
Supplementary Material for Visual Vibration Tomography

Contents

1. Supplementary 1
1.1. Optimization Runtime . . . . . . . . . . . . 1
1.2. Simulated Experiments . . . . . . . . . . . . 1

1.2.1 Predicted Image-Space Modes . . . 1
1.2.2 Effect of Regularization . . . . . . 2
1.2.3 Intrinsic Resolution . . . . . . . . . 2

1.3. Simulated Experiments: Model Mismatch . . 2
1.3.1 Poisson’s Ratio Mismatch . . . . . 2
1.3.2 Mesh Element Order Mismatch . . 2

1.4. Drum Experiment . . . . . . . . . . . . . . 2
1.4.1 Drum Construction . . . . . . . . . 2
1.4.2 Vibration-Capture Setup . . . . . . 3
1.4.3 Video Capture . . . . . . . . . . . 3
1.4.4 Extracting Image-Space Modes . . 3
1.4.5 Inference Details . . . . . . . . . . 3

1.5. Jello Cube Experiment . . . . . . . . . . . . 3
1.5.1 Inference Details . . . . . . . . . . 3

1. Supplementary

1.1. Optimization Runtime
Recall that the optimal material properties and 3D modes

are found by iteratively updating the solutions to the follow-
ing optimization problem:

w∗, v∗ = argmin
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s.t. K =
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e=1

weKe, M =

m∑
e=1

veMe.

For an 8x8x8 cube with linear hexahedral elements, one it-
eration takes 2–3 seconds (tested on an 8-core Intel Core i9,
32 GB RAM), and convergence usually happens within 100
iterations.
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Figure 1. (a) Similarity of predicted image-space modes to true,
observed, and optimized image-space modes for the cube sample
shown in Fig. 3. “Obs.” mode is often a noisy version of “FEM
(true).” “Opt.” refers to the optimized solution U∗ in Eq. 1. “FEM
(pred.)” is the image-space mode resulting from the estimated ma-
terial properties. (b) Predicted eigenfrequencies vs. true eigen-
frequencies. The frequencies of the 10 given motion-extracted
image-space modes are marked by scatter dots.

1.2. Simulated Experiments

1.2.1 Predicted Image-Space Modes

In addition to normalized correlation, a way to assess es-
timated material properties is to verify that they produce
the same image-space modes and natural frequencies as the
true properties. Recall that 3D modes are a decision vari-
able in our optimization scheme (Eq. 1). As Fig. 1 shows, it
is informative to compare the true FEM modes, observed
modes, optimized modes, and predicted FEM modes, in
image-space. The optimization process usually de-noises
observed modes. For some modes, spatially correlated
noise may make it difficult to recover the true mode, but
it is possible for the predicted FEM modes to still be similar
to the truth (see example (2) in Fig. 1).



1.2.2 Effect of Regularization

The strength of spatial regularization on material properties
affects the smoothness of the estimation. In Eq. 1, the regu-
larization weights for Young’s modulus and density are αw

and αv , respectively. In Fig. 2, we show how the estimated
density image becomes sharper as αv decreases (keeping all
else fixed). This can result in a crisper picture of the defect,
but can also make reconstruction more sensitive to noise.
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Figure 2. Effect of regularization. Here we show the estimated
density for a cube sample (same as in Fig. 3). Keeping all else
fixed, as αv decreases, the image of the defect becomes crisper,
but more sensitive to noise. Each estimation uses the same 10
motion-extracted image-space modes.

1.2.3 Intrinsic Resolution

Fig. 3 demonstrates how, as the number of input image-
space modes increases, the intrinsic resolution of the recon-
struction improves.

Recon.
(10 modes)True @ IRTrue

(a) (b)

Figure 3. Intrinsic resolution of reconstructed volumes. Based
on normalized correlation with the ground-truth material proper-
ties smoothed at different scales, one can approximate the intrinsic
resolution of the reconstructed material properties. In (a), we plot
normalized correlation versus Gaussian blur standard deviation σ,
for the reconstruction of Young’s modulus using different numbers
of image-space modes (keeping all other hyperparameters fixed).
As the number of observed modes increases, the reconstructed res-
olution also increases (i.e., smaller σ). (b) shows the true Young’s
modulus image blurred at the intrinsic resolution (IR) of the re-
construction given 10 image-space modes (σ∗ = 1.4 voxels).

1.3. Simulated Experiments: Model Mismatch

In the main material, we discussed geometry mismatch.
Here, we investigate the effects of model mismatch in the
Poisson’s ratio and the mesh element order.

1.3.1 Poisson’s Ratio Mismatch

The Poisson’s ratio is a measure of the deformation of a ma-
terial perpendicular to an applied force and ranges from 0.1
to 0.45 [1]. Since our optimization formulation only esti-
mates Young’s modulus and density, we assume that every
voxel has the same Poisson’s ratio. Fig. 4 shows that this
assumption does not significantly hurt the reconstruction of
a defect, especially when assuming a Poisson’s ratio that is
closer to that of the main material.

𝜈 = 0.3True 𝜈 = 0.45

0.48 0.63 0.73 0.82correlation =

Figure 4. The effect of assuming a homogeneous Poisson’s ra-
tio. In the true cube, the main material has a Poisson’s ratio of
ν = 0.45, while the defect material has a Poisson’s ratio of 0.3
(roughly corresponding to the values for Jello and clay, resp.).
When inferring material properties, we assume a uniform Pois-
son’s ratio across the entire cube. We find that this assumption
does not hurt the reconstruction much, especially when ν is set to
the Poisson’s ratio of the main material. Both estimations use the
same 20 motion-extracted image-space modes.

1.3.2 Mesh Element Order Mismatch

In general, it is better to use higher-order elements to model
a real-life object. However, there is a tradeoff in effi-
ciency. A quadratic element approximates node displace-
ments more accurately, but contains more DOFs than a lin-
ear element. Fig. 5 shows what happens when the forward
model uses quadratic elements, while the inference model
uses linear elements. For real-world objects, one should
choose the order that strikes the right balanace between ap-
proximation accuracy and computational cost.

1.4. Drum Experiment

1.4.1 Drum Construction

The drums were constructed by fixing a thin rubber sheet
over a 4”x4” PVC adaptor with a rubber band. We tested de-
fects of two materials: nail hardening gel and acrylic plastic
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Figure 5. Element order mismatch. As (a) shows, when using lin-
ear elements in the forward model, any element order ≥ 1 suffices
in the inference model. However, in (b), reconstruction quality de-
grades when attempting to model a quadratic-element cube with
linear elements.

circles. For each defect, we recorded a video of the homo-
geneous drum before the defect was applied for comparison.
We drew a speckle pattern on the drum head for texture.

1.4.2 Vibration-Capture Setup

Fig. 6 shows a schematic of the setup. We taped the drum
onto an optical table, with the high-speed camera stand-
ing on the same optical table. The excitation source was a
PreSonus Sceptre S8 loudspeaker, which sat on a platform
separate from the optical table and was pointed at the drum.
For each video, we recorded the drum head’s vibration in
response to a 3.5-second linear frequency sweep (50–1000
Hz) played by the speaker.

120 cm

103 cm

71 cm

Figure 6. Experimental setup for real drums. Vibrations were in-
duced by a loudspeaker and recorded with a high-speed camera.

1.4.3 Video Capture

Our camera was a Phantom V1610 high-speed camera.
Each video was captured at 6000 FPS at an image reso-
lution of 288 × 384. To reduce noise, we averaged every
two frames for a resulting temporal frequency of 3000 FPS.
Note that in Fig. 9 in the main material, the drums vibrate at
frequencies below 120 Hz. While we chose to first demon-
strate our approach using a high-speed camera, where com-

pression and camera noise are less challenging, many modal
frequencies can be captured on a consumer camera.

1.4.4 Extracting Image-Space Modes

We found that in real videos, some level of manual selec-
tion was necessary to verify peaks in the motion amplitude
spectrum as modal motion. For instance, spurious camera
motion would often appear as spikes in the spectrum. Veri-
fication was done by visually inspecting the magnified mo-
tion in the video at the frequency in question (following the
method proposed in [2]). We believe that in the future this
step could be automated. The number of extracted modes
ranged from 12 to 31, depending on the video.

1.4.5 Inference Details

We modeled each drum as a triangular membrane mesh with
1530 linear elements and inferred material properties on a
20x20 pixel grid. In the presented results, the hyperparam-
eter values are αu = 1012, η = 1, αw = 0.1, αv = 0.1, and
w̄ = 106. w and v are initialized to uniform values of 106

[Pa] and 103 [kg/m3], respectively, and reflect the estimated
stiffness and density of latex.

1.5. Jello Cube Experiment

1.5.1 Inference Details

Our inference model was a 10x10x10 hexadral mesh with
linear elements. The optimization hyperparameters were
αu = 0.1, η = 1, αw = 10−10, αv = 10−8, and w̄ =
10000. w and v were initialized to 10000 [Pa] and 1500
[kg/m3], which are the estimated Young’s modulus and
measured density values of Jello.
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