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Appendix

A. PyTorch-like pseudo-code

We provide a PyTorch-like pseudo-code of our method.
As you can see, CaSSLe is simple to implement and does
not add much complexity to the base SSL method. In this
snippet, the losses are made symmetric by summing the two
contributions. In some cases, the two losses are averaged
instead. In CaSSLe, we symmetrize in the same way as the
base SSL method we are considering.

Algorithm 1 PyTorch-like pseudo-code for CaSSLe.

# aug: stochastic image augmentation
# f: backbone and projector
# frozen_f: frozen backbone and projector
# g: CaSSLe’s predictor
# loss_fn: any SSL loss in Tab. 1 (main paper)

# PyTorchLightning handles loading and optimization
def training_step(x):

# correlated views
x1, x2 = aug(x), aug(x)

# forward backbone and projector
z1, z2 = f(x1), f(x2)

# optionally forward predictor...

# compute SSL loss (symmetric)
ssl_loss = loss_fn(z1, z2) \\

+ loss_fn(z2, z1)

# forward frozen backbone and projector
z1_bar, z2_bar = frozen_f(x1), frozen_f(x2)

# compute distillation loss (symmetric)
distill_loss = loss_fn(g(z1), z1_bar) \\

+ loss_fn(g(z2), z2_bar)

# no hyperparameter for loss weighting
return ssl_loss + distill_loss

*Enrico Fini and Victor G. Turrisi da Costa contributed equally.
†Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.

B. Derivation of distillation losses

In this section, we derive distillation losses from the SSL
losses in Tab. 1 of the main paper, starting from the defini-
tion of our distillation loss:

LD(z, z̄) = LSSL(g(z), z̄), (1)

where z and z̄ are the representations of the current and
frozen encoder, and g is CaSSLe’s predictor network im-
plemented as a two layer MLP with 2048 hidden neurons
and ReLU activation.

Contrastive based. Our distillation loss based on con-
trastive learning is implemented as follows:

L(zi, z̄i) = − log
exp (sim (zi, z̄i) /τ)∑

zj∈η̄(i) exp (sim (zi, zj) /τ)
, (2)

where η̄(i) is the set of negatives for the sample with index
i in the batch. Note that the negatives are drawn both from
the predicted and frozen features.

MSE based. This distillation loss is simply the MSE be-
tween the predicted features and the frozen features:

L(z, z̄) = −||g(z)− z̄||22. (3)

It can be implemented with the cosine similarity as stated in
the main manuscript.

Cross-entropy based. The cross-entropy loss, when used
for distillation in an unsupervised setting, makes sure that
the current encoder is able to assign samples to the frozen
centroids (or prototypes) consistently with the frozen en-
coder:
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and the set of frozen prototypes is denoted as follows:
Ct−1 =

{
ct−1
1 , . . . , ct−1

K

}
.

Cross-correlation based. We consider Barlow Twins’
[27] implementation of this objective. For VICReg [3] we
only consider the invariance term. As a distillation loss, the
cross-correlation matrix is computed with the predicted and
frozen features:

L(z, z̄) =
∑
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)2
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C̄2
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where:
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C. Further discussion and implementation de-
tails of the baselines

Selection. When evaluating our framework, we try to
compare with as many existing related methods as possi-
ble. However, given that SSL models are computationally
intensive, it was not possible to run all baselines and meth-
ods in all the CL settings we considered. As mentioned in
the main manuscript, we choose eight baselines (seven re-
lated methods + fine-tuning) belonging to three CL macro-
categories, and test them on CIFAR100 (class-incremental)
in combination with three SSL methods. The selection was
based on the ease of adaptation to CSSL and the similarity
to our framework.

The most similar to CaSSLe are data-focused regular-
ization methods. Among them, a large majority lever-
age knowledge distillation using the outputs of a classifier
learned with supervision e.g. [7, 12, 20], while a few works
employ feature distillation [10, 16] which is viable even
without supervision. [17] is also related to CaSSLe, but it
focuses on memory efficiency which is less interesting in
our setting. Also, [17] explicitly uses the classifier after fea-
ture adaptation, hence it is unclear how to adapt it for CSSL,
especially since in SSL positives are generated using image
augmentations, which are not applicable to a memory bank
of features. On the contrary, augmentations can be used in
replay methods, among which we select the most common
(ER [24]) and one of the most recent (DER [4]). Regarding
prior-focused regularization methods, we choose EWC [19]
over others (SI [28], MAS [2], etc.) as it is considered the

Table A. Linear evaluation top-1 accuracy on ImageNet100 (5
tasks, class- and data-incremental).

Method Strategy
ImageNet100

Class-inc. Data-inc.

Supervised
Contrastive

Fine-tuning 61.6 74.3
CaSSLe 69.6 76.9

most influential and it works best with task boundaries. We
also consider two CSSL baselines: LUMP [22] and Lin
et al. [21]. Finally, we do not consider methods based on
VAEs [1,23], since they have been shown to yield poor per-
formance in the large and medium scale. For instance, as
found by [11], a VAE trained offline on CIFAR10 reaches an
accuracy of 57.2%, which is lower than any method (except
VICReg) trained continually on CIFAR100 with CaSSLe.

Implementation. For EWC, we use the SSL loss instead
of the supervised loss to estimate importance weights. For
POD and Less-Forget, we only re-implement the feature
distillation without considering the parts of their methods
that explicitly use the classifier. For DER, we replace the
logits of the classifier with the projected features in the
buffer. We re-implement all these baselines by adapting
them from the official implementation (POD), or from the
Mammoth framework provided with [4] (DER, ER, EWC),
or from the paper (Less-Forget). We also compare with
two concurrent works that propose approaches for CSSL
(LUMP [22], Lin et al. [21]). LUMP uses k-NN evalua-
tion, therefore we adapt the code provided by the authors to
run in our code base. For Lin et al., we compare directly
with their published results, since they use the same eval-
uation protocol. We perform hyperparameter tuning for all
baselines, searching over 5 values for the distillation loss
weights of POD and Less-Forget, 3 values for the weight of
the regularization in EWC and 3 replay batch sizes for re-
play methods. The size of the replay buffer is 500 samples
for all replay based methods.

D. Additional results

Continual supervised contrastive with CaSSLe. After
the popularization of contrastive learning [8, 14] for unsu-
pervised learning of representations, [18] proposed a su-
pervised version of the contrastive loss. Here, we show
that CaSSLe is easily extendable to support supervised
contrastive learning. The implementation is basically the
same as for our vanilla contrastive-based distillation loss.
In Tab. A, we show the improvement that CaSSLe brings
with respect to fine-tuning, which is sizeable in the class-
incremental setting. We also report the same comparison



Table B. Linear evaluation top-1 accuracy on DomainNet (6 tasks, domain-incremental setting) w/ and w/o CaSSLe. The sequence of
tasks is Real→Quickdraw→Painting→Sketch→Infograph→Clipart. “Aw.” stands for task-aware, “Ag,” for task-agnostic.

Method Strategy
Real Quickdraw Painting Sketch Infograph Clipart Avg.

Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag. Aw. Ag.

Barlow Twins

Finetuning 56.3 50.9 54.1 45.8 42.7 35.9 49.0 41.9 22.0 17.4 59.0 52.5 50.3 43.7
CaSSLe 62.7 57.1 59.1 50.6 49.2 42.1 53.8 47.7 25.5 20.6 61.9 55.6 55.5 48.9

Offline 67.1 63.0 60.3 53.9 52.4 46.3 51.9 46.9 25.9 21.0 58.8 52.6 57.2 51.8

SwAV

Finetuning 57.7 52.3 53.2 43.5 43.0 35.9 46.1 39.0 21.6 16.5 53.4 46.6 49.6 42.5
CaSSLe 62.8 57.8 59.5 50.2 47.5 41.2 49.5 42.5 22.5 17.9 56.5 49.6 54.3 47.5

Offline 64.1 59.5 60.6 53.6 47.6 42.9 47.7 42.1 23.3 18.9 53.6 47.3 54.6 49.1

BYOL

Finetuning 58.7 53.2 51.7 41.6 44.0 37.4 49.6 43.9 23.5 19.0 58.6 53.5 50.6 43.8
CaSSLe 63.7 60.5 59.3 50.9 48.6 44.1 50.4 45.2 24.1 19.4 59.0 54.4 55.1 49.7

Offline 67.2 64.0 60.2 53.3 51.5 47.3 50.4 46.2 24.5 20.8 57.0 51.5 56.6 51.9

VICReg

Finetuning 54.7 49.6 53.0 44.9 42.1 34.7 49.0 41.9 21.1 16.4 58.5 52.6 49.3 42.8
CaSSLe 59.0 53.2 56.4 47.8 46.0 38.9 52.3 45.6 23.9 18.5 60.9 55.3 52.9 46.1

Offline 66.4 62.7 59.2 53.5 52.4 47.2 53.2 48.1 25.3 20.7 58.3 53.2 56.7 51.9

SimCLR

Finetuning 52.5 47.6 48.2 38.1 37.5 31.7 42.8 35.7 18.8 14.4 50.9 46.8 45.1 38.4
CaSSLe 58.4 43.4 54.2 44.7 43.9 37.7 47.6 41.9 22.0 17.8 54.9 50.5 50.0 44.2

Offline 62.1 59.5 58.3 52.9 46.1 42.5 45.6 41.3 22.1 18.8 51.0 45.9 52.6 48.6

MoCoV2+

Finetuning 50.9 45.5 45.8 37.5 36.0 29.3 39.5 32.1 17.9 13.5 50.3 44.5 43.2 36.7
CaSSLe 56.0 50.3 48.7 40.0 40.4 33.6 42.0 35.0 19.9 15.2 51.7 44.5 46.7 38.8

Offline 65.2 61.3 57.9 51.3 48.7 43.1 44.7 39.1 23.4 19.0 51.3 44.8 53.7 48.4

Supervised
Contrastive

Finetuning 57.7 52.6 55.3 45.5 44.9 38.0 51.7 45.0 22.6 18.3 64.0 60.0 52.1 45.4
CaSSLe 63.4 58.8 59.7 51.3 50.1 44.7 55.9 50.3 26.9 22.4 65.0 61.3 56.7 50.9

Offline 67.4 65.3 65.8 63.0 53.6 50.9 56.0 53.1 28.0 25.7 62.8 59.6 60.0 57.4

Supervised
Finetuning 63.0 58.2 56.9 47.6 49.1 44.0 55.7 50.3 27.7 23.3 68.6 63.5 55.9 49.8

Offline 74.7 73.2 68.5 67.8 62.0 59.3 65.7 63.7 33.7 34.5 72.3 69.3 66.4 65.0

on DomainNet in Tab. B, showing interesting results in both
task-aware and task-incremental evaluation.

Task-agnostic evaluation and domain-wise accuracy on
DomainNet. In the main manuscript, we showed that
CaSSLe significantly improved performance in the domain-
incremental setting using task-aware evaluation. Here,
“task-aware” refers to the fact that linear evaluation is per-
formed on each domain separately, i.e. a different linear
classifier is learned for each domain. However, it might
also be interesting to check the performance of the model
when the domain is unknown at test time. For this reason,
we report the performance of our model when evaluated in
a task-agnostic fashion. In addition, we also show the accu-
racy on each task (i.e. domain). All this information is pre-
sented in Tab. B. CaSSLe always outperforms fine-tuning
with both evaluation protocols. The accuracy of CaSSLe
on “Clipart” is also higher than offline. This is probably
due to a combination of factors: (i) Clipart is the last task,
therefore it probably benefits in forward transfer and (ii) a
similar effect to the one found in [26], where dividing data
in subgroups tends to enable the learning of better repre-
sentations. Also, we notice that task-agnostic accuracy is
lower than the task-aware counterpart. This is expected and

Table C. k-NN evaluation on ImageNet100 (5 tasks, class-
incremental) performed on backbone and projected features.

Method Strategy
k-NN accuracy (↑)

Backbone (fb) Projector (fp)

Barlow
Twins

Fine-tuning 59.1 34.4
CaSSLe 63.4 53.2

SwAV Fine-tuning 60.0 53.9
CaSSLe 59.7 61.3

BYOL Fine-tuning 57.1 33.0
CaSSLe 61.2 60.8

VICReg Fine-tuning 56.7 35.3
CaSSLe 59.5 43.4

MoCoV2+ Fine-tuning 54.5 39.0
CaSSLe 61.5 53.1

SimCLR Fine-tuning 54.8 40.1
CaSSLe 61.7 53.2

means that the class conditional distributions are not per-
fectly aligned in different domains. As in the main paper,
the colors are related to the type of SSL loss.

Additional results with k-NN evaluation. For complete-
ness, in this supplementary material, we also show that
CaSSLe yields superior performance when evaluated with
a k-NN classifier instead of linear evaluation. We use



Table D. Linear evaluation top-1 accuracy on CIFAR100 (10 tasks,
class-incremental).

Method Strategy A (↑)

SimCLR Fine-tuning 39.3
CaSSLe 52.7

Barlow Twins Fine-tuning 49.9
CaSSLe 53.7

Table E. Linear evaluation top-1 accuracy on ImageNet100 (5
tasks, class- and data-incremental) with ResNet50 [15].

Method Strategy
A (↑)

Class-inc. Data-inc.

SimCLR Fine-tuning 70.7 75.6
CaSSLe 74.0 77.2

Barlow Twins Fine-tuning 71.2 75.8
CaSSLe 74.8 78.1

weighted k-NN with l2-normalization (cosine similarity)
and temperature scaling as in [6]. Since since k-NN is much
faster than linear evaluation we could also assess the qual-
ity of the projected representations, instead of just using the
backbone. The results can be inspected in Tab. C. Three
interesting phenomena arise: (i) CaSSLe always improves
with respect to fine-tuning, (ii) the features of the backbone
fb are usually better than the features of the projector fp and
(iii) CaSSLe causes information retention in the projector,
which significantly increases the performance of the pro-
jected features. An exception is represented by SwAV [5],
that seems to behave differently to other methods. First, the
accuracy of the projected features in SwAV is much higher
than other methods. This might be due to the fact that
it uses prototypes, which bring the representations 1 layer
away from the loss, making them less specialized in the SSL
task. Second, it seems that CaSSLe only improves the pro-
jected features when coupled with SwAV. However, this is
probably an artifact of the evaluation procedure, as the l2-
normalization probably causes loss of information. Indeed,
although the overall performance is lower, SwAV + CaSSLe
outperforms SwAV + fine-tuning (58.7% vs 56.9%) if the
euclidean distance is used in place of the cosine similarity
for the backbone features. We leave a deeper investigation
of this phenomenon for future work.

Different number of tasks. The analysis of CSSL set-
tings that we show in the main manuscript is limited to the
5 task scenario. However, it is interesting to run the same
benchmarks with a longer task sequence. Nonetheless, one
should also remember that SSL methods are data hungry,
hence the less data is available per task, the higher the in-
stability of the SSL models. In Tab. D, we present additional
results with 10 tasks on CIFAR100 (class-incremental).

Table F. Combinations of SSL methods and distillation losses on
CIFAR100 (class-incremental, 2 tasks).

Distillation Loss SimCLR Barlow Twins BYOL

InfoNCE 61.8 64.5 64.8
Cross-correlation 60.1 67.2 65.8
MSE 61.3 64.6 66.7

Barlow Twins seems to hold up surprisingly well, finishing
up at roughly 50% accuracy, while SimCLR suffers in the
low data regime. Nonetheless, CaSSLe outperforms fine-
tuning with Barlow Twins, and to a very large extent with
SimCLR.

Deeper architectures. The experiments we propose in
the main manuscript feature a ResNet18 network. This is a
common choice in CL. However, in SSL, it is more common
to use ResNet50. For this reason, in Tab. E we show that the
same behavior observed with smaller networks is also ob-
tained with deeper architectures. More specifically, CaSSLe
outperforms fine-tuning in both class- and data-incremental
settings by large margins.

The role of the predictor. In the main manuscript, we
provided an intuitive explanation of the role of the predictor
network that maps the current feature space to the frozen
feature space. This intuition is corroborated by extensive
experimentation and ablation studies. However, one more
thing that is worth mentioning is that the success of the pre-
dictor network might also be related to the findings in Sim-
Siam [9], BYOL [13] and DirectPred [25]. Moreover, we
perform additional ablations on the design of CaSSLe’s pre-
dictor for SimCLR on CIFAR100 (5 tasks): adding Batch-
Norm after the hidden layer does not make any difference in
terms of performance, and removing the non-linearity only
causes a 0.3% drop in accuracy.

Combinations of SSL methods and distillation losses.
For computational reasons, it was not feasible to perform
experiments combing all SSL methods with all possible dis-
tillation losses. However, in Tab. F we provide a subset of
the possible combinations to validate our strategy that uses
the same SSL loss for distillation.
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