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This supplementary material provides further details on our
methodology and the data we used. §1 presents details on
our physical human body model, §2 provides details regard-
ing our simulation parameters, §3 presents our physics met-
rics, in §4 we present the datasets used in our experiments,
§5 provides details about our method’s hyperparameters,
and lastly §6 summarizes our computational setup. When
referring to equations or material in the main paper we will
denote this by (mp). Finally, please see our supplemental
video for qualitative results of our method at tiny.cc/traj-
opt.

1. Physical Body Model
Given a GHUM [11] body mesh M(β,θ0) associated

with the shape parameters β and the rest pose θ0, we build
a simulation-ready rigid multibody human model that best
approximates the mesh with a set of parameterized geomet-
ric primitives (cf . fig. 1). The hands and feet are approx-
imated with boxes whereas the rest of the body links are
approximated with capsules. The primitives are connected
and articulated with the GHUM body joints.

Inspired by [1], we optimize the primitive parameters by
minimizing

L(ψ) =
∑
b∈B

∑
vg∈Mb

min
vp∈M̂b

||vg − vp||+

+
∑
b∈B

∑
vp∈M̂b

min
vg∈Mb

||vp − vg||, (1)

where ψ are the size parameters for the primitives, i.e.
length and radius for the capsules, and depth, height and
width for the boxes. The loss penalizes the bi-directional
distances between pairs of nearest points on the GHUM
mesh Mb and surface of the primitive geometry M̂b associ-
ated with the body link b.

Figure 1. The physical body model’s shape and mass parameters
are based on an associated GHUM [11] mesh.

Furthermore, we learn a nonlinear regressor ψ(β) with
an MLP that performs fast shape approximation at run time.
The regressor consists of two 256-dimensional fully con-
nected layers, and is trained with 50K shapes generated with
Gaussian sampling of the latent shape space β together with
the paired optimal primitive parameters using (1).

Our physical model share an identical skeleton topology
with GHUM but does not model the face and finger joints,
due to the focused interest on the body dynamics in this
work. Extending with finger joints, however, would enable
simulation of hand-object interactions which would be in-
teresting, but we leave this for future work. We note that
there is a bijective mapping for the shared 16 body joints
between our model and GHUM, which allows for fast con-
version between the physical and stastical representation.

2. Simulation Details

We run the Bullet simulation at 200 Hz, with friction
coefficient µ = 0.9 and gravitational acceleration constant
9.8 m/s2. The PD-controllers controlling each torque motor
is tuned with position gain kp = 4.0, velocity gain kd =
0.3, and torque limits similar to those presented in [5].
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Weight H36M AIST HumanEva-I Grid
wCOM 15.0 15.0 15.0 {1, 2, 5, 10, 15, 25 }
wpose 0.5 0.5 0.5 {0.1, 0.5, 1, 2 }
w2d 4.0 4.0 4.0 {1, 2, 4, 8, 10 }
wnf 1.0 1.0 1.0 {0.001, 0.1, 1, 10}
wTV 1.0 1.0 1.0 {0.1, 1, 10}
wlim 1.0 1.0 1.0 {0.1, 1, 10}

Table 1. Weights of the objective function described in §3.3 (mp)and (3) for our three main datasets: Human3.6M [3], AIST [9], and
HumanEva-I [8]. “Grid” specifies the values evaluated while selecting hyperparameter values. Note that we did not exhaustively explore
all combination.

Sequence Subject Camera Id Frames
Phoning S11 55011271 400-599
Posing 1 S11 58860488 400-599
Purchases S11 60457274 400-599

SittingDown 1 S11 54138969 400-599
Smoking 1 S11 54138969 400-599

TakingPhoto 1 S11 54138969 400-599
Waiting 1 S11 58860488 400-599
WalkDog S11 58860488 400-599

WalkTogether S11 55011271 400-599
Walking 1 S11 55011271 400-599
Greeting 1 S9 54138969 400-599
Phoning 1 S9 54138969 400-599
Purchases S9 60457274 400-599

SittingDown S9 55011271 400-599
Smoking S9 60457274 400-599

TakingPhoto S9 60457274 400-599
Waiting S9 60457274 400-599

WalkDog 1 S9 54138969 400-599
WalkTogether 1 S9 55011271 400-599

Walking S9 58860488 400-599

Table 2. The subset of Human3.6M used in the ablation experi-
ments. Note that the data was downsampled from 50 to 25 FPS.

3. Additional Metrics

In addition to the standard 2d and 3d joint position er-
ror metrics, we evaluate our reconstructions using physical
plausibility metrics similar to those proposed in [6]. Since
the authors were unable to share their code we implement
our own versions the metrics which doesn’t require foot-
ground contact annotations. A foot contact is defined as
at least N = 10 vertices of a foot mesh being in con-
tact with the ground plane. We set the contact threshold
to d = 0.005 m for kinematics. To account for the model-
ing error when approximating the foot with a box primitive
we set the contact threshold for dynamics to d = −0.015 m.
Footskate. The percentage of frames in a sequence where
either foot joint moves more than 2 cm between two ad-

Sequence Frames
gBR sBM c06 d06 mBR4 ch06 1-120
gBR sBM c07 d06 mBR4 ch02 1-120
gBR sBM c08 d05 mBR1 ch01 1-120
gBR sFM c03 d04 mBR0 ch01 1-120
gJB sBM c02 d09 mJB3 ch10 1-120

gKR sBM c09 d30 mKR5 ch05 1-120
gLH sBM c04 d18 mLH5 ch07 1-120
gLH sBM c07 d18 mLH4 ch03 1-120
gLH sBM c09 d17 mLH1 ch02 1-120
gLH sFM c03 d18 mLH0 ch15 1-120
gLO sBM c05 d14 mLO4 ch07 1-120
gLO sBM c07 d15 mLO4 ch09 1-120
gLO sFM c02 d15 mLO4 ch21 1-120

gMH sBM c01 d24 mMH3 ch02 1-120
gMH sBM c05 d24 mMH4 ch07 1-120

Table 3. Sequences used for evaluation on AIST.

jacent frames while the corresponding foot was in contact
with the ground-plane.
Float. The percentage of frames in a sequence where at
least one of the feet was not in contact but was within 2 cm
of the ground-plane. This metric captures the common is-
sue of reconstructions floating above the ground while not
penalizing correctly reconstructed motion of e.g. jumps.
Velocity. The mean error between the 3d joint velocities
in the ground-truth data and the joint velocity in the recon-
struction. High error velocity indicates that the estimated
motion doesn’t smoothly follow the trajectory of the true
motion. We define the velocity error as

ev =
1

N

N∑
i=1

∑
k∈K

| ˙̄xi
k − ẋi

k|, (2)

where ˙̄xi
k is the magnitude of the ground-truth 3d joint ve-

locity vector (in m/s) for joint k at frame i and where ẋi
k

denotes the reconstructed joint. We estimate the velocity
using finite differences from 3d joint positions and use first
frame translation aligned joint estimates (as in MPJPE-G).



Sequence Subject Camera Id
S11 Directions 1 60457274
S11 Discussion 1 60457274
S11 Greeting 1 60457274
S11 Posing 1 60457274
S11 Purchases 1 60457274
S11 TakingPhoto 1 60457274
S11 Waiting 1 60457274
S11 WalkDog 1 60457274
S11 WalkTogether 1 60457274
S11 Walking 1 60457274
S9 Directions 1 60457274
S9 Discussion 1 60457274
S9 Greeting 1 60457274
S9 Posing 1 60457274
S9 Purchases 1 60457274
S9 TakingPhoto 1 60457274
S9 Waiting 1 60457274
S9 WalkDog 1 60457274
S9 WalkTogether 1 60457274
S9 Walking 1 60457274

Table 4. The evaluation subset of Human3.6M used in the main
evaluation. The subset is similar to the one used in [7]. We down-
sampled the data from 50 FPS to 25 FPS.

4. Datasets

Human3.6M. We use two subsets for our experiments on
Human3.6M [3]. When we compare our method to state-
of-the-art methods we use a dataset split similar to the one
used in [10]. See tab. 4 for the complete lists of sequences
we use. Similarly to [7,10], we down sample the sequences
from 50 FPS to 25 FPS.

When perform ablations of our model we a smaller sub-
set where we select 20 4-sec sequences from the test split
of Human3.6M dataset (subjects 9 and 11). We selected se-
quences that show various dynamic motions such as walk-
ing dog, running and phoning (with large motion range), to
sitting and purchasing (with occluded body parts). For each
sequence, we randomly selected one of the four cameras.
We list the sequences in tab. 2.
HumanEva-I. We evaluate our method on the subset of
HumanEva-I walking sequences [8] as selected by [6], see
tab. 5.
AIST. We select four second video sequences from the pub-
lic dataset [4, 9], showing fast and complex dancing mo-
tions, picked randomly from one of the 10 cameras. We list
our selected sequences in tab. 3.
”In-the-wild” internet videos. We perform qualitative
evaluation of our model on videos of dynamic motions
rarely found in laboratory captured datasets. These videos

were made available on the internet under a CC-BY license
which grants the express permission to be used for any pur-
pose. Note that we only used the videos to perform qualita-
tive analysis of our approach – the videos will not be redis-
tributed as a dataset.

Sequence Subject Camera Id Frames
Walking S1 C1 1-561
Walking S2 C1 1-438
Walking S3 C1 1-490

Table 5. Sequences used for evaluation on HumanEva-I.

4.1. Human Data Usage

This work relies on recorded videos of humans. Our
main evaluation is performed on two standard human pose
benchmarks: Human3.6M1 [3] and AIST2 [9]. These
datasets have been approved for research purposes accord-
ing to their respective websites. Both datasets contain
recordings of actors in laboratory settings. To complement
this, we perform qualitative evaluation on videos released
on the internet under creative commons licenses.

5. Hyperparameters
The most important hyperparameters are the weights

of the weighted objected function described in §3.3 (mp).
Where combined loss function is given by

L = wCOMLCOM + wposeLpose

+ w2dL2d + wnfLnf + wTV LTV

+ wlimLlim.

(3)

We tuned the weights on sequences from the training
splits. The goal was to scale the different components such
that they have roughly equal magnitudes while minimizing
the MPJPE-G error. See tab. 1 for details regarding the
search grid and the chosen parameter values.

6. Computational Resources
For running small experiments we used a desktop work-

station equipped with an “Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10GHz” CPU, 128 GB system memory and two
NVIDIA Titan Xp GPUs. We ran kinematics in the cloud
using instances with a V100 GPU, 48 GB of memory and 8
vCPUs. In the dynamics experiments, we used instances
with 100 vCPUs and 256 GB of memory for the CMA-
ES [2] optimization. Optimizing a window of 1 second of
video takes roughly 20 min using a 100 vCPUs instance.

1http://vision.imar.ro/human3.6m/
2https://aistdancedb.ongaaccel.jp/

http://vision.imar.ro/human3.6m/
https://aistdancedb.ongaaccel.jp/


References
[1] Mazen Al Borno, Ludovic Righetti, Michael J. Black,

Scott L. Delp, Eugene Fiume, and Javier Romero. Ro-
bust Physics-based Motion Retargeting with Realistic Body
Shapes. In Computer Graphics Forum, 2018. 1

[2] Nikolaus Hansen. The CMA Evolution Strategy: A Com-
paring Review, pages 75–102. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006. 3

[3] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 36(7):1325–1339, jul 2014. 2, 3

[4] Ruilong Li, Shan Yang, David A. Ross, and Angjoo
Kanazawa. Learn to dance with aist++: Music conditioned
3d dance generation, 2021. 3

[5] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
van de Panne. Deepmimic: Example-guided deep reinforce-
ment learning of physics-based character skills. ACM Trans.
Graph., 37(4):143:1–143:14, July 2018. 1

[6] Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan
Russell, Ruben Villegas, and Jimei Yang. Contact and hu-
man dynamics from monocular video. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020. 2,
3

[7] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and Chris-
tian Theobalt. Physcap: Physically plausible monocular 3d
motion capture in real time. ACM Transactions on Graphics,
39(6), dec 2020. 3

[8] L. Sigal, A. Balan, and M. J. Black. HumanEva: Synchro-
nized video and motion capture dataset and baseline algo-
rithm for evaluation of articulated human motion. Interna-
tional Journal of Computer Vision, 87(1):4–27, Mar. 2010.
2, 3

[9] Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki,
and Masataka Goto. Aist dance video database: Multi-genre,
multi-dancer, and multi-camera database for dance informa-
tion processing. In Proceedings of the 20th International
Society for Music Information Retrieval Conference, ISMIR
2019, pages 501–510, Delft, Netherlands, Nov. 2019. 2, 3

[10] Kevin Xie, Tingwu Wang, Umar Iqbal, Yunrong Guo, Sanja
Fidler, and Florian Shkurti. Physics-based human motion
estimation and synthesis from videos. In Int. Conf. Comput.
Vis., 2021. 3

[11] Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir,
William T Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. GHUM & GHUML: Generative 3d human shape
and articulated pose models. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 6184–6193, 2020. 1


	. Physical Body Model
	. Simulation Details
	. Additional Metrics
	. Datasets
	. Human Data Usage

	. Hyperparameters
	. Computational Resources

