
Learning 3D Object Shape and Layout without 3D Supervision

Georgia Gkioxari1 Nikhila Ravi1 Justin Johnson1,2

1Meta AI 2University of Michigan

Appendix

In this appendix we provide additional information about
our approach. We provide details about the model’s archi-
tecture and the training recipe and add more qualitative
results. Video animations which complement our visual-
izations in the paper can be found in our project’s page
https://gkioxari.github.io/usl/.

A. Comparison to Total3D

Figure 1 shows more examples comparing Total3D [5]
and our approach. In both the Supplementary and in the
main paper, we compare on examples which cover a variety
of object and scene types which allows us to better assess
generalization of both methods to diverse scenes. From Fig-
ure 1 we notice that when projecting Total3D predictions
on the image plane the renderings are not aligned to the
input image (2nd col.). This is a consequence of Total3D’s
model design which regresses to 3D object boxes and shapes
without guaranteed alignment with the image. In contrast,
our predictions are by design aligned to the input image (4th

col.). In addition and as noted in the main paper, Total3D
has a difficult time placing objects in correct configurations
leading to wrong layout and often to large shape intersec-
tions (3rd col.). In contrast, our approach, even though not
trained with 3D supervision, produces more accurate layout
predictions (5th col.). Finally, we notice that Total3D tends
to fetch the nearest shape in semantic space for each object
which is commonly not an accurate representation for the
particular instance of that object, e.g. the ottoman chairs in
the 3rd example which have a cuboid shape are represented
as chairs with four legs and a back (placed under the cof-
fee table). Our approach more accurately represents object
shapes, even if not fine in detail.

B. Experiments on Scene-ShapeNet

We create Scene-ShapeNet, a dataset of scenes composed
of synthetic 3D objects. We provide details and sample im-
ages of the Scene-ShapeNet dataset. We show more results
comparing to Mesh R-CNN [3], trained with 3D supervision
on the Scene-ShapeNet training set.

Input Image Total3D [5] USL

Figure 1. Additional comparisons of Total3D [5] and our approach.
The input image is shown in the 1st col. We show the predicted
3D shapes and layout perspectively projected into the image plane
along with a 3D visualization of the predicted layout, for Total3D
(2nd & 3rd col) and our approach (4th & 5th col).

B.1. The dataset

As mentioned in the paper, we create the Scene-ShapeNet
dataset from synthetic ShapeNet [1] objects by pairing object
instances from the {chair, table, sofa} categories to create
scenes. Specifically, for each scene, we randomly choose a
model for an object type. Each model is randomly rotated
around the Y axis (“up”), θY ∈ [0o, 360o], and their center
is placed at a random (X,Z) location on the Y = 0 plane
such that Z ∈ [1.5, 1.9] and X ∈ [−0.4, 0.4]. We render the
scene by rotating a camera around the objects at multiple
azimuth angles and heights. We don’t exclude scenes with
intersecting objects to make the task more challenging as it
leads to bigger occlusions, a characteristic of the real world
which makes recognition difficult. Figure 3 shows image
examples from the dataset. Each row shows two views of the
same scene. The spatial configuration of the pair of objects
and their 3D shapes vary across the dataset.

1

https://gkioxari.github.io/usl/

Input Image USL Mesh R-CNN [3]

Figure 2. Predictions on Scene-ShapeNet val. We show the input
image (left) and the predicted 3D objects and layout of our USL
(middle) and 3D supervised Mesh R-CNN [3] (right).

B.2. More results

Figure 2 shows more comparisons of our USL and Mesh
R-CNN [3] on images from Scene-ShapeNet val. Mesh R-
CNN is trained with 3D supervision on the Scene-ShapeNet
training set, while USL does not use 3D supervision. Mesh
R-CNN predicts more accurate shapes, as expected. Even
though our USL was not trained with 3D supervision, its
predictions are quite good both for estimating the layout and
the 3D object shapes. This is also validated by our quanti-
tative analysis in Table 1 in the main paper, where our USL
performs competitively. Animations of our predictions are
shown in https://gkioxari.github.io/usl/.

B.3. Network architecture and stats

For the Scene-ShapeNet experiments we follow exactly
the same architecture as Mesh R-CNN [3] for ShapeNet,
without the voxel head as we don’t have 3D supervision, and
the same training recipe. Refer to [3] for more details.

Loss. We define the training objective as L = L3D + µreg ·
Lreg. We set µreg = 0.1 while Lreg = Ledge is an edge length
regularizer, as in [3].

Training stats. We distribute training across 8 V100s with
a total of 64 images per batch (8 images per batch per GPU).
For our 5-view model, each iteration takes 3.4sec and con-
sumes 7.3GB of memory per GPU. Inference runs at 8fps.

C. Experiments on Hypersim
C.1. Video Animations

Animations of our 3D shape and layout predictions on Hy-
persim val and test can be found in https://gkioxari.
github.io/usl/.

C.2. Network architecture and stats

Table 3 shows the network architecture used for our model
on Hypersim [6]. We skip the architecture of the RPN and
box head, as they are identical to Mask R-CNN [4].
Loss. We define the training objective as L = L2D + µ3D ·
L3D + µreg · Lreg. We set µ3D = 1.0, µreg = 0.05 while
Lreg = 1

2 ||dV ||
2
2 is a simple L2 regularizer on the predicted

deformations dV (before the tanh layer). We found that a
L2 regularizer performs similarly to Ledge but the L2 is more
efficient allowing us to scale to many object detections, as is
the case in Hypersim images.
Training stats. We distribute training across 8 V100s with
a total of 16 images per batch (2 images per batch per GPU).
For our 5-view model, each iteration takes about 1.1 sec
and consumes 6.1GB of memory per GPU. We train for 80k
iterations. During inference, our model runs at 3fps.

C.3. Performance on the test set.

For all of our ablations and experiments in the main paper
we train on the Hypersim training set and evaluate on the
Hypersim validation set. Table 2 shows results of our USL(5)

on the Hypersim test set with a model trained with 5 views
on the Hypersim trainval set.

D. Experiments on ScanNet
D.1. Network architecture and stats

Table 4 shows the network architecture used for our model
on ScanNet [2]. We again skip the RPN and box head, as
they are identical to Mask R-CNN [4].
Loss. We define the training objective as L = L2D + µ3D ·
L3D + µreg · Lreg. We set µ3D = 1.0 and µreg · Lreg = 0.05 ·
1
2 ||dV ||

2
2+0.1·Llaplac, whereLlaplac is a Laplacian regularizer.

The laplacian regularizer is added for the ScanNet dataset
because the object views are not as diverse compared to
Hypersim. The laplacian regularizer encourages shapes to
be smooth and discourages them from degenerating; though
is not critical and a similar result could have been achieved
perhaps if we increased the weight of the L2 regularizer.
Training stats. We distribute training across 8 V100s with
a total of 16 images per batch (2 images per batch per GPU).
For our 5-view model, each iteration takes about 0.7 sec and
3.2GB of memory per GPU. We train for 200k iterations.

Table 1 summarizes the differences in the training recipes
across the three datasets. Note that these differences are

https://gkioxari.github.io/usl/
https://gkioxari.github.io/usl/
https://gkioxari.github.io/usl/

motivated by (a) fair comparison with prior work and (b)
memory/runtime. On Scene-ShapeNet our optimizer, back-
bone, initialization, and regularization are chosen to match
the ShapeNet experiments from Mesh R-CNN [3]. Changing
these to match Hypersim / ScanNet would not significantly
affect results, but hinders fair comparison with [3]. The
choice of regularizer is not critical; all perform similarly.
We use Ledge on ShapeNet to match [3], but found that L2
gives similar results with reduced runtime; adding Lapla-
cian on ScanNet gives slightly smoother meshes but is not
critical. We vary training iterations and LR decay schedule
with dataset size. 3 vs 1 refinement stage marginally im-
proves results, but is slower (1.1s vs 0.7s per iteration); due
to ScanNet’s large size we use 1 stage for faster experiments.

Scene-ShapeNet Hypersim ScanNet
Backbone R50 R50-FPN R50-FPN
Initialization ImageNet COCO COCO
Optimizer / LR Adam / 10−3 SGD / 10−2 SGD / 10−2

Regularization Ledge L2 L2 + Llaplac
Render Resolution 128 72 72
Refinement Stages 3 3 1
Training Iterations 30K 80K 200K

Table 1. Recipe differences between datasets.

Figure 3. Sample images from the Scene-ShapeNet dataset. Each
row contains an example from two different views. Images are of
scenes of object pairs under random spatial configurations.

Predicts Box2D gIoU Mask2D IoU Depth L1 (↓)
Model Layout Shape Input Views Input Views Input Views
USL(5) X X 1.00 0.35 0.69 0.36 2.07 1.98
USL(5) w/ detections X X 0.93 0.34 0.68 0.35 2.08 2.00

Table 2. Performance of our USL(5) on the Hypersim test set trained with 5 views on Hypersim trainval, with ground truth input boxes (1st

row) and the model’s object detections (2nd row).

Index Inputs Operation Output shape
(1) Input Input Image H ×W × 3
(2) (1) Backbone: ResNet-50-FPN p2 level H

4 ×
W
4 × 256

(3) (2) RoIAlign: Pools and Averages RoI features 1× 256
(4) (3) 4× Linear(256, 256) 1× 256
(5) (4) Layout z: Linear(256, |C|) 1× |C|
(6) (4) Layout ρ: Linear(256, |C|) 1× |C|
(7) (2) Stage 1: RoIMap: Pools features from ico3 sphere |V | × 256, |F | × 3
(8) (7) Stage 1: 3× GraphConv(256 + 3, 256) |V | × 256, |F | × 3
(9) (8) Stage 1: Linear(256 + 3, 3) |V | × 3, |F | × 3
(10) (2), (9) Stage 2: RoIMap: Pools features from (9) |V | × 256, |F | × 3
(11) (10) Stage 2: 3× GraphConv(256 + 3, 256) |V | × 256, |F | × 3
(12) (11) Stage 2: Linear(256 + 3, 3) |V | × 3, |F | × 3
(13) (2), (12) Stage 3: RoIMap: Pools features from (12) |V | × 256, |F | × 3
(14) (13) Stage 3: 3× GraphConv(256 + 3, 256) |V | × 256, |F | × 3
(15) (14) Stage 3: Linear(256 + 3, 3) |V | × 3, |F | × 3

Table 3. Overall architecture of our model on Hypersim. The backbone, RPN and box branches are identical to Mask R-CNN [4]. The
RPN produces a bounding box prediction for anchors at each spatial location in the input feature map; a subset of these candidate boxes are
processed by the other branches, but here we show only the shapes resulting from processing a single box for the subsequent task-specific
heads. Here, |C| is the number of categories.

Index Inputs Operation Output shape
(1) Input Input Image H ×W × 3
(2) (1) Backbone: ResNet-50-FPN p2 level H

4 ×
W
4 × 256

(3) (2) RoIAlign: Pools and averages RoI features 1× 256
(4) (3) 4× Linear(256, 256) 1× 256
(5) (4) Layout CZ : Linear(256, |C|) 1× |C|
(6) (4) Layout ρZ : Linear(256, |C|) 1× |C|
(7) (2) Stage 1: RoIMap: Pools features from ico3 sphere |V | × 256, |F | × 3
(8) (7) Stage 1: 3× GraphConv(256 + 3, 256) |V | × 256, |F | × 3
(9) (8) Stage 1: Linear(256 + 3, 3) |V | × 3, |F | × 3

Table 4. Overall architecture of our model on ScanNet. The backbone, RPN and box branches are identical to Mask R-CNN [4]. The RPN
produces a bounding box prediction for anchors at each spatial location in the input feature map; a subset of these candidate boxes are
processed by the other branches, but here we show only the shapes resulting from processing a single box for the subsequent task-specific
heads. Here, |C| is the number of categories.

References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012,
2015. 1

[2] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In CVPR, 2017.
2

[3] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
R-CNN. In ICCV, 2019. 1, 2, 3

[4] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick.
Mask R-CNN. In ICCV, 2017. 2, 4

[5] Yinyu Nie, Xiaoguang Han, Shihui Guo, Yujian Zheng, Jian
Chang, and Jian Jun Zhang. Total3dunderstanding: Joint lay-
out, object pose and mesh reconstruction for indoor scenes
from a single image. In CVPR, 2020. 1

[6] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Ku-
mar, Miguel Angel Bautista, Nathan Paczan, Russ Webb, and
Joshua M. Susskind. Hypersim: A photorealistic synthetic
dataset for holistic indoor scene understanding. In ICCV, 2021.
2

	. Comparison to Total3D
	. Experiments on Scene-ShapeNet
	. The dataset
	. More results
	. Network architecture and stats

	. Experiments on Hypersim
	. Video Animations
	. Network architecture and stats
	. Performance on the test set.

	. Experiments on ScanNet
	. Network architecture and stats

