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Figure 1. Class Wise Recall@100 for the set of Implicit and Explicit Relations by training on a subset of relations. All models are trained
with Motif-TDE-Sum [3, 6].

1. Dataset Statistics

For the Visual Genome dataset [1], Xu et al. [5] released
a version of the dataset with 50 relations and 150 object
categories. These 50 relations are: above, across, against,
along, and, at, attached to, behind, belonging to, between,
carrying, covered in, covering, eating, flying in, for, from,
growing on, hanging from, has, holding, in, in front of, lay-
ing on, looking at, lying on, made of, mounted on, near, of,
on, on back of, over, painted on, parked on, part of, play-
ing, riding, says, sitting on, standing on, to, under, using,
walking in, walking on, watching, wearing, wears, with.

In Table 1, we present the explicit set of relations with
the number of training instances for each relation in the Vi-
sual Genome dataset. Similarly, in Table 2 and Table 3, we
define the implicit set of relations1 and their frequency in
the Visual Genome dataset.

2. Additional Results

Quantitative Studies. In Figure 1, we present the class
wise recall for all the relation classes in the Visual Genome

1We break down the implicit relations into two tables for better visual-
ization.

dataset [1] for training on a subset of relations i.e. ei-
ther learning only on explicit relations or only on implicit
relations. All the models are trained with the MOTIF-
TDE-Sum SGG model [3, 6]. The class-wise performances
clearly indicates the generalizability of training only on im-
plicit relations as it achieves at-par/similar performances on
the explicit relations, whereas the model only trained on ex-
plicit relations performs poorly on implicit relations.

Figure 2 compares the class-wise performances for the
VCTree model trained with only Energy Based Modeling
(EBM) [2] and also with our proposed method. The perfor-
mance gains of our model over the baseline in the implicit
relations such as “carrying”, “eating”, “covering”, walking”
etc. shows the importance of mining these informative rela-
tions from less informative samples while still maintaining
recall on the explicit relations hence, improving generaliza-
tion.

Regular Recall Results. In Table 4, we show the Regular
Recall@k results for different SGG backbone architectures
when trained with our proposed method compared to the
baseline. Although, there is no significant improvement in
Regular Recall (when compared to the improvements ob-
tained from mean recall), the at-par performance with the

1



Explicit Relations above across against along at behind between in in front of near on over under
# of Instances 47341 1996 3092 3624 9903 41356 3411 251756 13715 96589 712409 9317 22596

Table 1. Explicit Relations for the Visual Genome Dataset [1].

Implicit Relations attached to and belonging to carrying covered in covering eating flying in for from growing on hanging from has holding laying on looking at
# of Instances 10190 3477 3288 5213 2312 3806 4688 1973 9145 2945 1853 9894 277936 42722 3739 3083

Table 2. Implicit Relations for the Visual Genome Dataset [1].

Implicit Relations lying on made of mounted on of on back of painted on parked on part of playing riding says sitting on standing on to using walking in walking on watching wearing wears with
# of Instances 1869 2380 2253 146339. 1914 3095 2721 2065 3810 8856 2241 18643 14185 2517 1925 1740 4613 3490 136099 15457 66425

Table 3. Implicit Relations for the Visual Genome Dataset [1].
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Figure 2. Relation-wise Recall using the VCTree-EBM [2] as the backbone SGG model trained with our proposed method (Ours) vs. the
method proposed in [2] (Baseline).

baseline shows that our method maintains the performance
on frequent relations while improving significantly on the
more informative/infrequent relation classes (as measured
by mean recall).
Qualitative Studies. We present additional qualitative
visualizations in Figure 3 and Figure 4. Our proposed
method predicts informative relations for both the set of
pairs present in the ground truth and new set of object pairs
that further helps to define a scene comprehensively. In
the quantitative evaluation we only reward object pairs that
have corresponding ground truth relations, hence, the rela-
tions for the remaining set of object pairs can only be visu-
alized qualitatively.



Predicate Classification Scene Graph Classification Scene Graph Detection
Models Method R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

Motif-TDE-Sum [3, 6]
Baseline 33.38 45.88 51.25 20.47 26.31 28.79 11.92 16.56 20.15

Ours 33.36 43.53 47.44 24.31 29.91 31.75 14.59 17.96 19.70

VCTree [4]
Baseline 59.82 65.93 67.57 41.49 45.16 46.10 24.90 32.02 36.30

Ours 58.66 64.69 67.05 35.49 38.71 39.51 24.63 31.52 36.42

VCTree-EBM [2]
Baseline 57.31 63.99 65.84 40.31 44.72 45.84 24.21 31.36 35.87

Ours 57.42 64.37 66.43 35.42 38.79 39.66 23.70 30.74 35.62

VCTree-TDE [3]
Baseline 40.12 50.83 54.91 26.00 33.03 35.97 13.97 19.43 23.34

Ours 36.90 47.62 52.03 25.67 32.83 35.76 15.20 19.00 20.98

Table 4. Scene Graph Generation performance comparison on Regular Recall@K [3] under all three experimental settings. We compare
the results of our proposed framework (Ours) with the original model (Baseline) using different SGG architectures.

21-woman wearing 7-jacket
21-woman wearing 22-pant
23-street in front of 21-woman
14-sign on 12-pole
8-person wearing 7-jacket 
8-person walking on 13-sidewalk 
20-window on 1-building  
8-person carrying 0-bag  
7-jacket on 8-person
10-pant on 21-woman

6-car parked on 3-street 
16-sign attached to 12-pole 
8-person carrying 0-bag
8-person walking on 13-sidewalk
3-car parked on 23-street  
21-woman carrying 0-bag
19-vehicle parked on 23-street
20-window of 1-building 
21-woman walking on 13-sidewalk
14-sign attached to 12-pole 
18-tile on 13-sidewalk

Ground Truth Triplets Predicted Triplets

Ground Truth Triplets Predicted Triplets

2-man on 3-sign 
5-window on 0-building 
5-window on 7-window

5-window of 0-building
4-sign attached to 6-building
4-sign attached to 0-building 
0-building has 7-window
1-fence sitting on 0-building
2-man painted on 3-sign 
1-fence sitting on 4-sign 
7-window on 6-building
0-building behind 4-sign 
3-sign under 4-sign
0-building has 5-window

Figure 3. Additional Qualitative Results with the ground truth triplets and the predicted triplets from the VCTree-EBM model trained with
our proposed training framework. The predicted triplets are from the SGCls setting.



Ground Truth Triplets Predicted Triplets

10-woman with 9-phone 
10-woman holding 9-phone 
0-bag with 1-bottle
3-girl with 7-glass
5-girl with 8-jean
3-girl with 7-glass
10-woman with 9-phone
6-girl with 1-bottle 
6-girl with 0-bag
3-girl with 7-glass 
5-girl with 9-phone

3-girl wearing 7-glass
10-woman holding 9-phone
5-girl looking at 9-phone
2-boy looking at 9-phone
1-bottle in 0-bag
4-girl holding 9-phone 
3-girl looking at 9-phone
0-bag has 1-bottle
10-woman with 4-girl
7-glass on 5-girl
6-girl wearing 8-jean
4-girl wearing 8-jean

Ground Truth Triplets Predicted Triplets

4-bottle near 9-screen 8-wire laying on 5-desk
8-wire holding 6-lamp
1-bottle behind 9-screen
7-window on 9-screen
4-bottle sitting on 5-desk
0-bag laying on 5-desk
1-bottle sitting on 5-desk
2-bottle on 5-desk 
6-lamp on 5-desk
9-screen laying on 5-desk
3-bottle on 5-desk
2-bottle in 7-window
0-bag laying on 9-screen
5-desk near 7-window
4-bottle near 8-wire

Figure 4. Additional Qualitative Results.
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