methods start from ImageNet [6] pre-training.
While LSTR [9] use 256 channels ResNet-18 for CULane
(2×), 128 channels for other datasets (1×), which makes
it impossible to use off-the-shelf pre-trained ResNets. Al-
though whether ImageNet pre-training helps lane detection
is still an open question. Our reported performance of
LSTR on CULane, is the first documented report of LSTR
on this dataset. With tuning of hyper-parameters (learn-
ing rate, epochs, prediction threshold), bug fix (the original
classification branch has 3 output channels, which should be
2), we achieve 4% better performance on CULane than the
authors’ trial. Specifically, we use learning rate 2.5× 10−4

with batch size 20. 150 and 2000 epochs, 0.95 and 0.5 pre-
diction thresholds, for CULane and TuSimple. The lower
threshold in TuSimple is due to the official test metric,
which significantly favors a high recall. However, for real-
world applications, a high recall leads to high False Positive
rate, which is undesired.

We divide the curve loss weighting by 10 with our
LSTR-Beizer ablation, since there were 100 sample points
with both X and Y coordinates to fit, that is a loss scale
about 10 times the original loss (LSTR loss takes summa-
tion of point L1 distances instead of average). This modu-
lation achieves a similar loss landscape to original LSTR.
Post-processing. This method requires no post-processing.
Data Augmentation. Data augmentation includes Poly-
LaneNet’s (Section 2.5), then appends random color dis-
tortions (brightness, contrast, saturation, hue) and random
lighting by a light source calculated from the COCO dataset
[7]. That is by far the most complex data augmentation
pipeline in this research field, we have validated that all
components of this pipeline helps LSTR training.
Remark. The polynomial coefficients of LSTR are un-
bounded, which leads to numerical instability (while the bi-
partite matching requires precision), and high failure rate
of training. The failure rate of fp32 training on CULane
is ∼ 30%. This is circumvented in BézierLaneNet, since
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our L1 loss can be bounded to [0, 1] without influence on
learning (control points easily converges to on-image).

2.8. BézierLaneNet

BézierLaneNet is implemented in the same code frame-
work where we re-implemented other methods. Same as
LSTR, the default prediction threshold is set to 0.95, while
0.5 is used for TuSimple [1].
Post-processing. This method requires no post-processing.
Data Augmentation. We use augmentations similar to
LSTR (Section 2.7). Concretely, we remove the random
lighting from LSTR (to strictly avoid using knowledge from
external data), and replace the PolyLaneNet 10

11 chance aug-
mentations with random affine transforms and random hor-
izontal flip, like LaneATT (Section 2.6). The random affine
parameters are: rotation (10 degrees), translation (maxi-
mum 50 pixels on X, 20 on Y), scale (maximum 20%).
Polynomial Ablations. For the polynomial ablations (Table
7), we modified the network to predict 6 coefficients for 3rd
order Polynomial (4 curve coefficients and start/end Y coor-
dinates). Extra L1 losses are added for the start/end Y coor-
dinates similar to LSTR [9]. With extensive tryouts (adjust-
ing learning rate, loss weightings, number of epochs), even
at the full BézierLaneNet setup, with 150 epochs on CU-
Lane, the models still can not converge to a good enough
solution. In other word, not precise enough to pass the
CULane metric. The sampling loss on polynomial curves
can only get to 0.02, which means 0.02 × 1640pixels =
32.8pixels average X coordinate error on training set. CU-
Lane requires a 0.5 IoU between curves, which are enlarged
to 30 pixels wide, thus at least around 10 pixels average er-
ror is needed to get meaningful results. By loosen up the
IoU requirement to 0.3, we can get F1 score 15.82 for “3rd
Polynomial from BézierLaneNet”. Although the reviewing
committee suggested adding simple regularization for this
ablation to converge, regretfully we failed to do this.

3. Bézier Curve Implementation Details
Fast Sampling. The sampling of Bézier curves may seem
tiresome due to the complex Bernstein basis polynomials.
To fast sample a Bézier curve by a series of fixed t values,
one can simply pre-compute the results from Bernstein ba-
sis polynomials, then the sampling process becomes a sim-
ple matrix multiplication.
Remarks on GT Generation. The ground truth of Bézier
curves are generated with least squares fitting, a common
technique for polynomials. We use it for its simplicity and
the fact that it already shows near-perfect lane line fitting
ability (99.996 and 99.72 F1 score on CULane test and
LLAMAS val, respectively). However, it is not an ideal
algorithm for parametric curves. There is a whole research
field for fitting Bézier curves better than the least squares
method [11].

Bézier Curve Transform. Another implementation diffi-
culty on Bézier curves is how to apply affine transform (for
transforming ground truth curves in data augmentation).
Mathematically, affine transform on the control points is
equivalent to affine transform on the entire curve. However,
translation or rotation can move control points out of the
image. In this case, a cutting of Bézier curves is required.
The classical De Casteljau’s algorithm is used for cutting an
on-image Bézier curve segment. Assume a continuous on-
image segment, valid sample points with minimum bound-
ary t = t0, maximum boundary t = t1. The formula to cut a
cubic Bézier curve defined by control points P0,P1,P2,P3

to its on-image segment P ′0,P ′1,P ′2,P ′3, is derived as:

P ′0 = u0u0u0P0 + (t0u0u0 + u0t0u0 + u0u0t0)P1

+ (t0t0u0 + u0t0t0 + t0u0t0)P2 + t0t0t0P3,

P ′1 = u0u0u1P0 + (t0u0u1 + u0t0u1 + u0u0t1)P1

+ (t0t0u1 + u0t0t1 + t0u0t1)P2 + t0t0t1P3,

P ′2 = u0u1u1P0 + (t0u1u1 + u0t1u1 + u0u1t1)P1

+ (t0t1u1 + u0t1t1 + t0u1t1)P2 + t0t1t1P3,

P ′3 = u1u1u1P0 + (t1u1u1 + u1t1u1 + u1u1t1)P1

+ (t1t1u1 + u1t1t1 + t1u1t1)P2 + t1t1t1P3,

(1)

where u0 = 1 − t0, u1 = 1 − t1. This formula can be
efficiently implemented by matrix multiplication. The pos-
sibility of noncontinuous cubic Bézier segment on lane de-
tection datasets is extremely low and thus ignored for sim-
plicity. If it does happen, Equation (1) will not change the
curve, while our network can also predict out-of-image con-
trol points, which still fit the on-image lane segments.

4. IoU Loss for Bézier Curves
Here we briefly introduce how we formulated the IoU

loss between Bézier curves. Before diving into the algo-
rithm, there are two preliminaries.

• Polar sort: By anchoring on an arbitrary point in-
side the N-sided polygon with vertices ci(xi, yi)

N
i=1

(normally the mean coordinate between vertices c′ =
( 1
N

∑N
i=1 xi,

1
N

∑N
i=1 yi)), vertices are sorted by its

atan2 angles. This will return a clockwise or coun-
terclockwise polygon.

• Convex polygon area: A sorted convex polygon can
be efficiently cut into consecutive triangles by sim-
ple indexing operations. The convex polygon area is
the sum of these triangles. The area S of triangle
((x1, y1), (x2, y2), (x3, y3)) is: S = 1

2 |x1(y2 − y3) +
x2(y3 − y1) + x3(y1 − y2)|.

Assume we have two convex hulls from Bézier curves
(there are a lot of convex hull algorithms). Now the IoU
between Bézier curves are converted to IoU between con-
vex polygons. Based on the simple fact that the intersec-
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tion of convex polygons is still a convex polygon, after po-
lar sorting all the convex hulls and determining the inter-
sected polygon, we can easily formulate IoU calculations
as a series of convex polygon area calculations. The dif-
ficulty lies in how to efficiently determine the intersection
between convex polygon pairs.

Consider two intersected convex polygons, their inter-
section includes two types of vertices:

• Intersections: intersection points between edges.
• Insiders: vertices inside/on both polygons.
For Intersections, we first represent every polygon edge

as the general line equation: ax+ by = c.
Then, for line a1x+ b1y = c1 and line a2x+ b2y = c2,

the intersection (x′, y′) is calculated by:

x′ = (b2c1 − b1c2)/det

y′ = (a1c2 − a2c1)/det,
(2)

where det = a1b2 − a2b1. All (x′, y′) that is on the respec-
tive line segments are Intersections.

For Insiders, there is a certain definition:

Def. 1 For a convex polygon, point P (x, y) on the same
side of each edge is inside the polygon.

A sorted convex polygon is a series of edges (line seg-
ments defined by P0(x0, y0), P1(x1, y1)), the equation to
decide which side a point is to a line segment is as follows:

sign = (y − y0)(x1 − x0)− (x− x0)(y1 − y0). (3)

sign > 0 means P is on the right side, sign < 0 is the
left side, and sign = 0 means P is on the line segment.
Note that equality is not a stable operation for float com-
putations. But there are simple ways to circumvent that in
coding, which we will not elaborate here.

There are other ways to determine Intersections and In-
siders, but the above formulas can be efficiently imple-
mented with matrix operations and indexing, making it pos-
sible to quickly train networks with batched inputs.

Finally, after being able to compute convex polygon in-
tersections and areas, the Generalized IoU loss (GIoU) is
simply (as in [15]):

input : Two arbitrary convex shapes: A,B ⊆ S ∈ Rn

output: GIoU
1. For A and B, find the smallest enclosing convex object
C, where C ⊆ S ∈ Rn

2. IoU =
|A ∩B|
|A ∪B|

3. GIoU = IoU − |C\(A ∪B)|
|C|

Union is computed as A ∪ B = A + B − A ∩ B. The
enclosing convex object C can be computed as the convex

hull of two convex polygons, or upper-bounded by a enclos-
ing rectangle. We implement the IoU computation purely
in PyTorch [12], the runtime for our implementation is only
about 5× the runtime of rectangle IoU loss computation.

However, lane lines are mostly straight based on road de-
sign regulations [4, 18]. This leads to extremely small con-
vex hull area for Bézier curves, thus introduces numerical
instabilities in optimization. Although succeeded in a toy
polygon fitting experiment, we currently failed to observe
the loss’s convergence to help learning on lane datasets.

5. GT and Prediction Matching Prior

Figure 1. Logits activation statistics (1× W
16

) on CULane [10].

Instead of the centerness prior, we explore a local maxi-
mum prior, i.e., restricts matched prediction to have a local
maximum classification logit. This prior can facilitate the
model to understand the spatially sparse structure of lane
lines. As shown in Figure 1, the learned feature activation
for classification logits exhibits a similar structure as an ac-
tual driving scene.

6. Qualitative Results
Qualitative results are shown in Figure 2, from our

ResNet-34 backbone models. Bézier control points are
highlighted with large circles. False Positives (FP) are
marked by red, True Positives (TP) are marked by green,
ground truth are drawn in blue. Some blue lines that are
barely visible are quite precisely covered by green lines
(a precise prediction). It is recommended to enlarge the
manuscript, to better observe lane line details. For each
dataset, 4 results are shown in two rows: first row shows
qualitative successful predictions; second row shows typi-
cal failure cases.
TuSimple. As shown in Figure 2(a), our model fits highway
curves well, only slight errors are seen on the far side where
image details are destroyed by projection. Our typical fail-
ure case is a high FP rate, mostly attributed to the use of low
threshold (Section 2.8). However, in the bottom-right wide
road scene, our FP prediction is actually a meaningful lane
line that is ignored in center line annotations.
CULane. As shown in Figure 2(b), most lanes in this
dataset are straight. Our model can make accurate predic-
tions under heavy congestion (top-left) and shadows (top-
right, shadow cast by trees). A typical failure case is inaccu-
rate prediction under occlusion (second row), in these cases
one often cannot visually tell which one is better (ground
truth or our FP prediction).
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(a) TuSimple [1].

(b) CULane [10].

(c) LLAMAS [2].

Figure 2. Qualitative results from BézierLaneNet (ResNet-34) on val sets. False Positives (FP) are marked by red, True Positives (TP) are
marked by green, ground truth are drawn in blue. Bézier curve control points are marked with solid circles. Images are slightly resized for
alignment. Best viewed in color, in 2× scale.
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LLAMAS. As shown in Figure 2(c), our method performs
accurate for clear straight-lines (top-left), and also good for
large curvatures in a challenging scene almost entirely cov-
ered by shadow. In bottom-left image, our model fails in
a low-illumination, tainted road. While in the other low-
illumination scene (bottom-right), the unsupervised annota-
tion from LIDAR and HD-map is misled by the white arrow
(see the zigzag shape of the right-most blue line).

7. Extra Results

TuSimple [1] LLAMAS [2]
Bézier Baseline 93.36 95.27
+ Feature Flip Fusion 95.26 (+1.90) 96.00 (+0.73)

Table 1. Ablation study on TuSimple (test set Accuracy) and LLA-
MAS (val set F1), before and after adding the Feature Flip Fusion
module. Reported 3-times average with the ResNet-34 backbone,
since ablations often are not stable enough on these datasets to
exhibit a clear difference between methods.

8. Discussions

There exists a primitive application of lane detectors
from lateral-mounted cameras [5] that contradicts the use of
feature flip fusion, to estimate the distance to the border of
the drivable area. In this case, possibly a lower order Bézier
curve baseline (with row-wise instead of column-wise pool-
ing) would suffice. This is out of the focus of this paper.
Recent Progress. Recently, others have explored alterna-
tive lane representation or formulation methods that do not
fully fit in the three categories (segmentation, point detec-
tion, curve). Instead of the popular top-down regime, [14]
propose a bottom-up approach that focus on local details.
[8] achieve state-of-the-art performance, but the complex
conditional decoding of lane lines results in unstable run-
time depending on the input image, which is not desirable
for a real-time system.
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