
PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and
Hallucination under Self-supervision

–Supplementary Material–

Kehong Gong1,3* Bingbing Li2* Jianfeng Zhang1* Tao Wang1*

Jing Huang3 Michael Bi Mi3 Jiashi Feng1 Xinchao Wang1

1National University of Singapore 2Nanyang Technological University 3Huawei International Pte Ltd

In this document, we provide supplementary materials
that cannot fit the manuscript due to page limit. Specifi-
cally, we provide details on implementation, more experi-
mental results, and details on the pose estimator, imitator,
and hallucinator, and discussion on negative social impact.

1. Implementation details
We implement PoseTriplet using Pytorch [5], and train
PoseTriplet on a machine with a Intel Xeon Gold 6278C
CPU and a Tesla T4 GPU. The whole training process takes
3 rounds for 7 days. The implementation details for each
module are described as follows.
Estimator. In pose estimator P , the network parameter is
optimized by the Adam [3] optimizer with a learning rate of
0.0003 and the linearly decay strategy.
Imitator. In pose imitator I, the policy runs at a fre-
quency of 30Hz. Proximal policy optimization (PPO) [9]
is used to update the parameter of policy network with a
learning rate of 0.00005 and Adam optimizer. We use Mu-
joco [10] (open-source) as the physics simulator.
Hallucinator. Pose hallucinator H contains a generator and
discriminator. The generator is trained with learning rate of
0.0001, and the discriminator is trained with learning rate
of 0.00001. Both generator and discriminator are optimized
with Adam optimizer.

2. Experiments
2.1. More qualitative results

We provide a video file “4806-supp.mp4” which in-
cludes Fig. 3-8 in video format for better visualization qual-
ity. In this video, we firstly illustrate how PoseTriplet pro-
gressively generates, refines the 3D motion data from round
1 to 3. Then we provide more self-generated examples

*Equal contribution.
Email: gongkehong@u.nus.edu, l.libingbing@gmail.com, zhangjian-
feng@u.nus.edu, twangnh@gmail.com, jing.huang1408@gmail.com,
michaelbimi@yahoo.com, jshfeng@gmail.com, xinchao@nus.edu.sg

0 1 2 3 4 5
Round Number

60

80

100

120

140

160

180

200

H
36

M
P

1

193.6

112.2

77.8
68.2 66.6 67.4

Figure 1. Results w.r.t. P1 in H36M with GT2D about Round
Number.

from both imitator and hallucinator. After that we provide
pose estimation results similar to Fig. 3-6 in source dataset
(i.e., H36M), cross dataset (i.e., 3DHP and 3DPW), and
videos from in-the-wild scenario (i.e., self-collected from
TikTok [2] and Youtube). Finally we provide more results
for imitator in Fig. 7 and hallucinator in Fig. 8. Note that all
of these results are achieved with only monocular 2D pose
or video, without any 3D data or multi-view setting. This
demonstrates the robustness of our PoseTriplet to challeng-
ing scenarios, again even without the necessity of acquiring
3D data.

2.2. More ablation studies

2.2.1 Ablation on extra round of co-evolving

We here explore more rounds of co-evolving. As shown in
Fig. 1, the performance saturated after round 4, implying
the framework has reached the ceiling of its capacity.

2.2.2 Ablations on co-evolving components

To verify the effectiveness of each component in this
PoseTriplet framework, we here ablate the performance of
the estimator without using imitator or hallucinator or both.

1



The result in H36M with GT2D w.r.t. P2 are E: 115.8, E+H:
80.3, E+I: 57.6, E+I+H: 45.1, with E, I, H being estimator,
imitator, hallucinator. This demonstrates that involving ei-
ther I or H into the framework produces better results. Com-
bining them jointly improves the performance by a large
margin.

2.2.3 Ablation on camera pose generator.

We use two camera projection methods (random- and GAN-
based camera projection). As shown in Table 1 (Random
and GAN denote random and GAN based camera projec-
tion), either method achieves a good performance, combin-
ing them together further improves the results.

Camera projection GT Det
Random 74.1 80.5
GAN 75.6 82.9
Random+GAN 68.2 78.0

Table 1. Ablation on camera projection in H36M (P1).

2.2.4 Ablation on the physics-based pose metrics.

While results of the estimator suffer from physically im-
plausible artifacts (e.g., foot skating (FS) and ground pen-
etration (GP)), the imitator helps resolve these issues as
shown in Table 2. This ensures the plausibility of train-
ing set to sever as training data for pose estimator during
co-evolving.

Method Train Test
FS GP FS GP

w/o I 7.1 2.4 6.5 3.8
w/ I 0.7 0.9 0.9 1.5

Table 2. Results on H36M train and test sets w.r.t. physics-based
metrics.

3. Methodology
PoseTriplet is the first attempt to train three difference

pose related tasks jointly in an self-supervised manner.
Therefore we choose those modules based on solid and sim-
ple strategy, and they are flexible to replace by other mod-
ules with similar function. In the following section, we will
elaborate the more details for the pose estimator, imitator,
and hallucinator.

3.1. Pose estimator

For the pose estimator, we adopt the 1D convolution
based VideoPose [6]. Fig. 2 illustrates the architecture of
pose estimator. It contains two branches: root relative pose

Figure 2. Pose estimator overview.

estimation and root trajectory estimation. Given the input
2D pose sequence x1:T , these two branches can predict the
root relative pose and root trajectory, which are then com-
bined as the output 3D pose sequence X1:T , and served as
reference motion for imitator.

3.2. Pose imitator

We here provide more detailed information on pose im-
itator I. As shown in Fig. 3, it contains reference mo-
tion, state, policy, action, and simulation environment. Note
that pose representation under imitation learning is based on
joint axis angle q, which is convertible with joint position
X through forward/inverse kinematics [4]. Unless other-
wise specified, the pose in this module is represented by
joint axis angle q (i.e., reference motion qref , velocity q′,
etc.).
State As shown in Fig. 3, the state includes current pose qt,
current velocity q̇t from the simulation environment, tar-
get pose q̃t+1 from reference motion, and an extra encoded
feature ϕ encoded by a temporal convolution network with
a receptive field of 18, which fuses the past and future ref-
erence motion information.
Action involves two types of forces: internal force τ t and
external force ηt as shown in Fig. 3. The internal force
is applied by actuator on the non-root joints (e.g., elbow,
knee). Following previous work [8,12,13], we use PD (pro-
portional–derivative) control for internal force control. The
internal force is formulated as:

τ t = kp(u
nr
t − qnr

t )− kd
˙qnr
t , (1)

Where kp,kd are the PD control parameters, unr
t is the

target angle for PD controller, qnr
t , ˙qnr

t is current joint
pose and joint velocity, ⋆nr denotes non-root joint for non-
root force τ t computation. The internal force τ t, adjusted
through the PD control parameters kp,kd and target angle
unr
t regressed by the policy network, drives the agent to tar-

get joint pose q̃t+1 in desired time. The external force ηt is
a virtual force applied on root joint (i.e., hip) [12] for extra
interaction (e.g., sitting on the chair) and is regressed by the
policy network.
Rewards measure the motion differences between the agent
and reference motion. Following the work [7, 12], the re-



Figure 3. Pose imitator overview.

ward rt here is formulated as:

rt =

n∑
i=1

wie−ki∥φi
t⊗φ̃i

t∥, (2)

where wi,ki, φ
i
t, φ̃

i
t are the weight factor, scale factor, mo-

tion characteristics, and reference motion characteristics,
respectively. The operation ⊗ compute the distance be-
tween the agent motion property φi

t and reference motion
property φ̃i

t. Such differences capture pose related (pose,
velocity), root related (root height, root velocity) and body-
end factors (position, velocity in end-effector i.e., feet, hand
and head). Besides, a regulation loss on virtual force is ap-
plied to avoid unnecessary external force [12], which is for-
matted as:

r
η
t = e−kη∥ηt∥, (3)

where r
η
t ,kη ,ηt are the virtual force rewards, scale factor,

virtual force, respectively. As we find that it is hard for the
agent to move with the above setting due to the noisy ref-
erence motion, we further introduce a feet relative position
(i.e., a vector from left foot point to right foot) into the mo-
tion characteristics to enhance the feet motion. Note that all
these motion characteristics are measured in local heading
coordinate system, following previous works [11, 12].
Initial Condition For the initial condition, instead of us-
ing the starting pose [11, 12], we set the initial pose as T
pose. Since the pose signal in our PoseTriplet contains more
noises compared to conventional RL tasks, it may yield the
initialization crash; such an initial condition, in practice,
helps us to avoid simulation crush.
Termination Condition For the termination condition, we
set it as when head height is 0.3 m below the reference head
height or episode (i.e., reference motion) end.

3.3. Pose hallucinator

For the pose hallucinator, we adopt the motion interpola-
tion based approach [1] as it can generate arbitrary length

Figure 4. Pose hallucinator overview.

sequence with continuously input key frames. Fig 4 il-
lustrates the architecture of pose hallucinator. It contains
a conditional RNN generator, and a temporal discrimina-
tor. During training stage, The RNN generator, condition
on the sampled key frames, recover the masked intermedi-
ate frames. The temporal discriminator sliding on the re-
covered pose sequence, provides guidance to encourage the
temporal motion plausibility. Another reconstruction loss is
applied to measure the difference between recovered pose
sequence and original one. During the inference stage, ran-
dom sampled key frames are used as input, and generate un-
seen motion though the conditional RNN generator, which
is then used as diversified reference motion for the imitator.

4. Negative social impact
Our method can be applied to lots of 3D pose estimation

related applications including action recognition and human
tracking, etc, but may involves user privacy issues.

References
[1] Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and

Christopher Pal. Robust motion in-betweening. In ACM
Trans. on Graphics, 2020. 3

[2] Yasamin Jafarian and Hyun Soo Park. Learning high fidelity
depths of dressed humans by watching social media dance
videos. In CVPR, 2021. 1

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICCV, 2015. 1

[4] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko,
Helge Rhodin, Mohammad Shafiei, Hans-Peter Seidel,
Weipeng Xu, Dan Casas, and Christian Theobalt. Vnect:
Real-time 3d human pose estimation with a single rgb cam-
era. ACM Trans. on Graphics, 36(4):44, 2017. 2

[5] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPSw, 2017. 1

[6] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and
Michael Auli. 3d human pose estimation in video with tem-



poral convolutions and semi-supervised training. In CVPR,
2019. 2

[7] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
van de Panne. Deepmimic: Example-guided deep reinforce-
ment learning of physics-based character skills. In ACM
Trans. on Graphics, 2018. 2

[8] Xue Bin Peng and Michiel van de Panne. Learning loco-
motion skills using deeprl: Does the choice of action space
matter? In ACM, 2017. 2

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv, 2017. 1

[10] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE, 2012. 1

[11] Ye Yuan and Kris Kitani. Ego-pose estimation and forecast-
ing as real-time pd control. In ICCV, 2019. 3

[12] Ye Yuan and Kris Kitani. Residual force control for agile
human behavior imitation and extended motion synthesis. In
NeurIPS, 2020. 2, 3

[13] Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Jason
Saragih. Simpoe: Simulated character control for 3d human
pose estimation. arXiv, 2021. 2


