
Appendix

A. Faster-RCNN

Here we mention the architecture, data, and training de-
tails for the Faster-RCNN network.
Architecture. We use the Faster-RCNN default architec-
ture from Detectron2 [57].
Data. We use ⇠10k images from train rooms in AI2-THOR
with bounding box labels and ⇠127k train images from
LVIS [24]. We choose this number of THOR images to
ensure diversity of views without repetition of frames that
would appear very similar. In total the detector is trained
on 1235 classes (accounting for the class overlap between
LVIS and the ⇠100 THOR categories).
Training. We train using the default Detectron2 3x sched-
ule. We train on a machine with eight GeForce GTX TITAN
X NVIDIA GPUs. The training takes ⇠2 days.
Inference. At inference, we treat the Faster-RCNN module
as a region proposal network. Hence, we only require its
detections for extracting node and edge features. Our pro-
posed algorithm does not use the predicted class labels as
input to create node and edge feature representations.

B. Policy

Here we mention the architecture, data, and training de-
tails for the policy network.
Architecture. The policy consists of three convolutional
layers and a GRU. It is an actor-critic style network. The
input is an image I 2 R224⇥224⇥3. Note, we do not feed
in the action from the last timestep. The output of the conv.
backbone is a volume, v 2 R24⇥24⇥512, which is flattened
and projected by a linear layer into a feature x 2 R512. x
is taken as input to the GRU module, which maintains a
hidden state h 2 R512 and outputs another feature vector
z 2 R512. An linear actor head takes z and projects it to
give logits over the eight discrete actions. A second linear
critic head takes z and projects it to give the critic score.
Data. We conduct training rollouts within random starting
locations drawn from the 80 train rooms in AI2-THOR.
Training. We adopt the AllenAct [53] framework for train-
ing. Specifically we use the DD-PPO [44, 54] algorithm to
train our network. We train on machines that have 48 CPU
cores and four T4 NVIDIA GPUs. We train for 200 million
steps, which takes ⇠2 days. We use default AllenAct PPO
settings, with rollout episode length of 150 steps. We em-
ploy sparse rewards, which are computed based on known
simulation state at training. The agent receives positive re-
ward of 0.1 if it visits a new position (agent orientation is
disregarded) and reward of 0.4 if it sees a new object within
a rollout. There is also a step penalty of -0.01 and a failed
action penalty of -0.03.

C. Continuous Scene Representation
Architecture. We use a standard ResNet-18 architecture.
We modify conv1 to take five channel input (three chan-
nels for RGB, a forth channel for the first binary box mask,
and a fifth channel for the second binary box mask). Hence
our ResNet takes input 2 R224⇥224⇥5. After the ResNet, we
have an MLP bottleneck projection head, which takes in a
feature 2 R512 and outputs a feature 2 R512. Architectural
details for the network that extracts object correspondence
features are the same.
Data. As stated in the paper we capture 20 random agent
poses in 5 different configurations (random object place-
ment and scene textures) in the 80 different train rooms.
This leads to a train dataset of ⇠600k relations. The rest of
the dataset is composed of a near even split between valida-
tion and test relations, yielding a total dataset size of ⇠900k
relations. We provide some train statistics to give a better
understanding of the dataset. Of the ⇠600k relations, ⇠60k
are node relations, the rest are directed edge relations. In to-
tal there are ⇠3k different object instances across the ⇠100
AI2-THOR categories.
Training. We train on a machine with eight GeForce GTX
TITAN X NVIDIA GPUs. Our learning leverages InfoNCE
[50] loss and builds on the MoCo framework [11, 26]. We
use a relatively small queue of size of 1024 for negatives.
The InfoNCE temperature parameter is 0.07 and the mo-
mentum update coefficient is 0.999. We train in minibatches
of 512, with initial learning rate of 0.1, a cosine decay
schedule, and standard SGD w/ momentum optimizer. Our
model take less than one day to converge.
Constants. We must set three thresholds in our method (1)
to determine within trajectory matches, (2) to determine ob-
ject correspondences matches, and (3) to determine if an
object has moved. If (1) cosine similarity between two
matched node features is greater than 0.5 within a trajec-
tory, we consider the instances as a true match. If cosine
similarity of matched object features between trajectories is
greater than 0.4, we consider the objects to be a true match.
Finally, if cosine similarity of the node features drops be-
low 0.8 after nodes have been matched via object features
between trajectories, we consider the object to be a candi-
date object that has moved.

D. Linear Probes
Here we provide more relevant details for our linear

probes.
Data. We consider two tasks, [SUPPORT] and [SIBLING].
For [SUPPORT] we create a balanced dataset with ⇠2k pos-
itive examples of an object on top of another object. By
reversing the order of the boxes for the input, we get an-
other ⇠2k examples of an object under another object. Fi-
nally we create a third category of ⇠2k examples of unre-



Correctly 
Matched

Not
Matched

t = 1 t = 1829

Figure 8. Qualitative matching on YCB-Video.. All but a heav-
ily occluded.

lated objects (i.e., objects that do not follow the [SUPPORT]
relationship). For the [SIBLING] relation we create two cat-
egories each with ⇠2k examples, the first with examples
from this relationship (i.e., two objects on the same recep-
tacle) and the second of unrelated objects (i.e., objects that
do not follow the [SIBLING] relationship). For both datasets
we use a 80/20 train/test split for each category.
Training. For training our model, we conduct a linear
probe, with the high learning rate of 0.5, using the vali-
dation set loss to determine convergence. We use features
before the MLP projection head as is common for linear
probes in the contrastive learning literature. For end-to-
end baseline, we first train with reasonable parameters (i.e.,
learning rate of 0.02, with cosine schedule, SGD w/ mo-
mentum, weight decay of 0.001) for 100 epochs, taking the
checkpoint with the lowest validation loss. We then use
the same linear probe routine discussed above to probe the
baseline representations for transfer performance.

E. Exploration Heuristic

To ablate the effectiveness of our exploration policy in
the visual room rearrangement pipeline, we also design a
heuristic policy. Given the simulation state of the room
before and after the shuffle, we can retrieve the squares in
the map that are closest (in terms of euclidean distance) to
the objects that get shuffled. Hence, we get 2n locations,
where n is the number of objects that get shuffled. Dur-
ing the walkthrough trajectory, based on the agent’s current
location, the heuristic policy greedily picks the closest lo-
cation and takes the shortest path to this point. During the
unshuffle exploration trajectory the locations are visited in
reversed order (e.g., the waypoint visited last in the walk-
through is visited first in the unshuffle).

F. AI2-THOR Assets

AI2-THOR assets are available under Apache 2.0.

G. Rearrangement
While our setting is identical to that of Weihs et al. [52],

our method does not attempt to fix objects that have changed
state (e.g., drawers opening). Hence our method cannot suc-
cessfully rearrange rooms with these changes. However, for
fair comparison to prior work, we report numbers on the full
RoomR dataset with all data points. Planning for objects
that change in openness is left to future work.

H. Qualitative Real World Tracking Results
We show a qualitative example where all but one heavily

occluded object is properly matched in Fig. 8.


