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A. 1. Detection Performance on COCO test set

backbone AP AP50 AP75 APs APm APl

ResNet-50 47.2 66.3 51.4 28.3 49.3 60.6
ResNet-101 48.1 67.3 52.4 28.3 50.6 62.1

ResNeXt-101-DCN 49.3 68.8 53.7 30.0 51.6 64.0
Swin-S 51.3 71.3 55.9 31.4 53.9 66.3

Table 1. AdaMixer performance on COCO test-dev set with
longer training scheme (36 epochs training and 300 queries) and
single model single scale testing.

The performance of AdaMixer on COCO minival set
is reported in Table 5 in the paper. Here we report the per-
formance of these AdaMixer models on COCO test-dev
set in Table 1, where labels are not publicly available and
evaluation is done on the online server. Note that models
here are exactly the same in Table 5 in the paper.

A. 2. More Studies on Adaptive 3D Sampling
We here also validate the effectiveness of our proposed

3D feature space and adaptive 3D sampling in Table 2.
Using single feature map leads to inferior results for our
AdaMixer. Note that there is no feature pyramid networks
(FPN) [5] used. The RoIAlign operator, which extracts
features in a single level map according to the bounding
box, also performs inferior to our adaptive 3D sampling
approach. RoIAlign feature sampling locations are highly
stricted inner the bounding box and the sampling level (the
z coordinate in our work) is also discretized, whereas lo-
cations and levels are adaptive on queries and not stricted
in our adaptive 3D sampling . This means that RoIAlign
lacks multi-level feature modeling and necessitates multi-
scale feature interaction necks.
Relations to other work. Our adaptive 3D sampling is in
accord with deformable convolutions [2, 8, 9] to explicitly
utilize offsets to sample features spatially to model defor-
mation of objects. But our adaptive 3D sampling extends
the adaptive modeling to the scale dimension, namely z-

sampling AP AP50 AP75 APs APm APl

only C3 feature 26.2 42.0 27.3 15.8 28.7 34.1
only C4 feature 38.3 57.2 41.0 20.0 41.9 54.1
only C5 feature 37.8 58.3 39.5 18.0 41.2 51.7

RoIAlign 37.2 58.5 39.0 19.0 39.3 55.6

A2DS 41.3 61.0 44.4 23.3 43.8 57.8
A3DS 42.7 61.5 45.9 24.7 45.4 59.2

Table 2. Different feature sampling performance on MS COCO
minival set with 1× training scheme. The “A3DS” is abbrevia-
tion for Adaptive 3D Sampling used in AdaMixer. The “A2DS” is
the 2D variant of adaptive 3D sampling, where it disables learning
adaptive z-axis offsets, namely, ∆z(·) = 0 through training and
inference. Note that A2DS is still with multiple feature maps and
z of a query still decides how feature maps are aggregated. The
RoIAlign is performed to extract features from feature maps indi-
vidually according to the bounding box indicated by a query. The
row “only C(·) feature” variants use a single feature map to perfom
adaptive 2D sampling. No FPNs used throughout this table.

axis, to cope with the variation of potential objects. Also,
our adaptive 3D sampling is performed by queries in the
sparse manner, whereas the deformable convolution or at-
tention are usually performed in the dense manner. More-
over, our method naturally generalizes the scale-equalizing
operators [4, 7] on discretized feature maps with different
scales to a continuous and interpolable one, enjoying more
flexible modeling for scale variations.

A. 3. Model Details

Our AdaMixer is implemented on mmdetection frame-
work [1]. In current implementation, the model is fully
based on PyTorch primitives without customized CUDA
codes.
Initializations. We initialize all backbones from pre-
trained model on ImageNet 1K classification [3], including
Swin-S [6]. Please refer to our codebase for more detailed
initializations in AdaMixer.
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detector backbone APval APtest
#Param

(M)
flops
(G) FPS

training
hours

Faster R-CNN R-50 41.8 - 42 207 17 ∼16
DETR R-50-DC5 43.3 - 41 187 11 ∼204
Deformable DETR++ R-50 46.2 46.9 40 173 12 ∼106
Sparse R-CNN R-50 45.0 - 110 174 16 ∼30
AdaMixer R-50 47.0 47.2 139 132 15 29
AdaMixer R-101 48.0 48.1 158 208 12 37
AdaMixer X-101-DCN 49.5 49.3 160 214 8 65
AdaMixer Swin-S 51.3 51.3 164 234 10 51

Table 3. Training and inference details about different models.
AdaMixer models here are ones in Table 5 of the paper with 300
queries. APval and APtest are the average precision on COCO
minival and test-dev set, respectively. FPS is calculated
on a single Nvidia V100 card. Training hours for other detectors
are estimated on 8 V100 cards when obtaining the speed of a few
training iterations.

Training and inference speed. We evaluate AdaMixer
training and inference speed and compare it with other de-
tectors in Table 3. Our AdaMixer shows advantage not only
on theoretical flops but on the actual training time and infer-
ence FPS. Note that the current implementation, the adap-
tive 3D sampling procedure is based on PyTorch primitive
grid sample, which can be optimized in the future.

A. 4. Visualizations
We also show visualizations of sampling points and fi-

nal detections of our AdaMixer detector in Figure 1 and
2. These visualizations are doned on samples in COCO
minival set. The first row shows the input image and
detection results and the other rows show sampling points
for each stage. Figure 1 and 2 shows two different query
results1. The sampling z-axis coordinate, z̃, is visualized
as the point size and a bigger point corresponds with the
larger z̃. Sampling points of different groups are colored
with different colors. We can see that AdaMixer actually
sees out of the box and different groups have preference
for different semantics. Moreover, when comparing Fig-
ure 1 and 2, we can find that sampling point patterns also
vary across different queries, indicating the enhanced sam-
pling adaptability and flexibility in AdaMixer. Counterin-
tuitively, sampling points of a query do not gather together
in a monotonous manner across stages. Instead, they often
stretch wider after focusing on small regions and then fo-
cus again (stage 2→3→4→5→6). We suspect that this be-
havior is beneficial to performing bounding box estimation
more accurately. Please see visualizations folder in
our codebase or supplementary file for more visualizations.

1In a figure, the query index is consistent through stages.
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input image detection results

stage 1:
sampling points for person #1

stage 2:
sampling points for person #1

stage 3:
sampling points for person #1

stage 4:
sampling points for person #1

stage 5:
sampling points for person #1

stage 6:
sampling points for person #1

Figure 1. Visualizations of detection results and sampling points of AdaMixer with ResNet-50 as the backbone.
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input image detection results

stage 1:
sampling points for person #2

stage 2:
sampling points for person #2

stage 3:
sampling points for person #2

stage 4:
sampling points for person #2

stage 5:
sampling points for person #2

stage 6:
sampling points for person #2

Figure 2. Visualizations of detection results and sampling points of AdaMixer with ResNet-50 as the backbone (cont’d).
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