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Abstract

In this supplementary document we provide the following
items:

1. Discussion on societal impact and limitations.

2. Implementation details.

3. Analysis of path prediction learning with regards to
auxiliary loss and start position input.

4. Analytical results over semantic map prediction to as-
sess the contribution of cross-modal map prediction.

5. Additional results on the effect of stop decision thresh-
old.

6. Additional qualitative navigation results and visual-
izations of the learned attention representations.

1. Societal Impact and Limitations
Potential negative societal impact. Our current method
is trained on scenes from Matterport3D which contains
scans of homes from North America and Europe. Since
we do not model out-of-distribution scenarios, deploying
our method in safety critical situations such as rescue op-
erations or hospitals could have negative outcomes. Fur-
thermore, house layouts strongly correlate with regions of
the world and with socio-economic factors, making it likely
that agents using our algorithm will underperform when de-
ployed in other parts of the world or in poor or minority
houses which are frequently underrepresented in datasets.
Limitations. While our approach achieves results compa-
rable with the state of the art, we acknowledge that there
is much room for improvement.We would like to point out
three limitations of our method. First, since we predict
the path from the semantic map, we are not utilizing infor-
mation from the instructions that describe object attributes

TL NE OS SR SPL
CM2-GT, w/o P0

t , λξ = 0 9.37 6.80 32.9 29.3 22.2
CM2-GT, w/o P0

t 10.62 6.18 38.4 34.3 26.5
CM2-GT, λξ = 0 12.61 5.04 54.3 49.1 39.0
CM2-GT 12.60 4.81 58.3 52.8 41.8

Table 1. Analysis of our path prediction strategy demonstrating the
contributions of P0

t and the auxiliary loss using navigation metrics
on val-seen set.

such as color, (i.e., “brown table”, “red table”). This can
be important in situations where we need to distinguish
between two instances of the same category. Second, we
depend on the pretrained BERT representation, after fine-
tuning its final layer, to provide all relevant information
about the instruction. We do not use any explicit language
representation, which could allow for better decomposition
of instructions. Third, our method is limited by size of the
local egocentric map. We cannot spatially ground informa-
tion to locations outside of the local map, and while increas-
ing the size of the local map can significantly improve per-
formance, it is also computationally expensive.

2. Implementation details

Our method is implemented in PyTorch [1]. The
UNet [2] models used in our method have four encoder and
four decoder convolutional blocks with skip connections.
The entire model is trained with the Adam optimizer and
a learning rate of 0.0002. During training all λs are equal
to 1. The training data for both the map and waypoint pre-
diction were sampled from the ground-truth paths provided
in VLN-CE train split. We used around 700K examples to
train CM2 and around 500K to train CM2-GT. The seman-
tic segmentation that produces χ̂ is another UNet which we
pre-trained separately from the rest of the model on RGB
observations from the Matterport3D scenes. The egocentric
map and waypoint heatmap dimensions are h′ = w′ = 192
and u = v = 24 respectively. Each pixel in the egocentric



Figure 1. Per-class semantic map predictions with and without cross-modal map attention. Performance gains are more noticeable for
object categories over floor and wall.

Figure 2. Per-waypoint path prediction results with and without
cross-modal map attention. Waypoint 9 corresponds to the goal,
while waypoint 0 is used as input to our method.

map corresponds to physical dimensions of 5cm×5cm. We
use k = 10 waypoints and c = 27 semantic classes from the
original 40 categories of Matterport3D. For the controller
we define stop distance threshold τ = 0.5 and goal confi-
dence threshold γ = 0.6. Our method does not use any re-
currence or an implicit state representation so the map and
path predictions are temporally independent. However, dur-
ing a navigation episode we maintain a global occupancy
map using the ground-projected depth ot that is registered
using Bayesian updates. The input to the model is an ego-
centric crop from this global map, so the agent is aware of
previously observed occupancy.

3. Analysis of path prediction learning

We investigate the contribution of certain choices we
made to mitigate the ambiguity over waypoint placements
during path prediction learning as discussed in section 3.3
of the main paper. In particular, we train the following

variants of our CM2-GT model: 1) without using the start-
ing position heatmap P0

t as input, 2) without the auxiliary
loss for predicting whether a waypoint has been traversed
(λξ = 0), and 3) without P0

t and λξ = 0. The variants are
evaluated against our proposed approach on val-seen using
the navigation metrics from section 4.1 of the main paper
(Table 1). We observe that without the auxiliary loss suc-
cess rate drops by 3.7%, while not using the starting po-
sition further decreases success rate by 18.5%. The worst
performance by far is recorded when both are not utilized.
The results justify our choices and suggest the importance
of anchoring the prediction of the entire path to a starting
location in the egocentric map, complemented by an aux-
iliary objective that forces the model to predict its current
position on the path.

4. Analytical results for cross-modal map at-
tention

In section 4.2 of the main paper we investigated the im-
portance of the cross-modal map attention component by
comparing our approach to the baseline CM2-w/o-MapAttn
that is unaware of the language instruction during map
prediction. Here, we show additional per-class and per-
waypoint results over F1 score (Figure 1) and PCW (Fig-
ure 2) respectively. First, in Figure 1 we observe that the
model trained with the cross-modal map attention (CM2)
performs better on all semantic categories against the base-
line. Furthermore, the performance gain is more pro-
nounced over object categories (e.g., toilet 12.4%, sink
12.6%) as opposed to semantic classes referring to the struc-
ture of the scene (e.g., floor 5.6%, wall 5.1%). This rein-
forces our initial hypothesis that the attention component is
able to pick semantic cues from the instruction and improve
the map prediction. Additionally, in Figure 2 we demon-
strate path prediction results over individual waypoints (1-



Val-Seen Val-Unseen
TL NE OS SR SPL TL NE OS SR SPL

CM2, τ = 1.5 9.54 6.06 42.4 38.8 34.6 9.07 7.01 35.2 31.3 27.7
CM2, τ = 1.0 10.72 5.88 49.2 42.6 35.9 10.04 7.09 39.0 33.3 27.9
CM2, τ = 0.5 12.05 6.10 50.7 42.9 34.8 11.53 7.02 41.5 34.3 27.6

Table 2. Additional results on the effect of stop distance threshold on VLN.

9). Waypoint 0 is omitted since it is used as input to our
method, while waypoint 9 corresponds to the goal location.
As expected, waypoints earlier in the path have larger PCW.
However, an interesting observation is that the gain in per-
formance increases for waypoints closer to the goal rather
than in the beginning of the path, thus demonstrating that
improved map prediction is crucial for predicting waypoints
far from the starting position.

For additional qualitative comparisons of semantic map
predictions between the baseline and our approach see Fig-
ure 6.

5. Additional results on effect of stop distance
threshold.

We repeat the experiment presented in section 4.2 of the
main paper regarding the effect of the stop distance thresh-
old on the VLN task using our CM2 (no GT map) agent on
both val-seen and val-unseen splits. In Table 2 we observe
a similar trend as that shown in Table 4 of the main paper.
Success rate is higher when τ is low, because the agent takes
the stop action more cautiously, while trajectory length is
best when τ is high.

6. Additional visualizations
Finally, we share additional visualizations of naviga-

tion episodes (Figure 5) and more examples of spatial and
semantic grounding of the learned representations. Fig-
ure 3 shows the attention decoder output Hs

t and Figure 4
presents more examples of the cross-modal attention. See
section 4.3 of the main paper for more details.
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Figure 3. Visualization of attention decoder output Hs
t that fo-

cuses on areas around goal locations and along paths. The agent’s
location is denoted with a green circle and the goal with an orange
star.

Figure 4. Visualization of the cross-modal attention representation
between map and specific word tokens. The representation tends
to focus on semantic areas of the map that correspond to the ob-
ject referred to by the token. Note that in the example on the 4th
row the representation focuses on the area where stairs are located,
even though we do not use a specific semantic label for stairs in
the map.



Figure 5. Navigation examples using our method CM2 on val-seen (first from top) and val-unseen (last three). The top row of each example
shows the RGB observations of the agent, while bottom shows the path prediction on the egocentric maps (the agent is in the middle
looking upwards shown as the green circle). The red waypoints represent our path prediction at the particular time-step. Observe that the
goal, shown as an orange star, is neither visible nor within the egocentric map at the beginning of the episodes. The ground-truth map and
path are depicted in the bottom left corner.



Figure 6. Semantic map predictions with and without cross-modal map attention.
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