
A. Additional Training Details
A.1. Misc

We downsample the original 2048⇥2048 images to 400⇥
400 for all methods but COLMAP. Both NeRF baselines are
trained for 100k iterations and take ⇠ 10 hours to run on a
32GB NVIDIA V100. DS is trained for 50k iterations and
takes ⇠ 9 hours to run on the same GPU.

A.2. Bi-directional distance transform loss

This section describes the bi-directional distance trans-
form loss Lbi-dt used in the mask reconstruction loss in Equa-
tion 6 of the main text. Our novel loss is a differentiable
version of a non-differentiable naive bi-directional distance
transform loss. We first define the naive non-differentiable
loss and then describe our differentiable adaptation to it. For
convenience, we misuse A (or Ar) to refer to the set of pixels
where GT mask A (or the rendered mask Ar) is 1.

A naive non-differentiable bi-directional distance trans-
form loss Lbi-dt-naive(Ar, A) between the rendered mask Ar

and GT mask A consists of 2 components. The first penal-
izes pixels p 2 Ar \A, where the rendered mask is 1 but GT
mask is 0, by the distance of p from NN(p,A) - the closest
occupied pixel in the GT mask. NN is the nearest neighbor
operation in euclidean space. The second component penal-
izes pixels q 2 A\Ar, where the GT mask is 1 but rendered
mask is 0, by the distance of q from NN(q, Ar) - the closest
occupied pixel in the rendered mask.

Lbi-dt-naive(A
r, A) =

X

p2Ar\A

NNd(p,A)+
X

q2A\Ar

NNd(q, A
r))

(7)
where NNd(p,A) = d(p,NN(p,A)) is the distance between
p and its nearest neighbor in A as measured by a metric d.

The operation of finding the set of pixel locations
where the rendered mask Ar is occupied is the only non-
differentiable one in the loss above. Our novel adaptation
provides a differentiable approximation for the same. Given
a pixel p in i-th image Ii, recall (from Section 3.1) that the
rasterizer finds K points x1..K on the surface of the mesh
that project to p under camera ⇡i. Therefore, ⇡i(xk) is a
differentiable approximation to p for each xk. We approx-
imate p ⇠ p̂ =

P
k wk⇡i(xk) as a normalized weighted

sum of projections ⇡i(xk) with weights from the softmax
blending that composites texels c1..K into a final color at
p. Let Âr = {p̂|p 2 Ar; p̂ =

P
k wk⇡i(xk)}. The full

differentiable bi-directional distance transform loss is

Lbi-dt(A
r, A) =

X

p2Ar\A

NNd(p̂, A) +
X

q2A\Ar

NNd(q, Âr))
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where d(x, y) = clamp(||x � y||2, ⌧min, ⌧max) is the
clamped L-2 euclidean distance. We set ⌧min to 2 pixels
and ⌧max to 0.1 of the shorter image dimension.

A.3. Learning Schedule
We run our optimization for 50k iterations using SGD

with a momentum of 0.9 and an initial learning rate of 0.01.
We use cosine annealing for our learning rate with warm
restarts [33] which we find helps avoid local minima for
both shape and cameras. We clip gradient norms for stability.
For mesh rasterization, we use PyTorch3D [41] with K = 6
and a blur radius that decays exponentially from 5⇥ 10�5

to 10�6 over the course of optimization.

A.4. Aligning meshes for benchmarking
As cameras are optimized, ground-truth and optimized

shapes are not in a common coordinate space and must be
aligned before benchmarking. However, different bench-
marking metrics are minimized by different alignments.
Therefore, for every instance, for each metric, we find 3 pos-
sible alignments and pick the best. The first is a brute force
minimization of Chamfer-L2 over scale/depth in camera 0’s
view coordinate space. The second and third additionally
optimize rotation and translation via ICP from ground-truth
to predicted mesh and vice-versa.

B. Additional Results
B.1. COLMAP

In Fig. 14, we show dense pointcloud reconstructions by
COLMAP on scenes from the Tanks and Temples dataset
as the number of views reduces from 100 to 50 to 25 to 15.
The pointcloud density drops drastically as we reduce the
number of views below 50. With 15 views, the reconstruction
is practically empty and the scene is unrecognizable. Our
attempts to mesh these points using COLMAP’s Poisson and
Delaunay meshers failed. In contrast, as seen in Fig. 8 of
the main text, our approach is far more robust with the same
views.

In Fig. 15, we show dense pointcloud reconstructions
by COLMAP on instances from the Google dataset with 8
input views and ground-truth cameras. COLMAP fails on
2/50 instances and of the 48 instances it works on, it only
reconstructs parts of the scene that are textured and visible
in close (narrow-baseline) views. It still misses surfaces that
are visible in only 2-3 wide baseline views. For example in
Fig. 15, COLMAP fails to reconstruct the back of the green
backpack which is visible only in 2/8 input views.

Cameras from SfM We tried using COLMAP’s Structure-
from-Motion (SfM) pipeline to ameliorate the need for noisy
camera inputs. It often, if not always, fails to register all cam-
eras into a single coordinate space correctly and usually ends



up with multiple groups – each with 2-3 cameras with rea-
sonably accurate relative orientation. The inability to merge
the multiple groups into a single coordinate frame made it
infeasible to use the COLMAP cameras as initializations.
Note that SfM’s failure is not surprising since we are work-
ing with 8 white-background views covering 360-degrees of
the object. On average, any surface is visible from ⇠ 3 views
only. Furthermore, white background images are harder to
calibrate than in-context images with background because
of the lack of visual overlap in the background.

B.2. Further comparisons
In addition to comparisons with NeRF [35] and NeRF-opt

in the main paper, we compare to COLMAP [43], IDR [51],
and DS-naive. Tab. 2 shows results on GSO following the
evaluation protocol of the main paper. All methods use 8
views and � = 30° camera noise, except COLMAP, which
uses ground-truth cameras. For COLMAP, we compute
metrics on the reconstructed dense point cloud via uniform
random sampling.

DS outperforms all baselines across all metrics. IDR
gets slightly better shapes but worse cameras than NeRF-
opt. However, neither can recover accurate geometry under
camera noise. Surprisingly, DS-naive performs similar to
NeRF-opt but with better Chamfer and Normal Consistency,
suggesting the mesh representation is robust in noisy settings.
We note that COLMAP has extremely high precision (99.8%,
compared to DS’s 88.4%) but very poor recall (35.5%, com-
pared to DS’s 78.2%) at a threshold of 0.2. This suggests
that COLMAP reconstructs accurate point clouds but misses
large parts of the shape, supporting the qualitative claim in
Appendix B.1. The comparison with COLMAP, a method
that finds view correspondences followed by triangulation,
suggests that such methods have a hard time reconstructing
shapes from limited views.
Tanks and Temples Fig. 10 compares on Tanks and Tem-
ples with 15 views and no camera noise (to be compared to
Fig. 8 in the main paper). Tab. 1 shows the corresponding
quantitative comparison following the evaluation protocol of
the main paper. However, since the ground-truth pointclouds
are hollow (without the bottom), the reported numbers only
approximate the quality of the shape. NeRF-opt produces
lower quality shapes than DS. With more views and no cam-
era noise, IDR performs slightly better than DS. This is not
a surprise. Our approach has an advantage when few views
( 12) are available and cameras are noisy. But our ap-
proach, even with more views (= 15) and no camera noise,
reconstructs shapes well, performing better than NeRF-opt
and similar to IDR.

Figure 10. IDR and NeRF-opt on Tanks and Temples with 15
views.

Scene Method Chamfer# F1@.1" F1@.2"

Barn
IDR 0.14 47.6 70.2
NeRF-opt 0.98 33.4 48.2
DS 0.39 35.1 . 56.0

Caterpillar
IDR 0.06 59.6 81.9
NeRF-opt 0.15 54.5 77.7
DS 0.07 55.8 76.4

Ignatius
IDR 0.18 68.2 86.9
NeRF-opt 0.20 54.6 74.5
DS 0.30 53.4 75.8

Truck
IDR 0.06 54.8 79.7
NeRF-opt 1.40 23.9 40.8
DS 0.14 52.0 70.7

Table 1. Results on Tanks and Temples scenes with 15 input views.

Method Chamfer# F1@.1" F1@.2" NC" Rot#
COLMAP 0.38 35.2 52.3 - -
IDR 0.52 22.0 40.5 0.23 22.8
NeRF-opt 0.31 33.1 58.6 0.28 13.4
DS-naive 0.22 29.5 53.0 0.54 14.7
DS 0.10 63.5 80.6 0.68 0.54

Table 2. Results on GSO with 8 views and � = 30° camera noise.
NC=Normal Consistency; Rot=Rotation Error (in degrees).



DTU dataset Fig. 11 compares on scenes from the DTU
dataset with 6 views and linear camera noise following IDR
[51]. Note that this data is easier to reconstruct because the
6 views span only 1/8th of the entire viewing sphere and the
cameras have an average camera noise of only ⇠ 1°, which
is much lesser than most of our experiments on GSO. We
observe that both DS and IDR outperform NeRF-opt, which
has cloudy artifacts. IDR works well in this setting with
few views and almost-correct cameras. This is not a surprise
as DS has an advantage with few views and noisy cameras.
IDR reconstructions are slightly more detailed than DS at
some places (e.g. at the windows of the house and the feet
of the bird). However, IDR shapes are less constrained and
contain erroneous blobs (e.g. at the belly of the teddy bear,
the middle and side of the house, and the head of the boy)
because of the lack of a sufficient number of views.

B.3. DS
In Fig. 12 , we show shape and texture reconstruction

from DS on more instances in the GSO Dataset.
In Fig. 13, we show some failure modes of DS. Thin struc-

tures and small objects are particularly hard to reconstruct.
This is because we use a mesh representation with surface
smoothening regularization. DS does not model surface
specularities and lighting and subsequently also struggles
with specular surfaces.



Figure 11. Results on DTU with 6 views and linear camera noise. Figure compares DS to IDR and NeRF-opt.



Figure 12. Qualitative shape and texture reconstructions by DS using 8 views and 20° camera noise for more instances from Google’s
Scanned Objects Dataset

Figure 13. Failure modes for two instances from Google’s Scanned Objects. For the leftmost example, we show the input views (left) and
reconstructions (middle) and ground truth shape (right). For the rightmost example, we show input views (left), reconstructions (right top)
and ground truth shape (right bottom).



Figure 14. COLMAP-reconstructed dense pointclouds with varying number of input views from scenes in the Tanks and Temples dataset.

Figure 15. COLMAP-reconstructed dense pointclouds with 8 input views and ground-truth cameras for objects in the Google Scanned
Objects Dataset.
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