
Meta Agent Teaming Active Learning for Pose Estimation
(Supplementary Materials)

Jia Gong1 Zhipeng Fan2 Qiuhong Ke3 Hossein Rahmani4 Jun Liu1∗

1Singapore University of Technology and Design, Singapore; 2New York University, United States
3The University of Melbourne, Australia; 4Lancaster University, United Kingdom

jia gong@mymail.sutd.edu.sg, zf606@nyu.edu, qiuhong.ke@unimelb.edu.au

h.rahmani@lancaster.ac.uk, jun liu@sutd.edu.sg

1. Kinetic Chain Space

In the pose estimation task, the pose estimator aims to
predict the positions of the target joints in the hand (or body)
from an image. One crucial clue to characterize the pose is
the spatial correlation between the target joints. To track
this correlation, we transfer the joints’ locations to the bone
vectors and collect the bones’ topological information such
as the bones’ lengths and rotations via Kinetic Chain Space
(KCS) [5, 2].

Given a human hand (or body) image x with its pose y,
we can derive M bone vectors from M +1 joints’ positions
in the pose y, as shown in Fig. 1. Here, we denote the bone,
which starts from the ith joint and ends at the jth joint, as
bi,j . Then the bone vector bi,j is expressed as:

bi,j = yj − yi, (1)

where yi and yj are the positions of the ith and the jth

joints.
Next, we concatenate all M bone vectors to build a bone

matrix BP0 = [bi1,j1 ; ...; biM ,jM] for the whole hand (or
body), denoted with P0, where im and jm correspond to
the indices of the beginning and end joints of the mth bone.
Then the KCS of the whole hand (or body) is the matrix
product of the bone matrixBP0

and its transpose as:

KCSP0
= BP0

(BP0
)T . (2)

Here, the uth diagonal element, i.e., the element at (u, u)
of KCSP0

, corresponding to the value of biu,ju(biu,ju)
T ,

characterizes the length of the uth bone. The (u, v) ele-
ment of KCSP0

is the inner product of the bones biu,ju
and biv,jv , which characterizes the angle between the uth

and the vth bones. As KCSP0 is a symmetric matrix, we
only use the elements in the upper triangular of KCSP0

to
build the global topological feature of the whole hand (or
body) as fP0

.

* Corresponding Author

0 1
2

3

4
5

7

9

11
8

12

15

14

13

16

20
19

18

17

610

(a) Hand Pose

0

1
724

5
6 9 8

133

14

1512

11

10

(b) Human Pose

Figure 1. The joints and local parts of the human hand or body. The
hand skeleton contains 21 joints and 20 bones while the human
body skeleton contains 16 joints and 15 bones. In both cases, we
partition the skeleton into 6 local parts and mark each local part
with different colors.

Moreover, to observe the performance of the pose esti-
mator on the local parts of the human hand (or body), we
also consider the topological property of each finger in the
hand (or each limb in the body). For the human hand, as
shown in Fig. 1 (a), we derive 20 bone vectors from 21
joints’ positions and categorize them into six parts, denoted
with {Pi}6i=1:

• thumb finger P1: {b1,2, b2,3, b3,4};

• index finger P2: {b5,6, b6,7, b7,8};

• middle finger P3: {b9,10, b10,11, b11,12};

• ring finger P4: {b13,14, b14,15, b15,16};

• pinky finger P5: {b17,18, b18,19, b19,20};

• palm P6: {b0,1, b0,5, b0,9, b0,13, b0,17}.

Similarly, for the human body, we can obtain 15 bone
vectors from 16 body joints, and divide them into six local
parts (as shown in Fig. 1 (b)):

• head P1: {b0,1, b1,2};

• torso P2: {b2,3};

• left arm P3: {b2,4, b4,5, b5,6};

• right arm P4: {b2,7, b7,8, b8,9};

• left leg P5: {b3,10, b10,11, b11,12};

• right leg P6: {b3,13, b13,14, b14,15}.

For each local part Pi, similarly, we concatenate all
the bone vectors in the local part to build the bone ma-
trix BPi

and calculate KCSPi
via Eq. 2 to obtain its lo-

cal topological feature fPi
. Finally, we obtain the global

topological feature fP0
and six local topological features

{fP1 , fP2 , fP3 , fP4 , fP5 , fP6} corresponding to the pose y.
Note that each global or local topological feature will be
used individually to build a corresponding topological space
to measure the distribution drifts between the labeled and
unlabeled datasets (Please refer to the Sec. 3.1 of the main
manuscript). Also note that, in implementation, the lo-
cal topological features {fP1 , fP2 , fP3 , fP4 , fP5 , fP6} can
be derived from the global topological feature fP0 directly
to save computation cost.

2. Meta Optimization
Our active learning framework consists of two phases:

the Training Phase to train the agent team module to learn
a cooperative sampling policy, and the Deployment Phase
to apply the trained agent team to sample unlabeled images.
Given an unlabeled dataset, we start our MATAL from the
Training Phase. We first randomly sample a small number
of images to build the initial datasetDinit with annotations,
and then simulate the active learning procedures on Dinit

to train the agent team. Next, we freeze the agent team
and move to the Deployment Phase in which the agent team
raises images from the remaining unlabeled set to be anno-
tated. During this phase, the labeled dataset is initialized
by Dinit at the beginning, and will be updated by adding
the newly annotated images. Furthermore, with the grow-
ing scale of the labeled dataset, we can also return to the
Training Phase to further refine the agent team, i.e., en-
hancing the performance of our agent team by replacing the
initial dataset Dinit with the enlarged labeled dataset, for
re-training the agent team. In implementation, we return to
the Training Phase each time the size of the labeled dataset
doubles compared to the previous time the agent team was
trained. However, this re-training process can still be time-
consuming, as it requires simulating the active learning pro-
cedures on the expanded labeled dataset. To address this,
we adopt a Meta-Learning approach to accelerate the re-
training procedure.

More specifically, to enable efficient optimization on the
updated labeled dataset, inspired by MAML [1], we pro-
pose to learn the meta parameters θmeta for the agent team,
which can quickly adapt to the new labeled sets. We for-
mulate re-training the agent team on the enlarged labeled
dataset as a novel task of training on a small subset of it and
generalizing well on the rest of the labeled set. Intuitively,
this formulation encourages the agent team to quickly adapt
to the gradually expanded dataset. To simulate such a pro-
cess, we partition Dinit to build a smaller subset as the
meta-train set Dmtr

init , and a larger subset as the meta-test
set Dmte

init .
Our goal then becomes to learn the parameters θmeta

that can adapt quickly to the meta-test set Dmte
init after be-

ing optimized on the meta-train set Dmtr
init . Here, with ran-

domly initialized agent team parameters θmeta, we first up-
date the agent team on the Dmtr

init to obtain θ∗mtr follow-
ing Alg. Teaming Sampling Policy Learning detailed in the
main manuscript, and then we employ the updated agent
team parameterized by θ∗mtr to perform the active learn-
ing steps on Dmte

init and leverage the loss to update our
meta-parameters. We use the Temporal Difference error [3]
TDmeta(θ

∗
mtr) as the meta loss to update the agent team:

TDmeta(θ
∗
mtr) =

H−1∑
t=0

(N∑
m=1

qm(st, a
m
t , h

m
t ; θ∗m−mtr)

− rt+1 − γ
N∑

m=1

qm(st+1, a
m
t+1, h

m
t+1; θ

∗
m−mtr)

)2
,

(3)

where θ∗m−mtr is the parameters of the mth agent, and
θ∗mtr = {θ∗1−mtr, θ

∗
2−mtr, ..., θ

∗
N−mtr}. Finally, we update

θmeta with the following equation:

θmeta = θmeta − β∇TDmeta(θ
∗
mtr), (4)

where β is the learning rate of meta-optimization. We detail
this Meta-Optimization step in Alg. 3. By minimizing the
meta loss, we can obtain the meta parameters θmeta that
enables quick adaptation to the large meta-test set Dmte

init

by updating only based on a relatively small meta-train set
Dmtr

init .

3. Additional Experiments
3.1. Hyper-parameters Study

In this section, we analyze the influence of two hyper-
parameters of our MATAL model: the partition ratio of
Dre : DU

init : DL
init, and the number of agents in the

agent team.
First, we investigate the performance of our MATAL

framework under different partition ratios of Dre : DU
init :

DL
init on NYU dataset [4], and present the results in Fig. 2.

Algorithm: Meta Optimization
input : The initial set Dinit, the initial parameter of agent team

θinit, pose estimator g, learning rate β
1 Initialize meta paramters: θmeta ←− θinit

2 while not done do
3 Dmtr

init , D
mte
init ←− Dinit

4 Copy θmeta as θmtr

5 θ∗
mtr ←−Update θmtr on Dmtr

init via Alg. Teaming Sampling
Policy Learning.

6 Generate H active learning iterations by the agent team with
θ∗
mtr on Dmte

init :{st, at, rt+1, st+1}Ht=1

7 Calculate the loss of {st, at, rt+1, st+1}Ht=1 via Eq. 3 to
obtain TDmeta(θ∗

mtr)
8 Update θmeta ←− θmeta − β∇TDmeta(θ∗

mtr)

9 end

Figure 2. The results for var-
ious partition ratios of Dre :
DU

init : D
L
init.

Figure 3. The results for dif-
ferent numbers of agents.

Our MATAL performs effective selection under various par-
tition ratios compared to the random sampling, and it ob-
tains the best performance when the partition ratio is 3:6:1.
This also shows that our MATAL is stable for a wide range
of partition ratios.

Moreover, we look into the ability of the agent team
to complete effective batch image selection with different
numbers of agents. Here, we increase the numbers of agents
from 20 to 60 and evaluate the performance of MATAL on
NYU dataset [4]. As shown in Fig. 3, our proposed MATAL
framework with different numbers of agents all outperform
the random sampling significantly.

3.2. Quantitative Results

We first compare the qualitative results of our MATAL
with two baselines: ‘single-agent selecting multiple im-
ages’ and ‘random sampling’. Here, we pick up two depth
images from NYU test set, and visualize the recovered
poses of both images in five different active learning iter-
ations, as shown in Fig. 4. We observe that our MATAL can
rapidly improve the recovered poses and build the most real-
istic poses at the end of the active learning procedure. The
poses recovered by the single agent also tend to be more
natural than random sampling, but their qualities are still
significantly lower than our Multi-Agent method.

Moreover, we present the poses of selected images by

The poses of depth images in each iteration

2000 4000 6000 8000 10000

Ground Truth

Multi-
Agent

Single-
Agent

Random

Multi-
Agent

Single-
Agent

Random

(— Recovered poses, — GT poses)

Figure 4. Qualitative comparison for the recovered poses in differ-
ent active learning iterations. The blue skeletons are the ground
truth and the red ones are the poses recovered by the pose estima-
tor.

The poses of selected images in each iteration(— recovered poses, — GT poses)
2000 4000 6000 8000 10000

Figure 5. Qualitative results for the selected images’ poses by our
MATAL in different active learning iterations. The blue skeletons
are the ground truth poses and the red ones are the poses recovered
by the pose estimator.

our MATAL in five different active learning iterations on
NYU training set. As shown in Fig. 5, our MATAL gener-
ally selects the images that the pose estimator cannot give
accurate prediction in each active learning iteration. Com-
paring the poses of selected images across different stages
of the active learning procedure (i.e., horizontally), we can
observe that the selected poses at the early stages look more
common and occur more frequently in our daily life. On the
other hand, the images selected by our MATAL at the end of
the active learning procedure tend to be more complex and

less common. It shows that our MATAL tends to pick more
representative and influencing images at the beginning to
quickly boost the performance of the pose estimator, while
at the later stages, the agent team focuses more on the chal-
lenging cases that are difficult for the current pose estimator.

References
[1] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning, pages
1126–1135. PMLR, 2017.

[2] Kehong Gong, Jianfeng Zhang, and Jiashi Feng. Poseaug:
A differentiable pose augmentation framework for 3d human
pose estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8575–
8584, 2021.

[3] Richard S Sutton and Andrew G Barto. Reinforcement learn-
ing: An introduction. MIT press, 2018.

[4] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Per-
lin. Real-time continuous pose recovery of human hands us-
ing convolutional networks. ACM Transactions on Graphics
(ToG), 33(5):1–10, 2014.

[5] Bastian Wandt, Hanno Ackermann, and Bodo Rosenhahn. A
kinematic chain space for monocular motion capture. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV) Workshops, pages 0–0, 2018.

