
A. Supplementary Material

In the supplementary material we perform, (1) Ablation
studies analyzing different components of our algorithm
(Appendix A.1), (2) tuning the adaptive clipping threshold
can further improve AdaMix (A.2), (3) show that using a
larger � (training for longer) is better (A.3), (4) provide ad-
ditional experimental results (A.4), (5) provide details ex-
perimental details (A.5, A.6), and (6) proofs for all the the-
oretical results presented in the paper (Appendix B, C, D).

A.1. Ablation Studies

In Fig. 5, we ablate the two components of our algo-
rithm, namely, Subspace Projection and Adaptive Clipping.
We consider the Noisy-GD (NGD) as the baseline and ana-
lyze the improvement provided by the two components sep-
arately and finally in combination (AdaMix). We observe
that adaptive clipping is the key component of the AdaMix
algorithm. We show that using the two components to-
gether performs the best across multiple datasets. In the
next section we show that further tuning the adaptive clip-
ping threshold can improve the performance even more on
some datasets. In Fig. 6, we plot the relative reconstruc-
tion error for the private gradients on the public gradient
subspace and a random subspace. We observe that the re-
construction error on the public gradient subspace is at least
half the random subspace throughout training, which sug-
gests the importance of the public gradients for AdaMix.

Figure 5. Ablation Studies Box plot showing the relative de-
crease in the test error across multiple datasets when we add Sub-
space Projection, Adaptive Clipping and Subspace Projection +
Adaptive Clipping (AdaMix) to NGD. We observe that adaptive
clipping provides more improvement compared to subspace pro-
jection, and the combination of the two works the best across 6
datasets.

A.2. Effect of AdaMix clip threshold

We plot the effect of adaptive clipping threshold (per-
centile) on the test error for AdaMix (we use 90 percentile

Figure 6. Random Subspace Projection We plot the relative re-
construction error of the private gradients when projecting on the
subspace spanned by the public gradients or on a random subspace
during training (using AdaMix and ✏ = 3). The reconstruction
error when projecting on the random subspace is generally more
than twice the error obtained projecting on the subspace of public
gradients, highlighting the importance of using the latter.

in all of our experiments) in Fig. 7. However for CUB-200
and Caltech-256 tuning it to 75 percentile works better indi-
cating that AdaMix has more scope for improvement. Note,
however that using 90 percentile for CUB-200 and Caltech-
256 still outperforms all the baselines.

Figure 7. Effect of adaptive clipping threshold We plot the test
accuracy of AdaMix using different values of adaptive clipping
threshold percentile.

A.3. Longer training with more noise

Higher values of � requires more training steps, however,
Theorem 3 shows that it leads to better convergence, which
leads to better generalization. In Fig. 8 we see that indeed,
at the same level of privacy, using a large of � significantly
reduces the test error compared to using a smaller �.

A.4. Additional Experiments

In the main paper we presented detailed experimental re-
sults on MIT-67, here we present detailed results on all the
remaining datasets.



Figure 8. Larger values of � performs better. We plot the test
accuracy of NGD and AdaMix using different values of � for ✏ =
3. A larger � performs better but needs more training steps thus
verifying the claim empirically across multiple datasets.

A.4.1 Test Error vs Privacy

We show the test error obtained by different methods for
different levels of privacy ✏ and the robustness to member-
ship attack, similar to Fig. 1 for different datasets in Figs. 9
to 13

Figure 9. Test error vs Privacy and Robustness to Membership
Attacks on Oxford-Flowers

Figure 10. Test error vs Privacy and Robustness to Membership
Attacks on CUB-200

Figure 11. Test error vs Privacy and Robustness to Membership
Attacks on Oxford-Pets

A.4.2 Per-Instance Privacy

We show the pDP loss for NGD and AdaMix for different
datasets in Figs. 14 to 18, similar to Fig. 3 (we use ✏ = 3).

Figure 12. Test error vs Privacy and Robustness to Membership
Attacks on Stanford Dogs

Figure 13. Test error vs Privacy and Robustness to Membership
Attacks on Caltech-256

Figure 14. Effect of public data on per-instance DP for Oxford
Flowers

Figure 15. Effect of public data on per-instance DP for CUB-200

Figure 16. Effect of public data on per-instance DP for Oxford
Pets



Figure 17. Effect of public data on per-instance DP for Stanford-
Dogs

Figure 18. Effect of public data on per-instance DP for Caltech-
256

A.5. Multi-modal Initialization

We show the effect of using different initializations and
CLIP features for different datasets in Figs. 19 to 22, sim-
ilar to Fig. 4 (we use ✏ = 3). We show that for Stanford
Dogs and Oxford Pets datasets (Fig. 19 and Fig. 20) which
have images which are very similar to images in ImageNet,
ResNet-50 trained on ImageNet performs better than CLIP
features. However, the trend for the effect of initialization
remains the same across all the datasets.

Figure 19. Multi-model initialization and models for Oxford Pets

Figure 20. Multi-model initialization and models for Stanford
Dogs

A.6. Experimental Details

We use Auto-DP library for all of our experiments. For
ResNet-50 features we use the torchvision version of
the ResNet-50 model and for CLIP features we use the

Figure 21. Multi-model initialization and models for Oxford Flow-
ers

Figure 22. Multi-model initialization and models for CUB-200

model provided.3
To create the public and private datasets, we take 2 sam-

ples (for Oxford-Flowers and CUB-200) and 5 samples (for
MIT-67, Stanford Dogs, Oxford Pets, Caltech-256) from
each class as the public dataset and the remaining samples
as the private dataset. In this way, the public set is less than
10% of the private set. We repeat all the experiments with 3
random seeds and report its mean and std.

For all the experiments we try multiple values for the
learning rate: {1e� 3, 2.5e� 3, 5e� 3} for ResNet-50 ex-
periments and {1e � 6, 5e � 7, 1e � 7} for CLIP experi-
ments, and report the best values across 3 random seeds.
We use 1e � 2 as the L2 regularization coefficient across
all the experiments. For subspace projection we project the
gradients on a 2000-dimensional subspace for experiments
with ResNet-50 features and 500-dimensional subspace for
experiments with CLIP features. For the clipping threshold
percentile we use a constant value of 90 percentile across
all the experiments in the paper. In Fig. 7, we show that
further tuning the clipping threshold percentile can improve
performance on certain datasets, however, even with a pre-
decided value of 90 percentile it still out-performs all the
other methods.

We train the logistic model on the public data (few
shot data) for 200 epochs (sames as iterations since we
use gradient descent) for multiple values of learning rate:
{1e� 1, 5e� 2, 1e� 2} for ResNet-50 features and {1e�
4, 5e � 5, 1e � 5} for CLIP features and choose the best
performing model. For the private training, we use � = 20
for all the experiments and calculate the number of itera-
tions required for private training using methods provided
in Auto-DP. In the experiments we observe that choosing a
higher value of � (thus training for more iterations) gener-
ally results in better performance.

3
https://github.com/openai/CLIP

https://github.com/yuxiangw/autodp
https://github.com/yuxiangw/autodp/blob/master/tutorials/tutorial_AdaSSP_vs_noisyGD.ipynb
https://github.com/openai/CLIP


B. Differential privacy basics

In this section, we describes tools we need from differential privacy and use them to prove that Algorithm 2 and Algo-
rithm 3 satisfies a family of differential privacy parameters.

Lemma 6 (Analytical Gaussian mechanism [5]). For a numeric query f : X ⇤ ! Rd
over a dataset D, the randomized

algorithm that outputs f(D) + Z where Z ⇠ N (0,�2
Id) satisfies (✏, �(✏))-DP for all ✏ � 0 and �(✏) = �(µ2 �

✏
µ ) �

e
✏�(�µ

2 �
✏
µ ) with parameter µ := �/�, where � := �(f)

2 = maxD⇠D0 kf(D)� f(D0)k2 is the global L2 sensitivity of f

and � is the CDF function of N (0, 1).

The above lemma tightly characterizes the (✏, �)-DP guarantee of a single invocation of the Gaussian mechanism, and the
following lemma shows that we can use the same result for an adaptive composition of a sequence of Gaussian mechanisms.

Definition 7 (Gaussian Differential privacy [14]). We say a mechanism M satisfies µ-Gaussian differential privacy (GDP),

if it satisfies (✏, �(✏))-DP for all ✏ � 0 and �(✏) being that of a single Gaussian mechanism (in Lemma 6) with parameter µ.

Lemma 8 (Composition of Gaussian mechanisms [14]). The adaptive composition of a sequence of Gaussian mechanism

with noise level �1,�2, . . . and global L2 sensitivity �1,�2, . . . satisfies µ-GDP with parameter µ =
�P

i(�i/�i)2
�1/2

.

Specifically, the noisy gradient descent (NoisyGD) algorithm (Algorithm 1) we use is a composition of T Gaussian
mechanisms for releasing the gradients and its privacy guarantee is equivalent to that of a single Gaussian mechanism.

Proposition 9. Let rf(w) be a function of the private dataset with global L2 sensitivity smaller than L for any w 2 W ,

then Algorithm 1 with parameter T,�
2

such that ⇢ := T 2L2

2�2 satisfies
p
2⇢-Gaussian differential privacy.

Proof. The proof follows from Lemma 8 as Algorithm 1 is an adaptive composition of T Gaussian mechanisms with global
sensitivity L.

C. Per-instance differential privacy

In this section, we provide details on the per-instance differential privacy [55] that we used to generate Figure 3. To cleanly
define per-instance differential privacy, we first define indistinguishability.

Definition 10 ((✏, �)-indistinguishability). We say two distributions P,Q are (✏, �)-indistinguishable if for any measurable

set S

PrP [S]  e
✏ · PrQ[S] + � and PrQ[S]  e

✏ · PrP [S] + �.

Definition 11 ( [55]). We say a randomized algorithm M is (✏(·), �)-per-instance differentially private (pDP) for scalar

� � 0 and function ✏ : Z⇤ ⇥ Z ! R+, such that for any dataset D 2 Z⇤
, individual z 2 Z , M(D) and M(D [ {z}) are

(✏(D, z), �)-indistinguishable.

pDP loss ✏ is a function of one particular pair of neighboring datasets. It describes the formal privacy loss incurred to the
particular individual z that is added (if z is not part of the input dataset) or removed (if z is part of the input dataset). pDP is
a strict generalization of DP, as we can recover DP from pDP by maximizing ✏(·) over D, z.

Lemma 12. If M is (✏(·), �)-pDP, then M is also (supD2Z⇤,z2Z ✏(D, z), �)-DP.

We emphasize that the pDP loss ✏(·) itself is data-independent, but specific evaluations of the pDP losses (e.g., ✏(D�z, z)
or ✏(D, z)) depends on the private dataset D, thus should not be revealed unless additional care is taken to privately release
these numbers.

For our purpose, we are interested in the distribution of pDP losses of individuals in the dataset induced by different DP
algorithms. This is used to provide a theoretically-sound alternative to the prevalent practices of using specific attacks (such
as membership inference attacks) for evaluating the data-dependent privacy losses. Before we state the pDP bounds of our
algorithms, we extend the standard (✏(·), �)-pDP definition to a per-instance version of the Gaussian DP.

Definition 13. We say a mechanism is µ(·)-per-instance Gaussian Differentially Private (pGDP), if (D,D [ z) (and (D [
z,D)) are (✏, �)-indistinguishable for all ✏, � parameters described by µ(D, z)-GDP.



Algorithm 3: (Theoretical version of) AdaMix training algorithm (no clipping, no adaptive projection, slightly
different pretraining, theoretically chosen learning rate).

Data: Public dataset Dpub, private dataset Dpri, privacy parameter (✏, �), noise variance �, Lipschitz constant L4,
population-level strong convex parameter c, regularization parameter � and a constraint set W .

Result: w̄

// Public Pretraining Phase (OnePassSGD on Dpub):

w1 = 0. for t = 1, . . . , Npub do

// In a shuffled order

⌘t =
2

c(t+1) ;
wt+1  ⇧W

�
wt � ⌘tr`(wt, (x̃t, ỹt))

�
;

end

wref  wNpub+1.
// Mix Training Phase (NoisyGD on Dpub [Dpri):

T  Calibrate(✏, �,�) // (i.e.,
T⌧2

2�2 =: ⇢)

// NoisyGD on objective function L(w) + �
2 kw � wrefk2

w1 = wref;
for t = 1, . . . , T do

⌘t  2
�(t+1) ;

nt ⇠ N(0,�2
I);

wt+1  ⇧W
�
wt � ⌘t(

PNpri
i=1r`i(wt) +

PNpub
j=1 r˜̀

j(wt) + nt)
�
;

end

// The following averaging can be implemented incrementally without saving wt

w̄  
PT

t=1
2t

T (T+1)wt

This allows us to obtain precise pDP bounds under composition.

Proposition 14 (pDP analysis of AdaMix). Let z1, ..., zn be the data points of the private dataset. Algorithm 3 satisfies

µ(·)-pGDP with

µ(D�i, zi) =

vuut
TX

t=1

min{kr`i(wt)k, ⌧}2
�2

.

Similarly, Algorithm 2 satisfies µ(·)-pGDP with

µ(D�i, zi) =

vuut
TX

t=1

kUT g̃
pri

i (wt)k22
⌧2t �

2
.

Proof. Both algorithms are the composition of T -Gaussian mechanisms. Thus the results follow by the composition of pGDP.
The composition of pGDP is implied by the composition theorem of GDP (Lemma 8) by choosing the space of datasets to
be just {D,D [ {z}}.

Fixing any �, we can then compute the corresponding ✏(·) for (✏(·), �)-pDP using the formula of Gaussian mechanism
with µ taken to be µ(·) pointwise.

D. Proofs of the technical results

We will be using the following O(1/t) convergence bound due to Lacoste-Julien, Schmidt and Bach [28], which uses a
decaying learning rate and a non-uniform averaging scheme.

4As we discussed earlier, per-example gradient clipping can be viewed as Huberizing the loss function in GLMs [48], all our results apply to the updated
loss function. The adaptive clipping approach we took, can be viewed as an heuristic that automatically identifies an appropriate level of Huberization.



Theorem 15 (Convergence of SGD for Strongly Convex Objectives [28]). Let f be a m-strongly convex and defined on a

convex set W . Assume stochastic gradient oracle gt satisfies that E[gt|wt] 2 @f(wt) and E[kgtk2]  G
2

for all t = 1, ..., T .

Then the (projected) stochastic gradient descent with learning rate ⌘t =
2

m(t+1) satisfies

E[f(
TX

t=1

2t

T (T + 1)
wt)]� f(w⇤)  2G2

m(T + 1)
(1)

and E[kwT+1 � w
⇤k2]  4G2

m2(T + 1)
. (2)

Corollary 16 (NoisyGD for Strongly Convex Objectives). Let J(w) = L(w)+ �
2 kwk

2
with individual loss functions ` being

L-Lipschitz on W . Assume supw2W kwk  B. Let the learning rate be ⌘t =
2

�(t+1) , then

E
"
J

 
2

T (T + 1)

TX

t=1

twt

!#
� J

⇤ 2(NL+ �B)2

�T
+

2d�2

�T
(3)

=
2(NL+ �B)2

�T
+

dL
2

�⇢
, (4)

where ⇢ := TL2

2�2 is the privacy parameter of the algorithm (
p
2⇢-GDP).

Proof. First check that NL + �B upper bounds the Lipschitz constant of J on because the Lipschitz constant of �
2 kwk

2 is
smaller than �B due to the bounded domain. Second, check that the noisy gradient oracle satisfies that it is unbiased, and the
added noise has a variance of �2 per coordinate for all d coordinates. Thus

E[kgtk2|wt] = E[krJ(wt)k2|wt] + E[kntk2|wt]  (NL+ �B)2 + d�
2
.

Thus by taking expectation on both sides we verify that we can take G
2 = (NL+ �B)2 + d�

2.
It remains to substitute these quantities and apply the first statement of Theorem 15.

Corollary 17 (One-Pass SGD on public data). Assume the public data with N samples are drawn from the same distribution

of the private data. Assume that the (population risk)

R(✓) = E(x,y)⇠D[`(✓
⇤
, (x, y))]

is c-strongly convex at ✓
⇤

for some constant c. Then the one-pass SGD algorithm below

wt+1 = wt �
2

c(t+ 1)
r`(wt, (xt, yt))

for t = 1, ..., Npub obeys that

E[kwNpub+1 � w
⇤k2]  4L2

c2Npub

where w
⇤ = argminw2W R(w).

Proof. First note that since the data is drawn iid, running one-pass SGD by going through the data points in a random order
uses a fresh sample to update the parameters. This is is equivalent to optimizing the population risk directly. Check that
for any fixed w and all t = 1, ..., Npub E(xt,yt)⇠D[rw`(w, (xt, yt))] = rR(w). Moreover, we need this stochastic gradient
oracle to satisfy E(x,y)⇠D[kr`(✓, (x, y))k2]  G

2. Notice that by our assumption kr`(✓, (x, y))k2  L
2, thus we can take

G = L. By invoking the second statement of Theorem 15 the result follows.

With these two corollaries stated, we are now ready to prove Theorem 3 and Theorem 18.



Proof of Theorem 3. The proof relies on Corollary 16, and the following argument. When additional regularization with
parameter �, the utility we consider should still be considered in terms of L(ŵ) � L(w⇤). Let w⇤ be any comparator
satisfying B > kw⇤k

L(w̄)� L(w⇤) = J(w̄)� J�(w
⇤
�)

+ J�(w
⇤
�)� J(w⇤) +

�

2
kw⇤ � wrefk2 �

�

2
kŵ � wrefk2

J(ŵ)� J�(w
⇤
�) +

�

2
kw⇤ � wrefk2.

Take expectation on both sides and apply Corollary 16

E[L(w̄)]� L(w⇤)  2(NL+ �B)2

�T
+

dL2

�⇢
+

�
2
kw⇤ � wrefk2.

Finally, choosing � =
q

⇢
2kw⇤�wrefkdL2 yields

E[L(ŵ)]� L(w⇤)  4(nL+ �B)2

�T
+

p
dLkw⇤ � wrefkp

2⇢

as claimed (dividing N on both sides to get R̂).

Theorem 18. Assume the private data and public data are drawn i.i.d. from the same distribution D and that R(w) =
E(x,y)⇠D[`(w, (x, y))] is c-strongly convex in W . Let wref = wNpub+1 — the last iterate of a single pass stochastic gradient

descent on R̂pub(w) (initializing from w0 = 0) that goes over the public dataset exactly once one data-point at a time with

learning rate ⌘t =
2

c(t+1) . Let wref be passed into Theorem 3’s instantiation of NoisyGD, which returns w̄ (The pseudo-code

of this algorithm is summarized in Algorithm 3 in the appendix), then at the limit when T is sufficiently large, the excess risk
obeys that

E[R(w̄)]�R(w⇤)

 4
p
dL

2

c
p
NpubN

p
2⇢

+ Gen(w̄,N) + Gen(w⇤
, N),

where w
⇤ = argminw2W R(w) and Gen(w,N) :=

���E[R(w)� R̂(w)]
��� is the expected generalization gap of (a potentially

data-dependent) w.

Proof of Theorem 18. Let w⇤ = argminw2W R(w). By Corollary 17, we have

E[kwref � w
⇤k2]  4L2

c2Npub
,

which implies (by Jensen’s inequality) that E[kwref � w
⇤k] 

q
4L2

c2Npub
.

Now by plugging in the w
⇤ in theorem, take expectation over the public dataset, and substitute the above bound, we get

E[E[R̂(w̄)]� R̂(w⇤)]  4(NL+ �B)2

�TN
+

2
p
dL

2

c
p
NpubN

p
2⇢

.

Take T to be sufficiently large so that the second term dominates, we obtain the stated bound.
Finally, to convert the above bound into that of the excess risk:

E[E[R̂(w̄)]� R̂(w⇤)]� (E[R(w̄)]�R(w⇤))

|E[E[R̂(w̄)]�R(w̄)]|+ |E[R̂(w⇤)]�R(w⇤)|
:=Gen(w̄,N) + Gen(w⇤

, N),

which completes the proof.



We make two additional remarks. First, we do not require the empirical objective Lpub to be strongly convex. In practice,
we do not have strong convexity when Npub < d. The assumption of c-strong convexity is on the population-level risk func-
tion R. Second, our bound decomposes the excess (population) risk of the private learner into a (local) uniform-convergence
bound (which is required by a non-private learner too) and an additional cost due to privacy. Note that Gen(N) is usually
O(1/

p
N) but could be O(1/N) when certain data-dependent “fast rate” conditions are met, e.g., realizability, low-noise,

or curvature (see, e.g., [27]). Our results suggest that the cost of privacy asymptotically vanishes (fix ⇢, Npub ! 1, and
Npub/N ! 0) even under these fast rate conditions relative to the non-private rate.


