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In this supplementary material, we first provide addi-
tional ablation studies, which are all implemented on SHA;
and then we illustrate the detailed architecture of our net-
work.

S1. Impact of Segmentation Threshold
For each image, we obtain its ground truth density map

as follows:

y(n) =

N∑
i=1

δ(n− ai) ∗Gσ(n), (1)

where n denotes the pixel index; ai represents the i-th anno-
tated head point (total N points); δ is the delta function; Gσ

is the Gaussian kernel with a size of 15× 15 and a variance
of σ = 4.

Our fine-grained feature alignment strategy does feature
alignment on foreground and background separately. To
separate foreground and background regions from the den-
sity maps, we apply a threshold close to zero on each local
patch. We analyze how the segmentation threshold th af-
fects the performance. As shown in Tab. S1, the value of
th has a very small impact on the counting performance, in-
dicating that our method is not sensitive to it. Since 0.005
gives the best performance, we choose th = 0.005 for all
our experiments.

S2. Style Transfer from S+ to Target
Our task-driven data alignment tries to select the best

combination of augmentation to reduce the domain gap be-
tween the source and target domains. This is not in con-
flict with style transfer. Therefore we train a style transfer
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Segmentation threshold th MAE MSE

0.0005 102.9 155.7
0.001 99.4 147.9
0.005 99.3 145.0

Table S1. Effect of different segmentation threshold th.

model between the augmented-source (S+) and target do-
mains. From Tab. S2, we can see that a style transfer model
between the S+ and target domain can bring extra improve-
ment.

Method MAE MSE

S+ to Target 97.8 145.1
BLA 99.3 145.0

Table S2. Effect of Style Transfer from S+ to Target.

S3. Effect of More Transformations

For crowd counting, following [2], we choose
RGB2Gray, scaling and perspective transform as our data-
augmentation methods. Here, we consider to add other aug-
mentation methods such as brightness, contrast and satura-
tion randomization to our BLA. From Tab. S3, we find more
transformations can not bring more improvements. This en-
lightened us that, for crowd counting, inter-domain differ-
ences are mainly reflected in saturation, scale and perspec-
tive.
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S (color image, density ≈ 5) S+ (gray image, density ≈ 12) T (gray image, density ≈ 15)

Figure S1. The transformed image (S+) is closer to the target image (T) w.r.t. saturation and density (#heads per 100× 100 patch).

Method MAE MSE

BLA(More Transformations) 101.1 151.6
BLA 99.3 145.0

Table S3. Effect of More Augmentation Methods.

S4. How Does Task-Driven Data Alignment
Reduce the Domain Gap?

From Fig. S1, by observing the images of the source
domain and the target domain, we can find that there are
great differences in saturation and crowd density between
the two domains. Our task-driven data-alignment mainly
aligns the source domain with the target domain in color and
content. Data augmentation makes counter more robust to
saturation, scale and perspective. On the other hand, smaller
inter-domain differences make the model better generalized
to the target domain.

Comparison with Grid Search In order to illustrate the
effect of our AutoML based search algorithm, we compare
it with grid search [1], which is a straight forward way of
searching. For fair comparison, we implement the exper-
iments in our framework by only replacing our AutoML
based search with grid search and keeping other compo-
nents the same.

For each parameter, we set the size of the grid to 5
and distribute the parameters evenly, specifically, angle ∈
{0◦, 11◦, 22◦, 33◦, 45◦} PG ∈ {0, 0.25, 0.5, 0.75, 1.0}, and
scale factor ∈ {0, 0.25, 0.5, 0.75, 1.0} . We employ candi-
date transform validation and find the best transform. As
shown in Tab. S4, the best results we obtain through grid
search is 111.9 w.r.t. MAE and 173.4 w.r.t. MSE. In con-
trast, our AutoML based search algorithm achieves 99.3
w.r.t. MAE and 145.0 w.r.t. MSE. These results demon-
strate the effectiveness of our controller.

Method MAE MSE

Grid Search 111.9 173.4
Ours 99.3 145.0

Table S4. Effect of our AutoML based search method.

S5. Detailed Architecture of Our Network
There are four types of layers in our network, in-

cluding convolutional layer (Conv), fully connected layer
(FC), deconvolution layer (Deconv) and max pooling
layer (Maxpool). We use the following notation to indi-
cate the settings of a convolutional/deconvolutional layer:
Conv/Deconv: [k(3,3)-c256-s1-BN-Relu] representing a
convolutional/deconvolutional operation with a kernel size
of 3 × 3, number of output channels of 256, stride of 1, with
Batch Normalization and ReLU applied afterwards. Sim-
ilarly, Maxpool: [k(2,2)-s2] denotes a max pooling layer
with a kernel size of 2 × 2 and stride of 2; FC: [c16-Relu]
represents a fully connected layer with size of 16, activated
by Relu. We show the detailed network architecture of our
F,E, D and controller C in Tab. S5.



Input Layer Output

F

3×576×768 Conv:[k(3,3)-c64-s1-Relu] × 2 64×576×768

64×576×768 Maxpool:[k(2,2)-s2] 64×288×384

64×288×384 Conv:[k(3,3)-c128-s1-Relu]× 2 128×288×384

128×288×384 Maxpool:[k(2,2)-s2] 128×144×192

128×144×192 Conv:[k(3,3)-c256-s1-Relu]× 3 256×144×192

256×144×192 Maxpool:[k(2,2)-s2] 256×72×96

256×72×96 Conv:[k(3,3)-c512-s1-Relu] × 3 512×72×96

E

512×72×96 Conv:[k(3,3)-c128-s1-BN-Relu] 128×72×96

128×72×96 Deconv:[k(2,2)-c128-s2-BN-Relu] 128×144×192

128×144×192 Conv:[k(3,3)-c64-s1-BN-Relu] 64×144×192

64×144×192 Deconv:[k(2,2)-c64-s2-BN-Relu] 64×288×384

64×288×384 Conv:[k(3,3)-c32-s1-BN-Relu] 32×288×384

32×288×384 Deconv:[k(2,2)-c32-s2-BN-Relu] 32×576×768

32×576×768 Conv:[k(3,3)-c1-s1-Relu] 32×576×768

D

512×72×96 Conv:[k(3,3)-c512-s1-LeakyReLU] 512×72×96

512×72×96 Conv:[k(3,3)-c256-s1-LeakyReLU] 256×72×96

256×72×96 Conv:[k(3,3)-c2-s1] 2×72×96

2×72×96 Resize 2×(H/gh)× (W/gw)

C

3 FC:[c16-Relu] 16

16 FC:[c32-Relu] 32

32 FC:[c64-Relu] 64

64 FC:[c1-Relu] 1 (p̃k)

64 FC:[c32-Relu] 32

32 FC:[c16-Relu] 16

16 FC:[c3-Relu] 3 (d̃k)

Table S5. The network architecture of F,E, D and controller C.
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