
7. Supplementary
The supplementary sections provide more detail on the

methods and experiments described in our paper. First, we
explain in more detail our process for decomposing ques-
tions into hierarchies, including two human studies. We
provide equations for our metrics, then describe our training
process for the experiments, explore how AGQA-Decomp
performs as data augmentation for AGQA, add results for
the Most Likely baseline, and present example error modes
we found through qualitative analysis of hierarchies. Fi-
nally, we discuss directions for future work.

7.1. Dataset

In this section, we provide additional details for the pro-
cess of question decomposition. We first describe the pro-
cess of generating individual sub-question hierarchies from
AGQA programs. We then explain how we obtain answers
for these questions, first detailing the general case and then
describing the edge case of Object Exists questions. We fi-
nally discuss the limitations and potential societal impact
of our hierarchies and report human performance measured
through AMT studies.

AGQA version. We use an updated version of AGQA1

that incorporates multiple improvements over the original
dataset [5]. Throughout the paper we refer to this up-
dated version as AGQA for simplicity. The most significant
change is an updated balancing algorithm to further reduce
linguistic biases. Some smaller improvements were moti-
vated by minor errors in AGQA we discovered while ensure
that AGQA-Decomp was internally consistent.

AGQA program to subquestion hierarchy. In order to
generate sub-question hierarchies, we first convert the origi-
nal AGQA programs to a new program format. Each AGQA
question type has a simple program template associated
with it. To get compositional questions, AGQA makes this
template more complex by introducing indirect references
and temporal localization. As such, while forming the new
programs, we firstly get the smaller programs for indirect
references, if there are any, and continue by getting the tem-
poral localization and the simple program associated with
the basic template. We finally combine these to form the
new program.

For example, the AGQA type focusing on the ex-
istence of a relation between a person and an ob-
ject has Exists([object], Iterate(video,
Filter(frame, [relations, [relation],
objects]))) as its simple program. Using this
structure of the AGQA original program template, we
extract the object and relation for the new program. In

1AGQA 2.0: https://tinyurl.com/agqavideo

this simple form, the corresponding new program is
interactionExists(objExists(person),
relationExists([relation]),
objExists([object])). We perform a similar
process of translating between program types for tem-
poral localization phrases (e.g. Localize(before,
action) translates into before(..., action
program)). Step 1 of Figure 5 visualizes the conversion
of an AGQA program to the new program format.

Upon converting AGQA programs into the new program
format, we derive subquestion hierarchies from the new pro-
grams. Step 2 of Figure 5 and Algorithm 1 illustrate the
decomposition process for the newly generated program.

Use of the unbalanced AGQA dataset. Given question
decompositions, our first strategy for obtaining ground-
truth answers is to rely on the original AGQA annotations.
This approach is not straightforward. After decomposing
the questions in the balanced AGQA dataset, we can find
sub-questions that are not present in the balanced dataset.

Algorithm 1: Question hierarchy generation
Input: p: Question program
Output: Question decomposition hierarchy
def main(p):

V = empty set for vertices
E = empty set for edges
buildDAG(p)

def buildDAG(p):
subprograms = inner functions of p
if no subprograms then

s = p’s natural language question equivalent
Add s to V
indirect = program phrase replacing p
return s, indirect

end

Sq = empty set for subquestions
for subprogram in subprograms do

s, indirect = buildDAG(subprogram)
Add s to Sq

p = p replacing subprogram with indirect

end

q = p’s natural language question
Add q to V
for s in Sq do

Add (q, s, composition) to E
end
return question, reference

https://tinyurl.com/agqavideo
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Figure 4. Left: A bar chart displaying the distribution of composition rule types on the test set. Interaction and After composition rules are
the most common. Right: A bar chart displaying the distribution of question types on the test set. Exists temporal localization questions
dominate the test set.

If the parent is present in the balanced AGQA dataset, we
are not guaranteed that the sub-question will also be present
in the balanced version and cannot use the balanced dataset
to derive its answer. Since the unbalanced AGQA dataset
covers most of the possible questions (other than the newly
added exists sub-questions), we rely on it to get answers for
the question decompositions in the balanced version.

Specifically, we decompose 97M questions from the un-
balanced AGQA dataset, with each hierarchy having an
average of 16.81 sub-questions. This process produces
25.53M unique new sub-questions. We determine the an-
swers using different logical consistency rules for each
video in the unbalanced dataset, which answers 87.92% of
the data. The question-answer pairs for a video from the
decomposed unbalanced AGQA dataset are then used to
answer our questions and our sub-questions for the same

video. This process generates answers for in 90.23% of the
data in our balanced subquestion hierarchies.

No exists questions. Object Exists questions (e.g. “Does
a closet exist?”) are not a part of the original AGQA dataset.
This is because the Action Genome scene graphs, which
were used to generate the AGQA questions, only contain
objects that an actor is interacting with [9]. Therefore, ex-
isting objects that are in the background, or that are ex-
tremely common (e.g. clothes, floor), are often not anno-
tated. We can infer the “yes” answer through logical en-
tailment (e.g. if the answer to the question “Did they inter-
act with <object>?” is “yes”, then its sub-question “Does
<object> exist?” must also be “yes”). However, there is no
way to use logical entailments to determine which objects



Table 5. We handcraft logical consistency rules that check whether a model is consistent when answering questions in a DAG. The rules
are implications, i.e if q has answer a then s1 should be b.

Composition Consistency Rules Example

Interaction

If an interaction ‘[person] [relation] [object]’ is ‘Yes’
its direct sub-questions ‘[person]’ exist,
‘[relationship]’ exist and
[object]’ should be ‘Yes’

q : Is a person holding a dish? – Yes
s1: Does a person exist? – Yes
s2: Is a person holding something? – Yes
s3: Does a dish exist? – Yes

Temporal localization
If ‘[exists question] [temporal localization] [condition]’ is ‘Yes’
then ‘[exists question]’ is ‘Yes’
and ‘[condition]’ is ‘Yes’

q : Does a person exist after smiling at something? – Yes
s1: Does a person exist? – Yes
s2: Is a person smiling at something? – Yes

And
If ‘[action1] and [action2]’ is ‘Yes’
then ‘[action1]’ should be ‘Yes’
and ‘[action2]’ should be ‘Yes’

q : Is the person holding a cup and touching a dish? – Yes
s1: Is the person holding a cup? – Yes AND
s2: Is the person touching a dish? – Yes

If ‘[action1] and [action2]’ is ‘No’ then
either [action1] should be ‘No’
or [action2] should be ‘No’

q : Is the person touching a bottle and opening a window? – No
s1: Is the person touching a bottle? – No OR
s2: Is the person opening a window? – No

Xor
If ‘[action1] but not [action2]’ is ‘Yes’
then ‘[action1]’ should be ‘Yes’
and ‘[action2]’ should be ‘No’

q : Is the person smiling at something but not walking through a doorway? – Yes
s1: Is the person smiling at something? – Yes
s2: Is the person walking through a doorway? – No

If ‘[action1] but not [action2]’ is ‘No’ then
either [action1] should be ‘No’
or [action2] should be ‘Yes’

q :Is the person throwing a cup but not leaning on the doorway? – No
s1: Is the person throwing a cup? – No OR
s2: Is the person leaning on a doorway? – Yes

Equals
If ‘[object] equals [indirect object]’ is ‘Yes’
then ‘[indirect object]’ should be ‘[object]’
and ‘[object]’ exists is ‘Yes’

q : Is a doorway the first object they are holding? – Yes
s1: Which is the first object they are holding? – doorway
s2: Does a doorway exist? – Yes

If ‘[object] equals [indirect object]’ is ‘No’ then
[indirect object] should not be [object]

q : Is the book the last object that they are putting? – No
s1: Which is the last object that the person is putting? – NOT book

Choose
(Objects/ time)

If ‘choose [object1] or [object2] [indirect object]’ is ‘object1’
then [object1] equals [indirect object] should be ‘Yes’
and [object2] equals [indirect object] should be ‘No’

q : Is the doorway or the cup the first object they went behind? – doorway
s1: Is the doorway the first object they went behind? – Yes
s2: Is the cup the first object they went behind? – No

If ‘Does [action1] occur before or after [action2]’ is ‘before’
then ‘Does [action1] occur before [action2]?’ should be ‘Yes’
and ‘Does [action1] occur after [action2]?’ should be ‘No’

q : Is the person holding a cup before or after smiling at something? – before
s1: Is the person holding a cup before smiling at something? – Yes
s2: Is the person holding a cup after smiling at something? – No

do not exist.
Therefore, we generate Object Exists questions an-

swered “no” through two methods. First, we source human
annotations for what objects do not exist within the video
(see Human evaluation subsection). Then, we also include
questions in which the object exists, but the temporal local-
ization phrase contains an invalid action (“Does <object>
exist before they <invalid action>?”). These two methods
generate 135K Object Exists questions with a “no” answer.

Limitations. There are limitations to our approach. First,
this approach assumes AGQA answers to be ground truth.
However, like all benchmarks, AGQA answers can be in-
correct. These errors are described in more detail in their
paper [5].

Furthermore, not all questions in the hierarchies can be
answered by the scene graph annotations AGQA uses as its
basis for video representation [9, 11]. The AGQA scene
graphs only annotate objects with which the actor is inter-
acting, so they may miss existing objects in the background
of the video or objects that are so generic that they often
exist without annotations (e.g. “floor” or “clothes”). The
blacklisting of certain questions in AGQA also affected the
subset of sub-questions in our decompositions that have as-
sociated AGQA answers.

Societal impact. Large curated datasets used to train
vision models are known to contain biases, be it gen-
der [7, 17], racial [2, 16] or geographic [12], or with prob-

lematic content [1]. Models trained on these datasets can
then learn and propagate these biases to the real world,
causing unintended harm. We note that AGQA-Decomp is
primarily intended as a diagnostic dataset guiding model
development and evaluation. A user leveraging AGQA-
Decomp as training data should therefore recognize that
models can propagate biases latent in the training data. Fur-
thermore, as detailed in the limitation section, our automatic
generalization process propagates error for ground-truth an-
swers in the AGQA dataset, which can hurt real-world per-
formance.

Collecting more annotations. To identify missing ob-
jects from the scene graphs, we create an object labeling
task. When we know that an object definitively doesn’t ex-
ist, we can now answer questions that have the answer “no”
(e.g. “Did the person touch a cup?” would be “no” if cup
was not identified anywhere in the video.). We pay such
that the equivalent hourly rate is $15 per hour.

The question decomposition method cannot infer Object
Exists questions with the answer “no.” Therefore, we run
a study for human participants to mark which objects do
not exist in the video. For a given video, participants must
select the objects that do not appear in the video from a list
of nearly all the objects in AGQA (See Figure 8). We do not
offer objects that nearly always exist (person, clothes, floor,
hands, and hair). We quality check by looking at whether
they mark objects in the scene graph as present in the video.
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Figure 5. The figure shows the process of generating a question hierarchy using an AGQA program for the example AGQA question “Is
the person holding a doorway before grasping onto a doorknob?” Step 1: We transform the AGQA program into a program representing
the reasoning steps of the question. Step 2: We use Algorithm 1 to generate the hierarchy of sub-questions from the new program.
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Figure 6. Example decomposition with corresponding program.
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Does some clothes exist?

Figure 7. Example decomposition with corresponding program.

At the end of this process, we have the objects that do not
exist for 88 randomly selected videos. We were not able
to to repeat this process on all videos due to monetary and
time restrictions. We then take these objects and use the
subquestion templates to generate questions. We use actions
within the video to also generate questions with temporal
localization phrases. This process generates 135K Object
Exists questions with a “No” answer.

Human evaluation. We evaluate the accuracy of sub-
questions to find the error rate in each sub-question type.

Our answers in the question decompositions originate
from the AGQA dataset as well as from logical entailments.
Therefore, the errors that our human annotators mark in the
questions originate from the AGQA dataset. The AGQA
benchmark paper provides details about the source of these
errors, including incorrect annotations, incorrect augmen-
tations, inconsistent annotations, and human-AGQA defini-
tion mismatches [5]. We run the same validation task as the



Object does not exist Verification

Figure 8. Left: The annotator views a video and a list of nearly all the objects in AMT. Annotators select the objects that do not appear in
the video. Right: The annotator watches five videos that each appear with a question and an answer. Annotators indicate if that answer is
Correct or Incorrect from a dropdown menu.

AGQA benchmark on at least 25 questions per sub-question
type. For all analysis, we take the the majority vote of 3 an-
notators for each question.

In this task annotators see a question, answer, and video.
They are provided with a dropdown menu to mark the ques-
tion as Correct or Incorrect. If they select Incorrect, we
provide a space to write the correct answer. We also col-
lect information on whether the question has bad grammar,
multiple answers, or no possible answers. We check for
the quality of responses with questions that we know to be
answered incorrectly. Annotators mark 88.00% of these in-
correct questions as incorrect.

7.2. Metrics

In this section, we give additional details for our metrics.
We first provide precise definitions for each metric. After-
wards, we give guidelines on how to interpret and compare
values for each metric.

In Section 4 of the main paper, we gave definitions for
our metrics in plain English. We provide equations for each
for further clarity. In all following definitions, let f refer
to the model we want to evaluate. Given an input video-
question pair (v, q), we set Acc(v, q, f) = 1 if f made a
correct prediction on this input and 0 otherwise.

Compositional accuracy (CA): We will begin with a for-
mal definition of the metric’s general form. Let q be an ar-
bitrary question and define Cq to be the set of immediate
sub-questions associated with q. To compute CA, we con-

sider the set QCA of all video-question pairs (v, q) where
|Cq| > 0 and Acc(v, s, f) = 1 for all s ∈ Cq . Then,

CA(f) =

∑
(v,q)∈QCA

Acc(v, q, f)

|QCA|
.

When we condition on question types, we compute the aver-
age on a subset of QCA where the parent questions q belong
to a particular question type p instead. The change is more
complicated when we condition on composition rules, how-
ever. Let t be the composition rule we are conditioning on.
Then, for each question q, we change all instances of Cq

to Cq,t = {s ∈ Cq|(q, s, t) ∈ Eq}, where Eq is the set of
edges in the DAG associated with q. In plain English, we
consider only the immediate sub-questions of q related to it
by the composition rule t.

Right for the wrong reasons (RWR): The formulas for
RWR are similar to those for CA. To compute RWR, we
consider the set QRWR of all video-question pairs (v, q)
where |Cq| > 0 and where there exists at least one s ∈ Cq

such that Acc(v, s, f) = 0. Then,

RWR(f) =

∑
(v,q)∈QRWR

Acc(v, q, f)

|QRWR|
.

We condition on question types and on composition rules
using the exact method as for CA.

To compute the more granular variant of RWR, RWR-n,
we perform the same operations on the set QRWR−n of all



or(
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Figure 9. Example decomposition with corresponding program.

video-questions pairs (v, q) where |Cq| > 0 and where the
number of s ∈ Cq such that Acc(v, s, f) = 0 is exactly n.

Delta: Delta is defined as the difference between RWR
and CA for a given model f :

Delta(f) = RWR(f)− CA(f).

Internal Consistency (IC): We will begin with a formal
definition of the metric’s general form. Denote Φ as the set
of all logical consistency rules. Let ϕ ∈ Φ be any logical
consistency rule, (v, q) be any arbitrary video-question pair
and Cq be the set of immediate sub-questions associated
with q. We then set ϕ(q, Cq, v, f) = 1 if f ’s predictions
for q and its sub-questions pass ϕ’s consistency check, 0 if
it fails and −1 if the check cannot be applied to the given
set of question-answer pairs. In order to compute internal
consistency for a given logical consistency rule ϕ ∈ Φ, de-
noted ICϕ, we consider the set Qϕ

IC of all video-question
pairs (v, q) such that ϕ(q, Cq, v, f) ̸= −1. We then define

ICϕ(f) =

∑
(v,q)∈Qϕ

IC

ϕ(c, Cq, v, f)

|Qϕ
IC |

.

The overall IC metric is then defined as

IC(f) =

∑
ϕ∈Φ ICϕ(f)

|Φ|
.

If any ICϕ(f) is undefined due to |Qϕ
IC | = 0, we also treat

IC(f) as undefined.
In order to condition on a particular composition rule t

for IC, we simply perform the same operations using the
set of logical consistency rules Φt applicable to t instead of
the general set Φ. Conditioning on a specific parent ques-
tion type p is similar, but more complicated. As before, we
restrict our attention to the set of logical consistency rules
Φp applicable to the parent question type p. However, we
further focus on subsets of Qϕ

IC where the parent questions
q belong to the question type p.

Accuracy: We compute accuracy per question type and
normalize across answers to obtain an aggregate value.
Consider any question type t and let At be the set of ground-
truth answers associated with questions of type t. Referring
to Qt,a as the set of video-question pairs (v, q) where q is
of type t and for which a is the ground-truth answer, we
formally define

Accuracy(f, t) =

∑
a∈At

∑
(v,q)∈Qt,a

Acc(v, q, f)

|Qt,a|

|At|
.

Interpreting Values for Metrics. We expect a model that
reasons compositionally to have high values for the Accu-
racy, CA, and IC metrics and to have low values for the



before(
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Figure 10. Example decomposition with its corresponding program.

RWR metric. Given that we expect a model to perform
poorer on parent questions when it answers at least one sub-
question incorrectly, we also expect a model that reasons
compositionally to obtain negative Delta values. In other
words, we expect RWR to always be lower than CA.

In the event when a model obtains desirable values for
each metric, it is fruitful to perform more granular analysis,
inspecting model performances for the various RWR-n met-
rics, individual composition rules and ground-truth answers
in addition to qualitative analysis.

7.3. Experiments

In this section, we first describe the question types that
we ignored during evaluation due to poor human validation
scores and then detail how we trained and evaluated mod-
els. Afterwards, we perform an experiment exploring the
use of AGQA-Decomp as data augmentation and provide
additional analyses for the Most Likely baseline. We finally
give examples of error modes that appeared during qualita-
tive analysis.

Banned Question types. When evaluating model perfor-
mance on the questions, we ignore questions of types that
did not achieve at least a 70% human validation score. The
following types did not achieve this threshold.

• Action Temporal Localization: This question type
contains open answer questions for action recognition
such as “What were they doing after walking through
the doorway?” Human annotators marked 55.00% of
questions of this type as correct.

• Object: This question type contains open answer
questions for objects such as “What were they open-

ing?”. It also includes such questions when they have
a temporal localization phrase. Human annotators
marked 62.16% of questions of this type as correct.

Future work could address limitations in the AGQA
dataset in order to improve the accuracy of questions or cre-
ate a more accurate subset of questions. This new version
could then be used to evaluate all types of questions.

Training Details. Upon running initial experiments with
the default configurations of HCRN, HME and PSAC’s
respective repositories, we found that HCRN and PSAC
overfit our data. As such, we performed hyperparame-
ter searches for learning rate and weight decay parameters
and additionally incorporated new dropout layers for each
model to improve regularization. HCRN’s best performing
run was trained with a learning rate of 0.00016, a weight
decay of 0.0005, a dropout probability of 0.15 and a batch
size of 32. HME’s best performing run remained the default
configuration with a learning rate of 0.001, a weight decay
of 0.0, no new dropout layers and a batch size of 32. PSAC,
finally, was trained with a learning rate of 0.003, a weight
decay of 5 ∗ 10−6, a dropout probability of 0.15 and a batch
size of 32. We trained HCRN for 5 epochs (where each
epoch performs 18 validation loops), HME for 32000 up-
date steps (corresponding to 40 validation loops) and PSAC
for 23 epochs. We began terminated training after the vali-
dation accuracy of each model had plateaued. HCRN, HME
and PSAC achieved best validation accuracies of 46.48%,
42.492% and 43.69% at the point of evaluation.

Using AGQA-Decomp as Data Augmentation Another
intuitive application of AGQA-Decomp is data augmenta-
tion for the original AGQA dataset [5]. The training data
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Figure 11. We present example compositions where HCRN answers all children correctly but answers the parent incorrectly. Top: HCRN
picks a valid but inaccurate option. Center: HCRN gives an unrelated response. Bottom: HCRN produces an invalid but relevant answer.

we used for our main evaluation is a version of the AGQA
balanced dataset augmented with a balanced subset of ques-
tions taken from our DAGs. We can therefore investigate
whether our trained models’ performances are better than
those trained on the standard AGQA dataset. We com-

pare the accuracies of the best performing runs for both
sets of models and find that using the AGQA-Decomp sub-
question data naively as data augmentation does not result
in a clear improvement. HCRN trained on AGQA-Decomp
outperforms its counterpart trained on AGQA by 1%, while



after(
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Figure 12. Example decomposition with corresponding program.

Table 6. We present HCRN, HME and PSAC performances on the RWR-n metrics, where n represents the exact number of incorrectly
answered sub-questions for a composition, while conditioning on parent question types. Models are frequently accurate on parent questions
even when answering simpler sub-questions incorrectly. For Equals and particularly Interaction Temporal Localization
questions, RWR-n values largely outperform CA scores

HCRN HME PSAC
Parent Type RWR-1 RWR-2 RWR-3 RWR-4 RWR-5 RWR-1 RWR-2 RWR-3 RWR-4 RWR-5 RWR-1 RWR-2 RWR-3 RWR-4 RWR-5
Object Exists N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Relation Exists 16.67 N/A N/A N/A N/A N/A N/A N/A N/A N/A 20.22 N/A N/A N/A N/A
Interaction 44.26 29.40 19.55 N/A N/A 26.63 12.15 N/A N/A N/A 63.19 49.14 26.78 N/A N/A
Interaction Temporal Loc. 49.23 55.34 56.26 39.65 6.25 89.05 93.92 70.33 71.69 4.35 29.37 58.69 65.44 28.15 9.12
Exists Temporal Loc. 67.93 21.98 N/A N/A N/A 2.25 1.83 N/A N/A N/A 30.23 4.52 N/A N/A N/A
First/Last N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Longest/Shortest Action N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Conjunction 48.17 31.21 N/A N/A N/A 47.42 27.85 N/A N/A N/A 46.17 30.60 N/A N/A N/A
Choose 47.51 41.12 N/A N/A N/A 48.57 39.74 N/A N/A N/A 48.24 47.32 N/A N/A N/A
Equals 52.10 50.20 N/A N/A N/A 47.08 47.54 N/A N/A N/A 51.19 47.69 N/A N/A N/A
Overall 55.59 32.24 47.31 39.65 6.25 30.05 13.43 70.33 71.69 4.35 40.75 27.73 57.47 28.15 9.12

HME, for instance, underperforms by 1% (Table 10). One
possible reason for the lack of improvement is our use of
sub-questions naively as more data. Future work may de-
vise data augmentation schemes that go beyond this naive
approach and leverage the structure provided by entire hier-
archies for potentially better performance.

Further Comparisons with Most-Likely. We will pro-
vide further results and analyses involving the Most-Likely
baseline in this section. The Most Likely baseline repre-
sents a model that relies primarily on linguistic biases, out-
putting the most likely answer for each basic question type.
We will begin with a discussion of the Most-Likely base-
line’s IC results and then investigate individual question
types and composition rules.
Performance on the IC metric: The Most-Likely base-

line, on one hand, is perfectly consistent for one half of
logical consistency rules, primarily the rules where the par-
ent is answered “yes” and all child answers are also prop-
agated to be “yes”. On the other hand, it has no valid data
points for the other half of the rules (Table 8). This is due
to the fact that the Most-Likely baseline outputs the most
common answer for each question type, severely restricting
the parent-child answer distributions for each composition.
Our overall IC metric avoids treating such biased models
as highly consistent by performing a macro average of the
consistency scores for each logical consistency rule associ-
ated with a question type or composition rule. Given that
the Most-Likely baseline has undefined performances on a
logical consistency rule for every single question type and
composition rule, its IC values are treated as undefined on
Tables 11 and 12.



Table 7. We present HCRN, HME and PSAC performances on the RWR-n metrics, where n represents the exact number of incorrectly
answered sub-questions for a composition, while conditioning on composition rules between questions and their sub-questions. Models
are frequently accurate on parent questions even when answering simpler sub-questions incorrectly. RWR-1 and RWR-2 scores reveal
problematic reasoning for And and Xor compositions respectively for HME and PSAC.

HCRN HME PSAC
Compostion Type RWR-1 RWR-2 RWR-3 RWR-1 RWR-2 RWR-3 RWR-1 RWR-2 RWR-3
Interaction 50.67 42.62 17.86 48.80 76.75 11.18 50.93 63.22 23.81
First N/A N/A N/A N/A N/A N/A N/A N/A N/A
Last N/A N/A N/A N/A N/A N/A N/A N/A N/A
Equals 52.10 50.20 N/A 47.08 47.54 N/A 51.19 47.69 N/A
And 48.35 15.40 N/A 79.38 6.32 N/A 80.11 10.61 N/A
Xor 48.03 51.99 N/A 24.95 86.73 N/A 22.54 82.81 N/A
Choose 47.72 42.20 N/A 48.63 36.76 N/A 48.47 47.59 N/A
Longer Choose 36.84 40.32 N/A 44.01 39.58 N/A 40.66 41.99 N/A
Shorter Choose 37.19 36.52 N/A 43.99 40.84 N/A 41.04 42.56 N/A
After 61.24 33.33 N/A 17.92 24.39 N/A 37.08 15.52 N/A
Before 65.16 36.90 N/A 17.40 23.90 N/A 34.81 15.77 N/A
While 66.01 21.34 N/A 10.09 8.94 N/A 32.36 10.20 N/A
Between 33.14 5.98 N/A 77.83 1.34 N/A 41.01 4.69 N/A
Overall 55.12 32.97 17.86 36.73 23.56 11.18 42.84 31.63 23.81

Table 8. We present internal consistency (IC) scores for indi-
vidual logical consistency rules for HCRN, HME, PSAC and the
Most-Likely baseline. Logical consistency rules being followed
by “Yes” or “No” indicates that the parent question either is or im-
plied to be “Yes” or “No”. For Choose questions, “Object” and
“Temporal” denote whether the parent is an object or “before” or
“after.” Models frequently achieve low values when the parent is
“Yes” and are particularly inconsistent for Choose consistency
rules.

Consistency Parent IC
Check Answer HCRN HME PSAC Most-Likely
Interaction Yes 75.70 27.30 0.00 100.00

No 99.93 99.96 99.96 N/A
Equals Yes 6.91 16.07 4.79 6.84

No 88.21 86.00 90.44 N/A
And Yes 74.37 57.96 5.89 N/A

No 94.24 98.75 98.78 0.00
Xor Yes 5.11 16.26 18.67 N/A

No 82.29 88.47 94.00 100.00
Choose Object 6.59 0.76 14.80 N/A

Temporal 4.92 0.54 9.56 0.00
After Yes 40.55 40.20 42.38 100.00

No 99.93 99.97 99.97 N/A
Before Yes 38.55 42.10 43.37 100.00

No 99.92 99.99 99.98 N/A
While Yes 42.64 33.91 44.70 100.00

No 100.00 100.00 99.97 N/A
Between Yes 88.87 42.01 79.00 100.00

No 83.04 99.79 96.94 N/A
Overall 62.88 58.34 57.95 N/A

Performance on Choose and Equals: For the Choose
question type, a category that contains a large set of possi-
ble answers, the Most-Likely baseline’s performance is pre-
dictably poor with a CA score of 6.02% (Table 11). The

Table 9. We report accuracy per ground-truth answer for each bi-
nary question type expecting ”Yes” or ”No” answers for HCRN,
HME, PSAC and the Most-Likely baseline. Models frequently
perform well on one ground-truth answer at the expense of the
other. HME particularly is biased towards ”No” for all question
types except Object Exists.

Question Ground Accuracy
Type Truth HCRN HME PSAC Most-Likely
Object Exists Yes 44.39 93.47 3.38 100.00

No 49.70 0.00 86.67 0.00
Relation Exists Yes 48.43 3.29 68.85 100.00

No 55.84 99.11 4.02 0.00
Interaction Yes 39.78 9.16 40.91 100.00

No 53.65 91.98 83.76 0.00
Interaction Temporal Yes 57.15 3.60 40.82 100.00
Loc. No 41.91 97.24 49.58 0.00
Exists Temporal Yes 59.42 1.32 28.58 100.00
Loc. No 36.21 98.06 78.46 0.00
Conjunction Yes 41.32 1.33 7.07 0.00

No 57.88 98.82 92.94 100.00
Equals Yes 41.91 1.88 19.80 100.00

No 59.15 98.28 80.05 0.00

Table 10. We present the accuracy the best performing HCRN,
HME and PSAC runs obtain when trained on the AGQA or
the AGQA-Decomp balanced training sets. Models trained on
AGQA-Decomp outperform those trained on AGQA, implying
that our DAGs may potentially be useful sources of data augmenta-
tion. Accuracy for this table is the standard definition of accuracy.

AGQA Accuracy
Training dataset HCRN HME PSAC
AGQA 42.11 39.89 40.18
AGQA-Decomp 43.10 38.96 39.75



Table 11. We report compositional accuracy (CA), right for the
wrong reasons (RWR), delta (RWR-CA) and internal consistency
(IC) metrics for the Most-Likely baseline with respect to question
types. We find that whatever good performance the Most-Likely
baseline achieves is within narrow slices of the dataset. N/A val-
ues under the IC column indicate that the model has no valid dat-
apoints for at least one logical consistency rule for that question
type.

CA RWR Delta IC
Question Type Most-Likely Most-Likely Most-Likely Most-Likely
Object Exists N/A N/A N/A N/A
Relation Exists 100.00 N/A N/A N/A
Interaction 79.00 87.61 8.61 N/A
Interaction Temporal Loc. 57.96 1.29 -56.67 N/A
Exists Temporal Loc. 98.79 97.58 -1.21 N/A
First/Last N/A N/A N/A N/A
Longest/Shortest Action N/A N/A N/A N/A
Conjunction 24.35 62.67 38.32 N/A
Choose 6.02 24.48 18.46 N/A
Equals 46.66 53.56 6.90 N/A
Overall 80.06 37.97 -42.09 N/A

Table 12. We report compositional accuracy (CA), right for the
wrong reasons (RWR), delta (RWR-CA) and internal consistency
(IC) metrics for the Most Likely baseline with respect to compo-
sition rules. We find that whatever good performance the Most-
Likely baseline achieves is within narrow slices of the dataset,
such as the case when parent and child questions are answered
“No” and “Yes” respectively for Xor. N/A values under the IC
column indicate that the model has no valid datapoints for at least
one logical consistency rule.

CA RWR Delta IC
Composition Type Most-Likely Most-Likely Most-Likely Most-Likely
Interaction 64.07 48.91 -15.16 N/A
First N/A N/A N/A N/A
Last N/A N/A N/A N/A
Equals 46.66 53.56 6.90 N/A
And 0.00 100.00 100.00 N/A
Xor 100.00 40.39 -59.61 N/A
Choose 18.52 24.48 5.96 N/A
Longer Choose 5.73 N/A N/A N/A
Shorter Choose 6.22 N/A N/A N/A
After 79.91 53.15 -26.76 N/A
Before 80.51 54.22 -26.30 N/A
While 93.32 52.05 -41.26 N/A
Between 99.03 0.00 -99.03 N/A
Overall 75.60 37.70 -37.90 N/A

model only has valid datapoints for consistency checks on
Choose compositions requiring choosing whether an event
occurred before or after another. For this composition rule,
the model is inconsistent for each case, as the child ques-
tions, which belong to the same question type, must be an-
swered differently. Model performance on the Equals cat-
egory is also poor, with the model being self-consistent only
6.84% of the time when the parent is answered “yes” (8)
Performance on Conjunction: For Conjunction ques-
tions, the Most-Likely baseline is biased towards “no” an-
swers while it is biased towards “yes” answers for sub-
questions to Conjunction questions. As the Xor com-
position is always accurate for this answer distribution, the
Most-Likely baseline obtains perfect CA score. Similarly,
since the And composition is always inaccurate for this an-

swer distribution, the model obtains 0.00% for CA. These
extreme CA scores, the model’s undefined IC values, as
well as the high RWR score for And (Table 12) collectively
indicate incorrect reasoning.
Performance on Temporal Reasoning: For temporal
reasoning question types, such as Exists Temporal
Localization and Interaction Temporal
Localization, and their constituent composition rules
(After, Before, While, Between), any good perfor-
mance can be explained by the fact that the Most-Likely
baseline answers only “yes” to both parent questions and
its children. For these instances, the model is perfectly
consistent. The IC scores being undefined on Tables 11 and
12 alert that the model does not reason compositionally yet
again.

Qualitative Examples. In this section, we provide exam-
ple illustrations of error modes we observed when models
answered all immediate sub-questions questions correctly
but answered the parent question incorrectly for the compo-
sition rule in which models achieved the worst performance:
Longer and Shorter Choose. Figure 11 displays three er-
ror categories: one category where the model chooses the
wrong option, one category where the model makes a se-
mantically relevant prediction that is not given as an option
and another category where the model makes a wholly ir-
relevant prediction.

7.4. Future work

While our analyses are limited to the AGQA benchmark,
our decomposition structure can nonetheless facilitate mul-
tiple future contributions.
Consistency as a training loss Following in the path laid
out by recent work [4, 10, 15], consistency can be oper-
ationalized as an additional training signal to encourage
models to behave compositionally. The proliferation re-
cent large language models [14] can be prompted to produce
consistent training data augmentations for smaller models.
Interactive model inspection: Although the metrics that
we propose each facilitate analyses across the entire dataset,
they are motivated by how we expect models that rea-
son compositionally should behave on individual examples.
This makes the exploration of question DAGs as a tool for
the interactive analysis of model behavior [13,14] a fruitful
direction.
Explanations through question decompositions: Further-
more, model answers to question hierarchies can be used
as justifications of model predictions, similar to past work
on natural language rationalizations [6, 8], with each an-
swer representing model behavior in intermediate reasoning
steps [3]. Internal consistency can similarly help determine
whether to trust and rely on models.



This paper outlines several evaluation methods using a
decomposition of AGQA questions. This application of a
question decomposition structure already provides fruitful
insights on model performance. The structure of AGQA-
Decomp hierarchies can further provide both flexibility and
nuance to evaluation outside of the use case explored here.
We encourage future work to expand this structure to other
benchmarks and to create novel evaluation methods.
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