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A. Appendix

A.1. Representation Capacity

Proofs in this section correspond to claims and results
in the main text. Where applicable, a proposition will refer
to the the equation in the main text for which the result is
applied.

Proposition 1 (Depthwise Quantization Channel Capacity -
Result for Equation 2 in the main text). The capacity C of
Depthwise Quantization (DQ) channel for set of codebooks
C is the entropy of the codebooks s.t. C = H(C)

Proof. Let the capacity of a channel C = I(x; z) [6] , where
I(:; :) is the mutual information. It is sufficient to show C =
I(x;C) = H(C)−H(x|C) where z = C = {Ci : i ∈ N}
is the set of codebooks. Since the quantization channel is
a noiseless discrete channel with deterministic quantization
function, P (x|C) = 1 and thus H(x|C) = 0.

C = I(x;C) = H(C) (1)

Proposition 2 (Representation Capacity - Result for Equa-
tion 2 in the main text). The channel capacity is bounded
by the number of discrete latent factors S that can be rep-
resented by DQ. Let N be the cardinality of the set of code-
books C with K codes. Representation Capacity is defined
as CR = −H(C) = logS

Proof. Let S = KN be the sample space for the set of
codebooks C = Ci : i ∈ N with K codes. By definition

H(C) = −
∑
Ci∈N

P (C1, ..., Cn) logP (C1, ..., Cn) (2)

where P (Ci)P (Cj) > P (Ci)P (Cj |Ci).
H(C) is maximized when Ci, Cj are independent variables
and are uniformly distributed (uniform prior) s.t. P (Ci) =

1
K . Thus:

Hmax(C) = −
∑
i∈K

[P (C1)× ...× P (Cn)

log [P (C1)× ...× P (Cn)]

= logKN = logS

CR = −H(C) = logS (3)

Proposition 3 (ELBO for Depthwise AutoEncoder - Result
for Equation 6 ). The variational lower bound of DQ-AE is

L ≥ max[Eq(z|x) log p(x|z)− CR] (4)

Proof. By definition [1]

L ≥ Eq(z|x) log p(x|z)− βDKL(q(z|x)||p(z)) (5)

Thus, it is sufficient to show that CR is the bound of the di-
vergence of the uniform prior p(z) and inferred prior q(z|x)
s.t.

DKL(q(z|x)||p(z)) = CR − S (6)

Let p(z) be the uniform distribution and q(z|x) the in-
ferred prior. Therefore,

DKL(q(z|x)||p(z)) =
∑
i∈N

q(zi|x) log
(
q(zi|x)
p(zi)

)
=

∑
i∈N

q(z|x) log
(
q(z|x)K−1

)
=

∑
i∈N

q(z|x) log (q(z|x))−N log (K)

< −H(q(z|x))

Since S is constant, it does not affect the optimization
objective, the ELBO is

L ≥ max[Eq(z|x) log p(x|z)− CR] (7)
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A.2. Architecture

In this section we provide details on the Hierarchical
DQ-AE architecture.

Algorithm 1 N-Hierarchical Depthwise Vector Quantizer
given encoder E, decoder D, N × { quantizers Q, de-
coders D, up-samplers U } for each hierarchy, Reconstruc-
tion Loss function L and OptimizerO and training sample
x

▷ Stack of N encoded representations bottom to top
eall ← E(x)
etop ← pop(eall)

▷ Quantize using DVQ
q← Qtop(etop)
d← Dtop(q)
uall ← list()
for e in eall do

q,d,u← DECODE(e, d)
uall ← append(u)

x̂←D ( uall )
Update θ[E,Q,D,U ] based on L(x, x̂), using Optimizer O

procedure DECODE(ecur, dprev)
Input Current level encoding ecur and previous decod-

ing dprev
Output Current Level quantization q, upsampling u

and decoding d

q← Qcur (ecur, dprev)
u← Uprev(q)
d← Dcur(q) + dprev
return q, d, u

Algorithm 1. As opposed to VQ-VAE [4] we use skip connec-
tions on the decoded quantized representations from top hierarchies
to bottom and thus increase interaction between hierarchies to
avoid prior collapse of top-level hierarchies. The decoder accepts
quantized upsampled representations as opposed to independently
decoding each hierarchy. Fig. 1 shows an overview of the architec-
ture.

Figure 1. Architecture of N-Hierarchical Depthwise AutoEncoder.
X is input to the model and is progressively encoded to finer grain
representations. Each hidden representation in the decoder is de-
coded using previous hierarchy’s decoded quantized representation
as well as the encoded representation. The quantized representa-
tions are up-sampled and decoded jointly. Quantization of top use
no prior decoding.

Figure 2. Each input latent representation is sent to the correspond-
ing codebook. The closest code in the codebook latent space is the
output of DQ.



A.3. Ablation Study

Results for the ablation study on the quantization process
can be found in Tab. 1. Results for the ablation study on
DQ-AE can be found in Tab. 2. We also perform additional
experiments on MNIST where DQ (“Our”) outperforms VQ
with 1.92e-04 in l2 reconstruction loss as compared to 3.41e-
04, and similarly for CelebA with 9.57e-03 compared to
3.70e-02.

A.4. Training Configuration

For all experiments and for the quantizer we use β = 0.25
and dimensionality of each code D = 64, decay factor
γ = 0.99 and ϵ = 1.00e − 05 unless otherwise noted. We
use a different random seed for all experiments and for every
trial. For the discretized logistic mixture loss (“mix”) [5], we
use 10 components and discretize on 8-bit (lossless). We use
Adam with weight decay regularization [3] for optimization
for all training settings. We use automatic mixed precision
(amp)1.We use a batch size of 128, learning rate 2.00e-04
and train for 400 epochs.

Ablation Study For DQ-AE we use 2 Encoder Block
composed of 4 Resnet Block with Conv2D layer of 256
channel and 256 hidden unit and stride 2.

Likelihood estimation DQ-AE for the likelihood estima-
tion task uses 2 hierarchies with Kbot = 128 and Ktop = 256.
For each hierarchical encoder, it uses 2 encoder block com-
posed of 4 resnet block with Conv2D layer of 256 channel
and 256 hidden unit.

Figure 3. NLL Loss in bits/dim over time. Comparison between
VQ and DVQ with an equivalent training set up. DVQ matches
the best NLL reported for VQ by step 50,000 in contrast to step
200,000.

1https://pytorch.org/docs/stable/amp.html

loss func. M K DQ (nats/dim) VQ (nats/dim)
ce 1 32 4.16e+00 4.16e+00
ce 1 128 4.01e+00 4.01e+00
ce 1 512 3.85e+00 3.85e+00
ce 3 32 3.55e+00 3.92e+00
ce 3 128 3.31e+00 3.80e+00
ce 3 512 3.13e+00 3.68e+00
ce 5 32 3.25e+00 3.84e+00
ce 5 128 2.96e+00 3.71e+00
ce 5 512 2.75e+00 3.59e+00
ce 10 32 2.71e+00 3.71e+00
ce 10 128 2.37e+00 3.51e+00
ce 10 512 2.13e+00 3.44e+00
loss func. M K DQ (L2) VQ (L2)
mse 1 32 1.22e-01 1.22e-01
mse 1 128 8.75e-02 8.75e-02
mse 1 512 6.78e-02 6.78e-02
mse 3 32 3.90e-02 7.70e-02
mse 3 128 2.49e-02 6.17e-02
mse 3 512 1.67e-02 4.78e-02
mse 5 32 2.08e-02 6.48e-02
mse 5 128 1.15e-02 5.52e-02
mse 5 512 7.33e-03 4.14e-02
mse 10 32 6.84e-03 5.54e-02
mse 10 128 3.08e-03 4.07e-02
mse 10 512 1.68e-03 3.25e-02

Table 1. We vary the number of codebook vectors K and codebooks
M , while we keep the same D = 64. We evaluate our results on
CIFAR10 using an identical training configuration between all
models and multiple random initialization. Note that the DQ model
do not fully converge, due to the limited number of computational
resources. We train for 400 epochs and pick the best test loss for
each architecture. The comparison between the models shows a
statistical trend of improved likelihood estimation for DQ−AE.
Figure 5 in the main text, shows the aggregate results of the
likelihood estimation. The top, middle, and bottom line correspond
to K having values 32,128,and 512, respectively. The effect of K is
not as significant as the effect of M. For M=1 both VQ and DVQ
are identical in terms of theoretical and experimental performance.
As we increase M, we find that the loss significantly decreases.
Moreover, K, is not the limiting factor to the channel capacity but
M is. This can also be seen on the graph as the loss for all different
K converges as we increase M.



loss func. M K DQ (nats/dim) VQ (nats/dim)
ce 5 [128,128,128] 2.96e+00 3.73e+00
ce 5 [128,128] 2.95e+00 3.60e+00
ce 5 [128,256] 2.96e+00 3.69e+00
ce 5 [128,32] 2.94e+00 3.70e+00
ce 5 [256,128] 2.84e+00 3.63e+00
ce 5 [256,256] 2.85e+00 3.63e+00
ce 5 [32,128] 3.21e+00 3.72e+00
ce 5 [32,32,32] 3.24e+00 3.69e+00
ce 5 [64,64,64] 3.08e+00 3.79e+00
loss func. M K DQ (nats/dim) VQ (nats/dim)
mix 5 [128,128,128] 2.55e+00 3.04e+00
mix 5 [128,128] 2.56e+00 3.12e+00
mix 5 [128,256] 2.52e+00 3.11e+00
mix 5 [128,32] 2.55e+00 3.18e+00
mix 5 [256,128] 2.49e+00 3.15e+00
mix 5 [256,256] 2.49e+00 3.11e+00
mix 5 [32,128] 2.79e+00 3.26e+00
mix 5 [32,32,32] 2.80e+00 3.26e+00
mix 5 [64,64,64] 2.65e+00 3.06e+00
loss func. M K DQ (L2) VQ (L2)
mse 5 [128,128,128] 1.15e-02 5.53e-02
mse 5 [128,128] 1.24e-02 5.05e-02
mse 5 [128,256] 1.02e-02 5.52e-02
mse 5 [128,32] 1.15e-02 5.07e-02
mse 5 [256,128] 9.31e-03 4.52e-02
mse 5 [256,256] 9.27e-03 5.13e-02
mse 5 [32,128] 1.94e-02 5.82e-02
mse 5 [32,32,32] 2.03e-02 6.29e-02
mse 5 [64,64,64] 1.50e-02 5.81e-02

Table 2. Hierarchical Depthwise Quantizers for 2 and 3 hierarchies. DQ outperforms equivalent VQ. The “mix” objective function refers to
8-bit mixture of logistics [5] following the methodology by Child et al. [2]. The hierarchy capacity K is reported from top to bottom, i.e.
[Ktop,Kmid,Kbot].



A.5. Hierarchical Reconstruction

Figure 4. Image reconstructions from a model trained with L2 for the reconstruction loss. Original image (left) is reconstructed using
only top level codes (middle) and only bottom level codes (right). Top level hierarchy contains structural information, while bottom level
hierarchy contains details.



Figure 5. Image reconstructions from a model trained with discretized mixture of logistic loss (dmol) [5] for the reconstruction loss. Original
image (left) is reconstructed using only top level codes (middle) and only bottom level codes (right). Top level hierarchy contains structural
information, while bottom level hierarchy contains details.



A.6. Perceptual Evaluation of Image Reconstructions

Figure 6. The original image (left) is fed through and reconstructed by a model trained with DQ (middle) and VQ (right). The model is
trained using identical settings. Perceptual quality of DQ outperforms VQ.



Figure 7. The original image (left) is fed through and reconstructed by a model trained with DQ (middle) and VQ (right). The model is
trained using identical settings. Perceptual quality of DQ outperforms VQ.
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