
Plenoxels: Radiance Fields without Neural Networks

Supplementary Material

A. Overview
In the supplementary material, we include additional ex-

perimental details and present results and visualizations of
further ablation studies. We also present full, per-scene quan-
titative and visual comparisons between our method and
prior work. We encourage the reader to see the video for
results of our method on a wide range of scenes.

B. Experimental Details
B.1. Implementation Details

As briefly discussed in Sec. 3.2, we use a simple data
structure which consists of a data table in addition to a dense
grid, where each cell is either NULL or a pointer into the
data table. Each entry in the data table consists of the density
value and the SH coefficients for each of the RGB color
channels. NULL cells are considered to have all 0 values.
This data structure allows for reasonably efficient trilinear
interpolation both in the forward and backward passes while
maintaining sparsity; due to the relatively large memory
requirements to store the SH coefficients, gradients, and RM-
SProp running averages, the dense pointer grid is usually
not dominant in size. Nevertheless, reading the pointers cur-
rently appears to take a significant amount of rendering time,
and optimizations are likely possible.

Our main CUDA rendering and gradient kernels simulta-
neously parallelize across rays, colors, and SH coefficients.
Each CUDA warp (32 threads) handles one ray, with threads
processing one SH coefficient each; since coefficients are
stored contiguously, this means access to global memory
is highly coalesced. The SH coefficients are combined into
colors using warp-level operations from NVIDIA CUB [25].
These features are particularly significant in the case of tri-
linear interpolation.

Note that in order to correctly perform trilinear color
interpolation, instead of using the sigmoid function to ensure
that predicted sample colors are always between 0 and 1 as
in NeRF [28], we simply clip negative color values to 0 with
a ReLU to preserve linearity as much as possible.

We use weight-based thresholding (as in PlenOctrees
[59]) for the synthetic and real, 360� scenes, and density-
based thresholding for the forward-facing scenes. The reason
for this is that some content (especially at the edges) in the
forward-facing scenes is not visible in most of the training
views, so weight-based thresholding tends to prune these
sparsely-supervised features.

We use a batch size of 5000 rays and optimize with RM-
SProp [11]. For � we use the same delayed exponential

learning rate schedule as Mip-NeRF [3], where the expo-
nential is scaled by a learning rate of 30 (this is where the
exponential would start, if not for the delay) and decays to
0.05 at step 250000, with an initial delay period of 15000
steps. For SH we use a pure exponential decay learning rate
schedule, with an initial learning rate of 0.01 that decays to
5⇥ 10�6 at step 250000.

The TV losses are evaluated stochastically; they are ap-
plied only to 1% of all voxels in the grid in each step. Note
that empty voxels can be selected, as their neighbors may not
be empty. In practice, for performance reasons, we always
apply the TV regularization on random contiguous segments
of voxels (in the order that the pointer grid is stored). This
is much faster to evaluate on the GPU due to locality. In all
cases, the voxel differences in the TV loss defined below
Eq. (3) is in practice normalized by the voxel resolution in
each dimension, relative to 256 (for historical reasons):

�x((i, j, k), d) =
|Vd(i+ 1, j, k)� Vd(i, j, k)|

256/Dx
(6)

Where Dx is the grid resolution in the x dimension, and
Vd(i, j, k) is the dth value of voxel (i, j, k) (either density
or a SH coefficient). We scale �y,�z analogously. Note
that the same loss is applied in NDC and to the background
model, except in the background model, the TV also wraps
around the edges of the equirectangular image. For SH,
empty grid cells and edges are considered to have the same
value as the current cell (instead of 0) for purposes of TV.

B.2. Synthetic experiments

On the synthetic scenes, we found that our method per-
forms nearly identically when TV regularization is present
only in the first stage of optimization; turning off the reg-
ularization after pruning voxels and increasing resolution
reduces our training time modestly. We suspect (see Tab. 3)
this is due to the large number of training views (100) avail-
able for these scenes as well as the low level of noise; for
the other datasets we retain TV regularization throughout
optimization.

We start at resolution 2563, prune and upsample to reso-
lution 5123 after 38400 steps (the equivalent of 3 epochs),
and optimize for a total of 128000 steps (the equivalent of
10 epochs). We prune using a weight threshold of 0.256, and
use �TV of 1⇥10�5 for � and 1⇥10�3 for SH, only during
the initial 38400 steps (and then turn off regularization after
pruning and upsampling, for faster optimization).

B.3. Forward-facing experiments
For the forward-facing scenes we start at resolution 256⇥

256⇥128, prune and upsample to resolution 512⇥512⇥128
at step 38400, prune and upsample to resolution 1408 ⇥
1156⇥128 at step 76800, and optimize for a total of 128000
steps. The final grid resolution is derived from the image
resolution of the dataset, with some padding added on each
side. We prune using a � threshold of 5, use �TV of 5⇥10�4

for � and 5⇥ 10�3 for SH, and use a sparsity penalty �s of
1⇥ 10�12 to encourage empty voxels.

While these TV parameters work well for the forward-
facing NeRF scenes, more generally, we find that sometimes
it is preferrable to use �TV 5⇥10�3 for density and 5⇥10�2

for SH, which reduces artifacts while blurring the scene more.
This is used for some of the examples in the video, for ex-
ample the piano. In general, since scenes differ significantly
in content, camera noise, and actual scale, a hyperparameter
sweep of the TV weights can be helpful, and using different
TV values across the scenes would improve the metrics for
the NeRF scenes as well.

B.4. 360� experiments
For the 360� scenes our foreground Plenoxel grid starts

at resolution 1283; we prune and upsample to 2563, 5123,
and 6403 with 25600 steps in between each upsampling.
We optimize for a total of 102400 steps. We prune using a
weight threshold of 1.28, and use �TV of 5⇥10�5 for � and
5⇥ 10�3 for SH for the inner grid and �TV of 1⇥ 10�3 for
both � and SH for the 64 background grid layers of resolution
2048⇥ 1024. We use �s of 1⇥ 10�11 and �� of 1⇥ 10�5.
For simplicity of implementation, we did not use coarse-to-
fine for the background and only use � thresholding. We
also do not use the delayed learning rate function for the
background, opting instead to use an exponential decay to
allow the background to optimize faster than the foreground
at the beginning.

While the TV weights were fixed for these scenes, in
general, a hyperparameter sweep of the TV weights can be
helpful. For more general scenes, it is sometimes useful to
use a near-bound on the camera rays (as in NeRF) to prevent
floaters very close to the camera, or to only begin optimizing
the foreground after, say, 1000 iterations. Further sparsity
losses to encourage the weight distribution to be a delta
function may also help.

C. Ablation Studies
We visualize ablations on the synthetic lego scene in

Fig. 10. In addition to comparing nearest neighbor and tri-
linear interpolation, we also experimented with tricubic in-
terpolation, which produces a function approximation that
is both continuous (like trilinear interpolation) and smooth.
However, we found tricubic interpolation offered negligi-

LR Schedule PSNR " SSIM " LPIPS #
Exp for SH, Delayed for � [3] 30.57 0.950 0.065
Exp for SH and � 30.58 0.950 0.066
Exp for SH, Constant for � 30.37 0.948 0.068
Constant for SH and � 30.13 0.945 0.075

Table 6. Comparison of different learning rate schedules for �
(voxel density) and spherical harmonics (SH), with fixed resolution
2563 and RMSProp [11]. Results are averaged over the 8 synthetic
scenes from NeRF [28]. Our method is robust to variations in
learning rate schedule.

Optimizer PSNR " SSIM " LPIPS #
RMSProp [11] for SH and � 30.57 0.950 0.065
RMSProp for SH, SGD for � 30.20 0.946 0.072
SGD for SH, RMSProp for � 29.82 0.940 0.076
SGD for SH and � 29.35 0.932 0.087

Table 7. Comparison of different optimizers for � and SH, with
fixed resolution 2563. Results are averaged over the 8 synthetic
scenes from NeRF [28]. Our method is robust to variations in
optimizer, although there is a benefit to RMSProp particularly for
optimizing the spherical harmonic coefficients.

Regularizer PSNR " SSIM " LPIPS #
TV SH, TV �, Sparsity 26.29 0.839 0.210
- Sparsity 26.31 0.839 0.210
- TV � 25.25 0.807 0.226
- TV SH 25.80 0.814 0.234

Table 8. Ablation over regularization. Results are averaged over
the 8 forward-facing scenes from NeRF, which are particularly
sensitive to regularization due to the low number of training views.
We find that the sparsity regularizer is not necessary for quality,
but we retain it to reduce memory footprint. TV regularization
is essential for � but also important for spherical harmonics, as
visualized in Fig. 3, even though this effect is not as pronounced
in the PSNR metric. Without any TV regularization (on SH or �),
three of the eight scenes run out of memory on our GPU.

ble improvements compared to trilinear, in exchange for a
substantial increase in computation (this increase in com-
putation is why we do not include a full ablation table for
tricubic interpolation).

Tab. 6 and Tab. 7 show ablations over learning rate sched-
ule and optimizer, respectively. We find that Plenoxel opti-
mization is reasonably robust to both of these hyperparame-
ters, although there is a noticeable improvement from using
RMSProp compared to SGD, particularly for the spherical
harmonic coefficients. Note that when comparing different
learning rate schedules and optimizers, we tune the initial
learning rate separately for each row to provide the best

(a) Trilinear, 2563 (b) Nearest, 2563 (c) Trilinear, 1283 (d) 25 Images, Low TV (e) 25 Images, High TV (f) NV Formula

Figure 10. Visual results of ablation studies on the synthetic lego scene. Trilinear interpolation at resolution 2563 is quite similar to our full
model at resolution 5123. Nearest neighbor interpolation shows clear voxel artifacts. Trilinear interpolation at lower resolution appears
less detailed. Reducing the number of training views produces visual artifacts that are mostly resolved by increasing the TV regularization.
Optimizing and rendering with the Neural Volumes [22] formula produces different visual artifacts.

results possible for each configuration.
Tab. 8 shows ablation over regularization, for the forward-

facing scenes. We find that TV regularization is important
for these scenes, likely due to their low number of training
images. Regularization on density has a quantitatively larger
effect than regularization on spherical harmonics, but both
are important for avoiding visual artifacts (see Fig. 3).

Tab. 5 compares the performance of Plenoxels when
trained with the rendering formula used in NeRF (originally
from Max [24]) and when trained with the rendering formula
used in Neural Volumes [22]. The Max formula is defined
in Eq. (1) and rewritten here in a slightly more convenient
format:

Ti = exp

0

@�
i�1X

j=1

�j�j

1

A (7)

Ĉ(r) =
NX

i=1

(Ti � Ti+1)ci (8)

The Neural Volumes formula can be written as:

Ti = min

8
<

:1,
i�1X

j=1

exp(��i�i)

9
=

; (9)

Ĉ(r) =
NX

i=1

(Ti � Ti+1)ci (10)

where exp(��i) is modeled directly rather than modeling �i

and then exponentiating (we write it in this format to make
the comparison to the Max formula more clear).

These formulas only differ in their definition of the trans-
mittance Ti. In particular, the Neural Volumes formula treats
the fraction of the ray contributed by sample i as a function
of the density and sampling distance of sample i only, unless
the ray is already fully occluded before it exits sample i. In
contrast, the contribution of sample i in the Max formula
depends on the density of sample i as well as the densities
of all preceding samples along the ray. In essence, opacity in
the Neural Volumes formula is absolute and ray-independent
(except for clipping the total contribution to 1), whereas
opacity in the Max formula denotes the fraction of incoming
light that each sample absorbs, a ray-dependent quantity. As
we show in Tab. 5, the Max formula results in substantially
better performance; we suspect this difference is due to its
more physically-accurate modeling of transmittance.

D. Per-Scene Results

D.1. Synthetic, Bounded Scenes

Full, per-scene results for the 8 synthetic scenes from
NeRF are presented in Tab. 10 and Fig. 11. Note that the
values for JAXNeRF are from our own rerunning with cen-
tered pixels (we ran JAXNeRF in parallel across 4 GPUs and
multiplied the times by 4 to account for this parallelization).

D.2. Real, Forward-Facing Scenes
Full, per-scene results for the 8 forward-facing scenes

from NeRF are presented in Tab. 11. Note that the values for
JAXNeRF are from our own rerunning with centered pixels
(we ran JAXNeRF in parallel across 4 GPUs and multiplied
the times by 4 to account for this parallelization).

D.3. Real, 360� Scenes
Full, per-scene results for the four 360� scenes from

Tanks and Temples [16] are presented in Tab. 9. Note that
the values for NeRF++ appear slightly different from the pa-
per; we re-evaluated the metrics independently using VGG
LPIPS and standard SSIM, from rendered images shared by
the original authors.

PSNR "
M60 Playground Train Truck Mean

Ours 17.93 23.03 17.97 22.67 20.40
NeRF++ [60] 18.49 22.93 17.77 22.77 20.49

SSIM "
M60 Playground Train Truck Mean

Ours 0.687 0.712 0.629 0.758 0.696
NeRF++ 0.650 0.672 0.558 0.712 0.648

LPIPS #
M60 Playground Train Truck Mean

Ours 0.439 0.435 0.443 0.364 0.420
NeRF++ 0.481 0.477 0.531 0.424 0.478

Optimization Time #
M60 Playground Train Truck Mean

Ours 25.5m 26.3m 29.5m 28.0m 27.3m

Table 9. Full results on 360� scenes.

PSNR "
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62 31.71
NV [22] 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93 26.05
JAXNeRF [8, 28] 34.20 25.27 31.15 36.81 34.02 30.30 33.72 29.33 31.85

SSIM "
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 0.977 0.933 0.976 0.980 0.975 0.949 0.985 0.890 0.958
NV 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784 0.893
JAXNeRF 0.975 0.929 0.970 0.978 0.970 0.955 0.983 0.868 0.954

LPIPS #
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 0.031 0.067 0.026 0.037 0.028 0.057 0.015 0.134 0.049
NV 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276 0.160
JAXNeRF 0.036 0.085 0.037 0.074 0.068 0.057 0.023 0.192 0.072

Optimization Time #
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 9.6m 9.8m 8.8m 12.5m 10.8m 11.0m 8.2m 18.0m 11.1m
JAXNeRF 37.8h 37.8h 37.7h 38.0h 26.0h 38.1h 37.8h 26.0h 34.9h

Table 10. Full results on synthetic scenes.

(a) Ground Truth (b) Neural Volumes (c) JAXNeRF (d) Plenoxels

Figure 11. Synthetic scenes. We show a random view from each of the synthetic scenes, comparing the ground truth, Neural Volumes [22],
JAXNeRF [8, 28], and our Plenoxels.

(e) Ground Truth (f) Neural Volumes (g) JAXNeRF (h) Plenoxels

Figure 11. Synthetic scenes. We show a random view from each of the synthetic scenes, comparing the ground truth, Neural Volumes [22],
JAXNeRF [8, 28], and our Plenoxels.

PSNR "
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 25.46 27.83 31.09 27.58 21.41 20.24 30.22 26.48 26.29
LLFF [27] 28.42 22.85 19.52 29.40 18.52 25.46 24.15 24.70 24.13
JAXNeRF [8, 28] 25.20 27.80 31.57 27.70 21.10 20.37 32.81 27.12 26.71

SSIM "
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 0.832 0.862 0.885 0.857 0.760 0.687 0.937 0.890 0.839
LLFF 0.932 0.753 0.697 0.872 0.588 0.844 0.857 0.840 0.798
JAXNeRF 0.798 0.840 0.890 0.840 0.703 0.649 0.952 0.890 0.820

LPIPS #
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 0.224 0.179 0.180 0.231 0.198 0.242 0.192 0.238 0.210
LLFF 0.155 0.247 0.216 0.173 0.313 0.174 0.222 0.193 0.212
JAXNeRF 0.272 0.198 0.151 0.249 0.305 0.307 0.164 0.235 0.235

Optimization Time #
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 23.7m 22.0m 31.2m 26.3m 13.3m 23.4m 28.8m 24.8m 24.2m
JAXNeRF 38.9h 38.8h 38.6h 38.7h 38.8h 38.7h 39.1h 38.6h 38.8h

Table 11. Full results on forward-facing scenes.

(a) Ground Truth (b) JAXNeRF (c) Plenoxels

Figure 12. Forward-facing scenes. We show a random view from each of the forward-facing scenes, comparing the ground truth,
JAXNeRF [8, 28], and our Plenoxels.

(d) Ground Truth (e) JAXNeRF (f) Plenoxels

Figure 12. Forward-facing scenes. We show a random view from each of the forward-facing scenes, comparing the ground truth,
JAXNeRF [8, 28], and our Plenoxels. Note that these two methods have different behaviors in unsupervised regions (e.g. the bottom right in
the orchids view): JAXNeRF fills in plausible textures whereas Plenoxels default to gray.

(a) Ground Truth (b) NeRF++ (c) Plenoxels

Figure 13. 360� scenes. We show a random view from each of the Tanks and Temples scenes, comparing the ground truth, NeRF++ [60],
and our Plenoxels. We include two random views each for the M60 and train scenes, since the playground and truck scenes were shown in
the main text.

