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1. Mesh Operators
Since traditional neural network operators are not well

suited for the non-Euclidean nature of meshes, we rely on
spiral++ convolutions [16] and on the sampling operators
defined in [35].

The creation of spiral sequences is at the core of the
adopted convolution. Spirals are a simple yet effective ap-
proach to aggregate neighbouring mesh vertices into or-
dered sequences. Given a vertex, the spiral sequence is ob-
tained by arbitrarily selecting one neighbour and following
a clockwise spiral until the spiral length is reached. The
receptive field of these convolutional operators can be ex-
panded dilating the spirals (i.e. not selecting certain ver-
tices along the sequence). Denoting by S(n, l) the spiral
centred at vertex n with length l, the convolution at layer k
is defined as:
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where ∥ is the concatenation operation over the vertices in
the spiral S(n, l), x(k)

n are the vertex features at layer k, and
MLP is a multilayer perceptron. Note that spirals are fixed
during training because they are pre-computed only once
for all vertices.

Pooling and un-pooling operators are matrix multipli-
cations between the vertex features of a given layer and a
sparse matrix. The sparse matrices are both pre-computed
during a mesh simplification procedure that iteratively con-
tracts the two vertices with the smallest quadric error. In
particular, the pooling matrix Qd ∈ {0, 1}Nk+1×Nk is a
sparse matrix where Qd(p, q) = 1 if vertex q has been
preserved during quadric sampling and Qd(p, q) = 0 oth-
erwise. The un-pooling matrix Qu ∈ RNk×Nk+1 leaves
the preserved vertices unchanged by setting Qu(q, p) = 1.
Contracted vertices are expressed in barycentric coordinates
with respect to the closest preserved triangle, and then their
corresponding elements in Qu are set to the barycentric
weights. This allows to restore the contracted vertices.

2. Latent Space Interpolation

We performed two latent interpolation experiments.
Fig. 7 shows the effect of interpolating z between the la-
tent representation of two different shapes. Fig. 8 shows the
effects of changing each zω of one shape with the corre-
sponding zω of the other shape, which is equivalent to pro-
gressively replacing features of the initial mesh with those
of the target mesh. The interpolation experiment of Fig. 8 is
better represented in the supplementary video 1. The video
also shows the interpolation between each pair of zω . The
two experiments prove that our method creates a smooth la-
tent space where per-feature modifications are possible.

The supplementary video also shows per-variable latent
interpolation experiments for all different methods. In-
terestingly, while intermediate faces generated with our
method are a plausible interpolations between the initial and
target shape, intermediate faces generated with other meth-
ods often belong to substantially different identities.

3. Random Generation and Latent Disentan-
glement

For each method we report a more comprehensive set
of randomly generated samples (Fig. 9) than those already
depicted in Fig. 3. Then, we show the full latent disen-
tanglement experiments detailed in Sec. 4. In particular,
Fig. 10 and the supplementary video extend Fig. 3 by show-
ing for each zω the effects caused by traversing its latent
variables. Similarly, when our method is trained on bodies,
Fig. 11 extends Fig. 5D. Finally, Fig. 12 shows the effects
of traversing each latent variable of VAE (β = 1e−2), VAE
(β = 1e−4), DIP-VAE-I, DIP-VAE-II, and Factor VAE.
Since these methods do not have a structured latent repre-
sentation, it is not possible to distinguish different zω like
in Fig. 10.

1The supplementary video is available at the following link https:
//youtu.be/w9WF0mZe1ig

1

https://youtu.be/w9WF0mZe1ig
https://youtu.be/w9WF0mZe1ig


Figure 7. Latent interpolation experiment. An initial and a target shape are selected from the test set. Then, their latent representation z
is computed by feeding the shapes in the encoder network E. 10 intermediate latent vectors are thus computed by linearly interpolating
all the latent variables. The shapes generated from these latent vectors smoothly transition from the initial (leftmost shape) to the final
(rightmost shape) shape

.

Figure 8. Per-feature latent interpolation experiment. Given the same initial and target latent vectors used in Fig. 7, subsets of the latent
representation corresponding to different features (zω) are progressively replaced. In fact, the first face is the initial face, the second face
is obtained by replacing the values of the zω controlling the eye region of the initial face with those controlling the eye region in the target
shape. The third face is obtained from the second face by replacing the zω controlling the ears. Then, the subsequent shapes are obtained
replacing the zω controlling: temporal, neck, back, mouth, chin, cheeks, cheekbones, forehead, jaw, and nose. Each shape is obtained
starting from the one on its left, and therefore the last one also corresponds to the target shape.

4. Ablation Study

One of the strengths of our method is its intuitiveness and
the small number of changes required to convert a VAE into
our method. The mini-batch feature swapping and the latent
consistency loss are indeed the only changes required, but
we decide to analyse also two important components that
characterise our implementation of the VAE: the Laplacian
regulariser used in the loss function and the instance nor-
malisation. The ablation study, whose results are depicted
in Fig. 13, is performed re-training the proposed model with
the necessary modifications. When κ is set to 0, Lc is ig-
nored (see Eq. 3). Despite this appears to be equivalent
to the VAE, note that in this case the mini-batch feature
swapping is performed. Observing the latent perturbations
in Fig. 13 (No z Cons) we see the importance of the la-
tent consistency loss. As expected, curating only the mini-
batching does not allow to obtain a structured and disen-
tangled latent space. Observing the random samples de-
picted in Fig. 13 (No Lapl) and obtained from the proposed
method re-trained with α = 0, we notice that the contribu-
tions of LL are more subtle. Nevertheless when this term
is removed we notice a more irregular surface as well as
some surface discontinuity (e.g. top part of the head in the
first sample or neck of the second sample). Finally, from
Fig. 13 (No Norm) we observe the importance of the nor-
malisation, which helps the generation of realistic faces.

5. Generalisation Capabilities
We evaluate the ability of our model to generate meshes

outside the training data distribution by fitting all the CoMA
subjects in their neutral expressions. Starting from the mean
latent representation, we iteratively generate new meshes.
For the first 80 iterations we optimise z with a mean squared
error over 24 manually selected facial landmarks, for the re-
maining 170 iterations we use a Chamfer distance between
the vertices generated with our model and those of the tar-
get mesh from CoMA. Also for this experiment we use the
ADAM optimiser setting the learning rate to lr = 5e−3.
Errors are computed as per-vertex distances between each
generated vertex and the closest vertex of the target mesh.
To evaluate the robustness to noise we repeat the experi-
ment perturbing the target vertices of meshes from CoMA
with different amounts of random noise. When noise is ap-
plied, errors are computed with respect to the target without
noise. As we could expect, in Fig. 14, we show that er-
rors increase linearly with the amount of noise applied for
all methods. Nevertheless, errors remain low, thus proving
good generalisation capabilities. In addition, our method
is the one with the lowest errors despite all methods were
trained on the same dataset.



Figure 9. Random sample generation for VAE (β = 1e−2), VAE (β = 1e−4), DIP-VAE-I, DIP-VAE-II, and Factor VAE.



Figure 10. Complete latent traversals of proposed method trained on faces.



Figure 11. Complete latent traversals of proposed method trained on bodies.



Figure 12. Complete latent traversals for VAE (β = 1e−2), VAE (β = 1e−4), DIP-VAE-I, DIP-VAE-II, and Factor VAE.



Figure 13. Ablation Study. The proposed method is ablated to examine the effects of the Laplacian regulariser, of the latent consistency
loss, and of the instance normalisation. To observe how each of them contributes to the definition of the proposed method we show random
samples and vertex-wise distances representing the effects of traversing three randomly selected latent variables.

Figure 14. Generalisation capabilities evaluated by fitting CoMA subjects in neutral expressions with the proposed method as well as VAE
(β = 1e−2), VAE (β = 1e−4), DIP-VAE-I, DIP-VAE-II, and Factor VAE.



6. Societal Impact
Our work focuses on the generation of 3D shapes of bod-

ies and faces, but shapes without textures and materials are
far from being realistic. For this reason, we believe that
our work does not raise disinformation or immediate secu-
rity concerns. Nevertheless, it still involves sensitive human
data and solutions to disentanglement could potentially find
future applications to face image manipulation.

Finally, considering that the limited size of our model
does not require long trainings (see Implementation Details
in Sec. 4), the proposed method does not cause significant
environmental impacts.
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