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Figure S1. FUTR variants with different decoding strategies. (a) FUTR-A autoregressively anticipates future actions using the output
action labels from the previous predictions as input and utilizes masked self-attention. (b) FUTR-M is equivalent to FUTR except for
masked self-attention applied to action queries. (¢) FUTR remove a causal mask in MHSA, where query attends to past and future queries
in the sequence. FUTR-M and FUTR anticipates action and duration for each query simultaneously.

A. Experimental Details

In this section, we provide experimental details of the
two experiments in Sec. 5.4.
Parallel decoding vs. autoregressive decoding. In Ta-
ble 2, we compare our model with two FUTR variants,
FUTR-A and FUTR-M. Two models have the same encoder
but different decoders compared to FUTR, as illustrated in
Fig. S1. FUTR-A anticipates the next action recurrently us-
ing a sequence of the predicted action labels as input in an
autoregressive way. There exist two unique tokens: SOS
and EOS in autoregressive decoding, each of which indi-
cates the start and the end of the sequence, respectively.
The decoder of FUTR-A takes SOS as the first input and
predicts the next action label recursively until the model
predicts EOS. FUTR-M takes a sequence of action queries
as input and predicts action labels and durations in paral-
lel with masked self-attention. Masked self-attention em-
ploys a causal mask to MHSA, which prevents attending
to future actions. The core difference between FUTR and
FUTR-M lies in the masked self-attention; action queries of
FUTR-M only consider uni-directional temporal dependen-
cies between action queries, while that of FUTR consider
bi-directional temporal relations from the past and the fu-
ture. We validate the effect of parallel decoding by compar-

ing the three models.

QOutput structuring. In Table 4, we conduct experiments
related to output structuring strategy. We introduce two
variants of FUTR, FUTR-H and FUTR-S. FUTR-H is a
DETR-like variant [2], where the ground truths are as-
signed to the outputs of the queries by the Hungarian match-
ing [12]. Let us denote that y is the target set of future
actions. The ground truth of the i*" index is defined by
y; = {c;, t;}, where ¢; and ¢; is the target action label and
start-end window, respectively. Note that y is padded with
NONE class to a size M. We also denote y is the set of
M predictions from the action queries. Since the Hungar-
ian matching finds a pair-wise matching between the two
set y and 9 minimizing the matching cost £™#*" we find
the optimal permutation ¢ from a set of permutation of M
queries Zs:

M
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We define matching cost as the sum of negative class prob-
ability and a window loss:
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where 1., is an indicator function that sets to one where
the gournd-truth action label is not NONE. We define a win-
dow loss £*"°% with L1 distance and IoU loss:
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where |.| and i((i) indicates temporal areas and the pre-
dicted start-end window. A! and A\Y°" are weighting val-
ues of the two losses, which are 5 and 2, respectively. Note
that starting and ending points of the temporal window

€ [0,1]? are bounded from O to 1. Finally, we define
the Hungarian loss £Hungarian by
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In training FUTR-H, we use the sum of the Hungarian loss
and the action segmentation loss as our final loss.

B. Next Action Anticipation

We conduct an experiment of next action anticipation on
EKSS5 (validation, RGB) following the previous experimen-
tal protocols [7, 8, 15].

Dataset. The Epic-Kitchens 55 dataset [4] is the large-scale
dataset in first-person vision. The dataset comprises of 55
hours of recordings of 32 kitchens, including 39,594 action
segments annotated with 125 verb, 331 noun, and 2,513 ac-
tion classes.

Implementation details. FUTR can be applied to next
action anticipation by simply setting the number of action
query M to 1. We use two encoder layers and two decoder
layers while setting the size of the hidden dimension D to
512. We do not include action segmentation loss in this
experiment due to lack of segmentation annotations. In-
stead, we use additional a fully-connected layer applying to
the output of the encoder layers X, to predict features of
the next frame. Then we apply a feature prediction loss of
L2 distance between predicted features and the next frame
similar to AVT [8]. We use AdamW optimizer [14] with a
learning rate of 1e-5. We train our model for 40 epochs with
a batch size of 32. We use the RGB feature embedded by
TSN [16] in this experiment.

Results. The result is shown in Table S1. FUTR obtains
12.3%p at top-1 accuracy performing comparable with the
state-of-the-art methods. We find that FUTR is also effec-
tive for next action anticipation, although the model is de-
signed for long-term action anticipation.

method backbone top-1
RULSTM [7] TSN 13.1
Temporal Agg. [15] TSN 12.3
AVT [8] TSN 13.1
FUTR (ours) TSN 12.3

Table S1. Performance comparison on EKSS5. Although FUTR
is designed for long-term action anticipation, the model is also
effective in next action anticipation.

thod input fla=02
et MPUETo0r 002 003 005 01 02 03 05
AVT [8] VIT 3025 3024 2572 21.87 1422 1069 849 583
AVT [8] BD 2613 2203 2024 1352 1784 1320 901 461
FUTR (ours) 13D 5116 4434 4084 4056 3943 2754 2331 17.77
B (a=0.3)
AVT [8] VIT 3093 3062 27.85 2360 1828 1351 965 1735
AVT [8] BD 3156 3517 3312 2417 1492 1279 1038 581

FUTR (ours) 13D 4220 38.67 38.56 3644 3515 24.86 2422 15.26

Table S2. Performance comparison with AVT on 50Salads.
FUTR outperforms AVT especially when predicting long-term ac-
tion sequences.
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Figure S2. Qualitative results of FUTR vs. AVT on 50Sal-
ads. Each color in the color bar indicates an action label written
above. AVT becomes inaccurate in the prolong predictions while
our method is consistently accurate.

C. Additional Analysis

We conduct additional experiments for further analysis
of the proposed method. In the following experiments, we
evaluate our models on the Breakfast dataset with two ob-
served ratios a € {0.2,0.3}. Unless otherwise specified, all
experimental settings are the same as those in Sec. 5.4.
Comparison with AVT. The core difference between
AVT [8] and FUTR lies in the transformer architecture and
the parallel decoding. While AVT uses a simple decoder
that predicts the next action within a few seconds consid-
ering only the previous actions via masked self-attention,
FUTR adopts a full-fledged decoder that predicts the whole
sequence of actions in parallel by examining long-term re-
lations of the actions via self-attention and cross-attention.
AVT is also capable of anticipating long-term actions by un-
rolling the decoder iteratively, but it remains the drawbacks
of error accumulation and slow inference speed. To validate
our claim, we compare our method with AVT' on long-term
action anticipation.

I'We evaluate two 50Salads-pretrained AVT models: one is AVT with
ViT, which the trained model is available on their official website (www .
github.com/facebookresearch/AVT), and the other is AVT with
13D, which is trained by using their official codes.



B (a=02) B (o =0.3)

K 0.1 0.2 0.3 05 0.1 0.2 0.3 0.5
0.25 2436 2166 2062 2010 3031  27.53 2545  23.19
0.5 25.26 22.99 22.10 21.37 31.14 28.25 2591 23.85

1 2770 2455 2283 2204 3227 2988 2749 2587

Table S3. Effectiveness of global cross-attention. We set observed ratio from the recent past as - to show the effectiveness of exploiting

global cross-attention at long-term action anticipation.

encoder decoder B (a=0.2) B (a=10.3)
type Loc. type Loc. 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5
- - learn input 21.79 20.14 19.88 18.25 26.53 24.85 25.04 2131
sine input learn input 2129 1955 19.11 18.23 2740 2491 24.13 21.81
learn input learn input 23.79 21.37 2049 19.62 30.80 27.69 25.53 23.39
learn attn. learn attn. 27.70 24.55 22.83 22.04 32.27 29.88 2749 25.87

Table S4. Position embedding analysis. Adding learnable positional embeddings before every attention layer performs the best.

model B (a=0.2) B (a=0.3)

LF LP D 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5
1 1 128 24.02 21.00 19.71 1939 29.38 26,51 25.06 23.83
2 1 128 2770 2455 2283 22.04 3227 2988 2749 25.87
3 1 128 2478 2278 21.46 2053 3044 27.61 2573 2375
3 2 128 26.72  23.82 2257 2129 3255 2920 2659 2492
3 3 128 26.68 2341 22.14 2156 33.06 29.14 28.12 24093
4 4 128 26.77 23.60 2292 2124 3135 2858 27.04 2473
5 5 128 26.75 2423 2355 21.16 32.68 29.38 28.05 24.89
2 1 64 2478 21.81 20.56 19.88 29.92 27.03 2629 2353
2 256 2456 21.62 2135 1941 31.19 26.03 26.07 2429
2 1 512 19.82 1750 18.07 1631 23.68 22.18 23.57 22.56

Table S5. Model analysis. We study the number of encoder layers LE, the number of decoder layers LP, and hidden dimension D of our
model. We show the robustness of our methods over the number of layers, and find that the optimal hidden dimension D is 128.

B (v =0.2) B (o =0.3)
loss
0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5
L1 23.90 21.46 20.76 20.08 30.72 27.28 26.08 23.90
smooth L1 23.07 23.36 22.88 20.74 29.96 27.20 24.78 23.18
L2 27.70 24.55 22.83 22.04 32.27 29.88 27.49 25.87
Table S6. Duration loss analysis. We find that utilizing L2 loss as our duration loss £3%2%°" shows better performance over L1 loss and

Smooth L1 loss.

Table S2 shows the results of long-term action antici-
pation of both models. Since AVT is built for next action
anticipation, we also adjust the prediction rate [ ranging
from 0.01 to 0.5. As [ becomes smaller, the prediction
results are closely related to next action anticipation. We
find that AVT performs inferior to FUTR, especially when
predicting long-term sequences. AVT is accurate for the
early frames but becomes inaccurate in the prolonged
predictions as shown in Fig. S2.

Inference time comparison. We compare inference time of
FUTR to that of the Cycle Cons. [6] and AVT [8] in Fig. S3.
The vertical axis indicates the inference time (ms) and the
horizontal axis indicates the number of predicted actions for
Cycle Cons. and the prediction rate 5 for AVT. The infer-
ence time of FUTR is consistently fast while that of Cycle
Cons. and AVT linearly increases as the duration of the pre-
dicted sequence increases. From this experiment, we find
that FUTR is 14 x faster than Cycle Cons. when predicting
16 actions and 173 x faster than AVT when £ is set to 0.5.
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Figure S3. Inference time comparison with other methods [6,
8]. Inference time of other methods linearly increases as the dura-
tion of the future action sequence to be predicted increases, i.e., the
number of predicted actions or prediction rate 3, increases, while
that of FUTR is consistently fast.

The results show the efficiency of the parallel decoding for
long-term action anticipation.

Effectiveness of global cross-attention. To evaluate the
importance of modeling long-term dependencies between
the observed frames and the action queries during the de-
coding stage, we measure the performance by gradually in-
creasing the number of cross-attended frames from the most
recent frame to the farthest one. For notational simplicity,
we establish the ratio of the cross-attended frames vy rang-
ing from 0.25 to 1, adjusting the number of observed frames
starting from the recent past; the cross-attention layer in the
decoder only attends to the most recent y7'© frames during
the decoding stage. Note that v = 1, our default setting,
indicates that the decoder attends to the whole video frames
to anticipate actions.

Table S3 summarizes the results of the effect of global
attention in the cross-attention layers. As we gradually in-
crease the v from 0.25 to 1, the overall accuracy signifi-
cantly increases by 2.0-3.3%p. This demonstrates the effi-
cacy of modeling global interactions between the observed
frames in the past and the action queries in the future for
long-term action anticipation.

Position embedding analysis. In Table S4, we investigate
various combinations of different types and locations of the
positional embeddings. From the 1% to the 3™ rows, we
compare three types of position embeddings in the encoder
layers: none, sinusoidal, and learnable position embed-
dings. Here, we fix the position embedding of the decoder
as learnable embedding, which is added before going into

the attention layers. We find that using learnable position
embeddings in the encoder is effective. Then we change the
location of the position embeddings to be learned in the at-
tention layers, obtaining additional accuracy improvements.
In this experiment, we find that position embedding learned
at the attention layer is effective for our model.

Model analysis. Table S5 summarizes the results of the
model ablations, according to the number of encoder layers
LE, the number of decoder layers LP, and hidden dimen-
sion D. We find that the performance is saturated when we
use more than two encoder layers and one decoder layer.
Thus we set L = 2 and LP = 1 as our default number
of encoder layers and decoder layers, respectively. We also
evaluate our model by varying the channel dimension D and
find that setting D to 128 performs the best; too small D re-
stricts the representation power of the model while too large
D causes overfitting problems.

Duration loss analysis. In Table S6, we evaluate our dura-
tion loss £duration of Eq. (14). Instead of L2 loss, we use
L1 loss and Smooth L1 loss [9] in this experiment. The re-
sults show that applying L2 loss shows better performance
over the L1 loss and smooth L1 loss. Since L2 loss is more
robust to outliers than L1 loss and smooth L1 loss, we find
that applying L2 loss is effective in the proposed method.

D. Additional Results

In Tables S7-S11, we provide the overall experimen-
tal results in Sec. 5.4 with two observation ratios o €
{0.2,0.3}. We find that overall experimental tendencies
with the two observation ratios are similar although the ex-
perimental setup with o = 0.2 is more challenging.

E. Qualitative Results

We plot additional visualization results of the cross at-
tention map of the decoder in Fig. S4. Each subfigure con-
tains sampled frames from videos and attention map visual-
izations below. We also highlight the frames with the yel-
low box where corresponding attention scores are highly
activated. From this experiment, we find that action query
in our method attends dynamically to the input visual fea-
tures, which utilize fine-grained visual features from the en-
tire past visual features.

F. Discussion

We have proposed an end-to-end attention network for
long-term action anticipation, which effectively leverages
global interactions in videos enabling accurate and fast in-
ference for long-term action anticipation. We have demon-
strated the effectiveness of the FUTR through extensive ex-
periments, but there exists much room for improvement.
First, the efficiency of FUTR could be further improved.
For example, linear attention mechanisms [3, 11, 17] or



8 (=0.2 a=0.3

method AR S (@ =02 P la=09)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

FUTR-A v v 20.31 18.37 17.69 16.31 25.43 24.02 23.43 21.08

FUTR-M - v 25.27 2241 21.39 20.86 31.82 28.55 26.57 24.17
FUTR - - 27.70  24.55 22.83 22.04  32.27 29.88 27.49 25.87

Table S7. Parallel decoding vs. autoregressive decoding.
B (a=0.2) B (a=0.3)
encoder decoder
0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5
LSA LSA 21.97 19.20 18.04 18.19 27.70 24.39 23.18 21.60
GSA LSA 25.25 22.88 21.09 19.73 30.15 27.51 25.62 23.28
LSA GSA 22.99 20.39 19.15 18.60 28.37 25.08 24.03 22.28
GSA GSA 27.70 24.55 22.83 22.04 32.27 29.88 27.49 25.87
Table S8. Global self-attention (GSA) vs. local self-attention (LSA).

a=0.2 a=0.3

method GT Assign.  regression Al ) Bl )
0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

FUTR-S sequential start-end  23.87 19.86 18.58 18.05 29.15 2551 2420 2143

FUTR-H Hungarian start-end  22.05 20.18 18.63 17.31 2526 23.85 22.63 2145
FUTR sequential duration  27.70 24.55 22.83 22.04 3227 29.88 2749 2587

Table S9. Output structuring.
loss B (=0.2) B (a=0.3)

Lses  [paction  pduration 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5
- v 25.60 22.13 21.95 20.86 28.31 25.85 2491 22.50
v v 27.70  24.55 22.83 22.04  32.27 29.88 2749 25.87

Table S10. Loss ablations.
M Bla=02) B (a=0.3)
0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

6 24.63 21.74 20.99 19.67 29.95 26.47 25.46 23.27
7 24.40 22.13 21.59 20.28 30.03 27.94 27.00 24.23
8 27.70 24.55 22.83 22.04 32.27 29.88 27.49 25.87
9 24.21 22.47 21.56 20.94 31.24 28.65 26.87 24.95
10 24.61 21.79 20.90 19.91 31.32 28.86 27.74 25.01

Table S11. Number of action queries.

sparse attention mechanisms [1,20] could reduce both com-
putation and memory complexity of FUTR, enabling effi-
cient long-term video understanding. Second, considering
that our encoder is a separate action segmentation network,
the proposed architecture is a unified network that can han-
dle both long-term action anticipation and action segmenta-
tion task at once. Although we focus on long-term action

anticipation in this paper, we can integrate our models with
other action segmentation methods [5,10,13,18,19] to solve
both action segmentation and long-term action anticipation
task altogether in the same framework. We leave this as our
future work.
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Figure S4. Cross-attention map visualization on Breakfast. The vertical and horizontal axis indicates the decoder queries and observed
frames, respectively. The brighter color indicates a higher attention score. RGB frames above the attention map are sampled uniformly
from the video. We emphasize the frames with high attention scores with yellow box and other frames are uniformly sampled. Best viewed
in color.
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Figure S5. Qualitative results on Breakfast. Each subfigure visualizes the ground truth label and the prediction results of the FUTR and
cycle consistency model proposed from Farha et al. [6]. We set v as 0.3 and 3 as 0.5 in this experiment. We decode action labels and
durations to the frame-wise action classes. Each color in the color bar indicates an action label written above. Best viewed in color.
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