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S6. State Sensitive Feature Learning

S6.1. Model Details

S6.1.1 Baseline Models

We compare to six baseline models: ImageNet pre-trained model without any further training, three self-supervised models
(SimCLR [6], TCN [53], and SimCLR+TCN), and two supervised models (action classification on EPIC-KITCHENS, and
MIT States supervision). All models are initialized from ImageNet pre-training.

All models use the ResNet-18 backbone. We average pool the output after the second last layer to obtain a 512 dimensional
representation. The self-supervised models use 3 projection layers with sizes 512, 512, 128. The 128-dimensional output
from the last layer is used for computing the similarity. The semantically supervised models (i.e. those trained on MIT States
dataset, or for action classification on the EPIC-KITCHENS dataset) only use a single linear classifier layer directly on top of
ImageNet features. These additional layers were thrown out and just the ResNet-18 backbone is used for state classification
experiment on EPIC-STATES. We only train a linear classifier on top of the learned ResNet-18 backbone for downstream
state-classification on EPIC-KITCHENS dataset.

We use a batch size of 256 for pre-trainings. We optimize using Adam optimizer with a learning rate of 10−4. All models
(with the exception of the two supervised baselines) are trained for 200 epochs and the last checkpoint is selected as the final
model, which eliminates any dependencies on the pre-training validation set. All models are trained on a single NVidia GPU
(RTX A40 or equivalent). We next list method specific hyper-parameters.

1. ImageNet Pre-trained Model. This model has no additional hyper-parameters.

2. SimCLR. We use the standard SimCLR augmentations in the following order: random resized crop with scale (0.5, 1.0),
random horizontal flip, random color jitter with parameters (0.8, 0.8, 0.8, 0.2) and 80% probability, random grayscale
with 20% probability, Gaussian blur with 12 size kernel and sigma set to (0.1, 2.0), and finally ImageNet normalization.
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3. TCN. Let w denote the length of the current track (number of frames). TCN’s window size is set to ⌊w/4⌋ and the
negative sample is guaranteed to be at least ⌈w/2⌉ (negative window) away from the positive examples. Sampling the
positive and negatives on opposite ends of the track ensures a large distance between them. TCN is optimized with
a triplet margin loss. Let us reuse oi, o

′
i as the positive pair and define o′′i as the negative sample. Given an arbitrary

margin α (in practice α = 2), the triplet margin loss is as follows. We chose the hyper-parameters as suggested by [53].

||fo(oi)− fo(o
′
i)||22 + α < ||fo(oi)− fo(o

′′
i )||22. (1)

4. SimCLR+TCN. We combine SimCLR and TCN, by a) sampling negative from both within and across tracks, and b)
using a NT-Xent loss from SimCLR [6]. We also adopt the image augmentations used in SimCLR.

5. Action Classification. We train ResNet-18 (initialized from ImageNet) on 32 action labels along with their temporal
extent, available as part of the EPIC-KITCHENS dataset. These include: take, put, wash, open, close, insert, cut, pour,
mix, turn-on, move, remove, turn-off, dry, throw, shake, squeeze, adjust, peel, scoop, empty, flip, fill, turn, check, spray,
apply, pat, fold, scrape, sprinkle, break. The model samples two frames (in order) and uses them jointly to classify the
action. This allows the model to disambiguate between open and close actions. The model is trained for 30 epochs and
we select the model which performed the best on the action classification validation set. Validation performance peaked
within 30 epochs.

6. MIT States. We train ResNet-18 (initialized from ImageNet) on the MIT-States attributes dataset [24]. The dataset
consists of 115 classes and approximately 53K images. Examples of attributes include mossy, deflated, dirty, etc. This
model is trained for 20 epochs and we select the model which performed the best on the MIT-States validation set.
Validation performance peaked within 20 epochs.

S6.1.2 TSC and TSC+OHC Models

For TSC, object crops are selected by randomly sampling o′i such that o′i is no more than ⌊w/4⌋ away from oi in the track,
where w is the length of the track.

For TSC+OHC, we use two separate models, one each for the object and the hand. The object model itself has 2 heads,
one is used for the object-object similarity for Ltemporal, and another for object-hand similarity for Lhand. The hand model
only has one head. The hand model has additional layers to produce and combine the positional encodings that represent
motion. The positional encoding is generated by alternating sines and cosines over 12 frequencies for each element of hm

i . It
is concatenated with the output of the ResNet-18 backbone. These combined features are projected to 512 dimensions with
another linear layer and finally fed through the hand model’s loss head. Note that the object and hand crop fed through this
model are not augmented with random horizontal flip to preserve handedness.

For the TSC+OHC model, tracks are independently sampled for computing the Ltemporal and Lhand losses. Tracks with
less than 4 frames of hands were filtered out to remove noise, which led to a pre-training dataset size of 53,661 tracks. The
evaluation scheme remains the same as TSC since we only use the features learned by the object model. We throw out the
hand model.
Loss Functions. Recall that ha

i and hm
i jointly represent the hand: ha

i describes the appearance and hm
i describes the motion.

To detail hm
i , consider the object bounding box for oi defined as (oi,x1, oi,y1, oi,x2, oi,y2) where (oi,x1, oi,y1), (oi,x2, oi,y2)

are the coordinates of the top left and bottom right corner of the bounding box, respectively. We define the hand crop
bounding box similarly: (hk,x1, hk,y1, hk,x2, hk,y2) where k is uniformly sampled at random such that |k− i| ≤ 3. (∗H , ∗W )
represent the height and width of the bounding box and (∗xc, ∗yc) refer to the center coordinates of the bounding box. For an
arbitrary p, we calculate hm

i,p and hm
i as follows:

hm
i,p =

[
oi,xc − hp,xc

oi,W
,
oi,yc − hp,yc

oi,H
,
hp,W

oi,W
,
hp,H

oi,H

]
(2)

hm
i =

[
hm
i,k−1, hm

i,k, hm
i,k+1

]
(3)

Assuming that all crops (oi, o′i, h
a
i ) are transformed using the standard SimCLR augmentations, we describe our applica-

tion of normalized temperature scaled cross-entropy loss (NT-Xent) [6] below:

soo
′

i,j = 1/τ · sim(fo(oi), fo(o
′
j)) (4)

sohi,j = 1/τ · sim(fh(oi), gh(hj)) (5)

shhi,j = 1/τ · sim(gh(hi), gh(hj)) (6)
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where sim refers to the cosine similarity, and τ is the temperature parameter (in practice τ = 0.1). Then Ltemporal and
Lhand losses are computed using soh, shh, soo as follows:

Ltemporal = −
∑
i

(
log

exp(soo
′

i,i )∑
j:j ̸=i exp(s

oo
i,j) +

∑
k exp(s

oo′
i,k )

)
−
∑
i

(
log

exp(soo
′

i,i )∑
j:j ̸=i exp(s

o′o′
i,j ) +

∑
k exp(s

oo′
k,i )

)
(7)

Lhand = −
∑
i

(
log

exp(sohi,i)∑
j:j ̸=i exp(s

oo
i,j) +

∑
k exp(s

oh
i,k)

)
−
∑
i

(
log

exp(sohi,i)∑
j:j ̸=i exp(s

hh
i,j ) +

∑
k exp(s

oh
k,i)

)
. (8)

S6.2. EPIC-STATES Dataset and State Classification Task

S6.2.1 Data Annotation

EPIC-STATES is collected on top of the ground-truth object-of-interaction tracks and corresponding object category labels
from Damen et al. [10]. We filter out 13 object categories of interest: drawer, knife, spoon, cupboard, fridge, onion, fork,
egg, potato, bottle, microwave/oven, carrot, and jar. We chose a maximum of 5 frames from each track. These object crops
are then annotated for states individually for each object category.

We used a commercial service to obtain annotations for our dataset. Each image was annotated once and then reviewed
by a high-quality annotator (determined using the accuracy on the task). We also included an AMBIGUOUS class and reject
images with the AMBIGUOUS label, resulting in 14,346 annotated images.

Annotation Instruction. We gave the annotators the following instructions:

Given an image, choose all applicable categories/states from the ones available. If the image is considerably
noisy or the object of specified category cannot be identified, annotate the image as ambiguous. When multiple
objects are visible, annotate the most dominant object of the specified category. Note that images are captured
in-the-wild and small motion blur, therefore, should not be considered as noise.

For each object category, we specify the set of states to consider, and any other object category specific instructions. Below
we club the instructions for multiple objects, but note that images from different object categories were annotated separately.

1. Microwave/Oven, Cupboard, Drawer, and Fridge: The applicable states are OPEN, CLOSE, and AMBIGUOUS. From
OPEN/CLOSE only one state would be applicable, i.e. a drawer can not be both, OPEN and CLOSE at the same time.

2. Jar and Bottle: The applicable states are INHAND, OUTOFHAND, OPEN, CLOSE, and AMBIGUOUS. From IN-
HAND/OUTOFHAND, and OPEN/CLOSE only one state would be applicable, i.e. a bottle can not be both, INHAND and
OUTOFHAND; or both, OPEN and CLOSE.

3. Onion and Potato: The applicable states are INHAND, OUTOFHAND, RAW, COOKED, WHOLE, CUT, PEELED, UN-
PEELED, and AMBIGUOUS. From INHAND/OUTOFHAND, RAW / COOKED, PEELED / UNPEELED, and WHOLE / CUT
only one state would be applicable. For green onions, we asked the annotators to not label the PEELED/UNPEELED
attribute.

4. Carrot: The applicable states are INHAND, OUTOFHAND, RAW, COOKED, WHOLE, CUT, and AMBIGUOUS. From
INHAND/OUTOFHAND, RAW/COOKED, and WHOLE/CUT only one state would be applicable.

5. Spoon, Fork, and Knife: The applicable states are INHAND, OUTOFHAND, and AMBIGUOUS. From IN-
HAND/OUTOFHAND, only one state would be applicable.

6. Egg: The applicable states are INHAND, OUTOFHAND, RAW, COOKED, and AMBIGUOUS. From INHAND/OUTOFHAND,
RAW/COOKED, only one state would be applicable.

S6.2.2 Dataset Statistics

Splits. We split the dataset into train, val and test splits based on participants. See participant assignment to the different splits
in Table S3. Participants were assigned between val and test by minimizing the difference in joint object state (fridge-open,
onion-cut, etc.) distribution between the sets. This ensures a good split of both objects and states.
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Novel Object Categories. We list object categories that were used for training and testing for the novel object category
experiment in Table S4.

Table S3. EPIC-STATES participants in each data split.

Split Participants

Train P01, P03, P06, P08, P13, P17, P21, P25, P26, P29
Validation P04, P05, P07, P14, P22, P23, P27
Test P02, P10, P12, P15, P16, P19, P20, P24, P28, P30, P31

Table S4. Novel Category Experiment. For the novel category
experiment, we limited the training to objects in the first row, and
evaluated on categories in the second row.

Train Objects fridge, knife, drawer, potato, carrot, jar, egg
Novel Objects spoon, cupboard, onion, fork, microwave / oven, bottle

Object and State Distributions. Table S6 and Table S5 shows the distribution of states and objects in EPIC-STATES, respec-
tively. We also show the joint distribution of objects and states in Table S7 across the entire dataset. As noted, many different
states are applicable to the same object.

Table S5. Objects in EPIC-STATES. For each objects in EPIC-STATES, we list the applicable states and how many instances we have for
that object in each split.

Object Applicable States Train Val Test Total

fridge OPEN, CLOSE 779 448 732 1959
spoon INHAND, OUTOFHAND 751 482 717 1950
knife INHAND, OUTOFHAND 749 551 729 2029
cupboard OPEN, CLOSE 683 449 429 1561
drawer OPEN, CLOSE 681 666 446 1793
onion INHAND, OUTOFHAND, RAW, COOKED, WHOLE, CUT, PEELED, UNPEELED 487 337 474 1298
fork INHAND, OUTOFHAND 353 206 259 818
microwave/oven OPEN, CLOSE 306 118 179 603
bottle OPEN, CLOSE, INHAND, OUTOFHAND 294 179 257 730
potato INHAND, OUTOFHAND, RAW, COOKED, WHOLE, CUT, PEELED, UNPEELED 164 192 182 538
carrot INHAND, OUTOFHAND, RAW, WHOLE, CUT 97 114 196 407
jar OPEN, CLOSE, INHAND, OUTOFHAND 54 99 89 242
egg INHAND, OUTOFHAND,RAW, COOKED 32 199 187 418

Table S6. States in EPIC-STATES. For each state in EPIC-STATES, we list the object categories it is applicable to, and how many instances
we have for that state in each split.

State Applicable Objects Train Val Test Total

INHAND bottle, carrot, egg, fork, jar, knife, onion, potato, spoon 1861 1236 1699 4796
OPEN bottle, jar, cupboard, drawer, fridge, microwave / oven 2099 1440 1459 4998
OUTOFHAND bottle, carrot, egg, fork, jar, knife, onion, potato, spoon 1280 1112 1227 3619
RAW carrot, egg, onion, potato 623 561 783 1967
CLOSE bottle, jar, cupboard, drawer, fridge, microwave / oven 686 496 633 1815
CUT carrot, onion, potato 477 459 499 1435
PEELED onion, potato 450 423 465 1338
WHOLE carrot, onion, potato 270 178 351 799
COOKED egg, onion, potato 152 273 245 670
UNPEELED onion, potato 197 104 186 487

S6.2.3 State Classification Task

We construct binary state classification tasks by considering all non-ambiguous crops from object categories that afford the
particular state label, as noted in Table S6. We throw out images that were AMBIGUOUS overall for all categories, or were
AMBIGUOUS for the specific state category under consideration.
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Table S7. Joint object and state distribution for EPIC-STATES. Note that multiple states are applicable to objects.

OPEN CLOSE INHAND OUTOFHAND RAW COOKED WHOLE CUT PEELED UNPEELED

bottle 286 358 521 205 ✗ ✗ ✗ ✗ ✗ ✗

carrot ✗ ✗ 223 184 399 ✗ 272 132 ✗ ✗

egg ✗ ✗ 118 300 210 204 ✗ ✗ ✗ ✗

fork ✗ ✗ 525 293 ✗ ✗ ✗ ✗ ✗ ✗

jar 136 103 154 78 ✗ ✗ ✗ ✗ ✗ ✗

knife ✗ ✗ 1331 699 ✗ ✗ ✗ ✗ ✗ ✗

onion ✗ ✗ 411 887 1000 296 290 1005 992 303
potato ✗ ✗ 236 300 358 170 237 294 346 184
spoon ✗ ✗ 1277 673 ✗ ✗ ✗ ✗ ✗ ✗

cupboard 1262 310 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

drawer 1479 315 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

fridge 1505 456 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

microwave/oven 330 273 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
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Figure S9. Image samples corresponding to the different states in the EPIC-STATES dataset.

5



S6.3. Detailed Results and Ablations

S6.3.1 State-wise Performance

State-wise performance of considered methods for state classification is shown in Table S8. In particular, we see that ResNet-
18 without any feature learning on our tracks already performs well on the OPEN, RAW, COOKED, PEELED, and CUT cate-
gories for most settings. Nonetheless, our methods improve performance across the board. TSC+OHC improves upon TSC
on all but one category in the challenging setting of novel categories with limited data.

Table S8. State-wise performance of models on EPIC-STATES test set in the different settings: novel objects with 12.5% training data,
novel objects with 100% training data, all objects with 12.5% training data, and all objects with 100% training data.

Novel Objects [12.5%] OPEN CLOSE INHAND OUTOFHAND RAW COOKED WHOLE CUT PEELED UNPEELED Mean

ImageNet Pre-trained 71.9 ±0.0 53.5 ±0.0 76.5 ±0.0 62.8 ±0.0 97.6 ±0.0 87.1 ±0.0 46.6 ±0.0 82.1 ±0.0 78.1 ±0.0 45.9 ±0.0 70.2 ±0.0

TCN [53] 67.4 ±4.6 50.9 ±5.2 63.9 ±2.5 46.7 ±2.4 75.8 ±1.3 32.9 ±1.6 36.6 ±2.6 76.6 ±0.8 72.7 ±1.7 37.3 ±0.9 56.1 ±1.9

SimCLR [6] 77.4 ±2.8 61.7 ±2.6 72.0 ±1.1 53.6 ±1.4 96.0 ±1.0 84.6 ±2.0 55.2 ±5.2 82.3 ±3.3 81.7 ±1.0 54.2 ±3.0 71.9 ±0.2

SimCLR+TCN 73.7 ±2.3 57.2 ±2.8 68.9 ±1.1 51.8 ±2.5 90.5 ±0.7 65.3 ±1.3 42.2 ±2.3 76.0 ±1.9 72.9 ±3.7 38.5 ±3.7 63.7 ±0.3

Semantic supervision

via EPIC action classification 76.0 ±2.1 57.7 ±1.5 76.4 ±0.4 64.0 ±1.4 95.3 ±2.5 73.6 ±9.0 56.3 ±4.7 81.6 ±2.0 79.4 ±3.3 48.6 ±4.2 70.9 ±2.0

via MIT States dataset [24] 75.0 ±0.9 56.2 ±4.3 73.7 ±0.8 60.4 ±2.6 94.5 ±2.7 77.5 ±9.1 51.4 ±1.3 87.1 ±1.6 78.1 ±2.8 46.8 ±1.5 70.1 ±1.5

Ours [TSC] 79.5 ±1.1 63.5 ±3.0 74.8 ±1.9 54.5 ±2.5 96.8 ±1.3 81.7 ±7.7 64.2 ±3.3 87.0 ±1.9 83.9 ±1.6 58.8 ±3.2 74.5 ±1.0

Ours [TSC+OHC] 81.1 ±0.5 62.5 ±1.1 82.9 ±0.9 67.5 ±1.6 98.3 ±0.6 88.1 ±4.6 67.1 ±2.6 90.4 ±1.4 89.1 ±1.8 70.4 ±2.1 79.8 ±0.6

Novel Objects [100%] OPEN CLOSE INHAND OUTOFHAND RAW COOKED WHOLE CUT PEELED UNPEELED Mean

ImageNet Pre-trained 74.8 ±0.0 57.6 ±0.0 78.5 ±0.0 70.3 ±0.0 98.6 ±0.0 92.0 ±0.0 62.1 ±0.0 91.4 ±0.0 74.5 ±0.0 45.4 ±0.0 74.5 ±0.0

TCN [53] 70.2 ±3.9 52.6 ±3.3 71.0 ±1.6 53.5 ±1.8 87.0 ±3.9 49.9 ±10.6 50.6 ±3.5 84.6 ±1.9 73.6 ±3.5 45.6 ±4.6 63.9 ±1.1

SimCLR [6] 77.9 ±2.2 62.2 ±1.9 77.4 ±1.3 63.1 ±1.1 97.4 ±1.3 94.0 ±3.4 65.4 ±4.3 90.3 ±0.5 82.0 ±0.5 61.6 ±3.9 77.1 ±1.0

SimCLR+TCN 76.1 ±2.8 61.0 ±2.9 75.2 ±0.7 60.3 ±2.0 92.7 ±0.7 77.6 ±5.9 52.5 ±4.0 82.9 ±2.8 69.6 ±3.0 35.7 ±5.2 68.4 ±1.6

Semantic supervision

via EPIC action classification 80.0 ±2.4 59.8 ±3.1 82.4 ±1.4 73.6 ±1.0 97.1 ±0.3 83.8 ±8.2 59.6 ±4.5 87.7 ±2.1 84.6 ±2.4 62.0 ±7.9 77.0 ±0.9

via MIT States dataset [24] 77.2 ±1.7 58.3 ±4.4 78.8 ±2.1 67.9 ±0.9 95.6 ±2.4 85.6 ±6.8 48.6 ±2.2 89.2 ±0.9 82.8 ±4.5 54.9 ±10.9 73.9 ±0.7

Ours [TSC] 80.2 ±1.2 63.8 ±3.7 80.5 ±1.6 63.5 ±2.5 98.8 ±0.4 94.1 ±1.7 73.1 ±1.6 93.1 ±0.7 87.9 ±0.2 67.2 ±2.4 80.2 ±0.4

Ours [TSC+OHC] 81.2 ±0.4 63.2 ±1.7 87.9 ±0.7 77.3 ±1.6 99.2 ±0.4 94.7 ±3.0 69.7 ±3.3 92.9 ±0.8 87.7 ±1.6 64.5 ±5.0 81.8 ±0.4

All Objects [12.5%] OPEN CLOSE INHAND OUTOFHAND RAW COOKED WHOLE CUT PEELED UNPEELED Mean

ImageNet Pre-trained 90.1 ±0.0 62.3 ±0.0 83.1 ±0.0 73.4 ±0.0 97.4 ±0.0 83.8 ±0.0 68.7 ±0.0 85.1 ±0.0 87.2 ±0.0 51.2 ±0.0 78.2 ±0.0

TCN [53] 83.0 ±1.7 48.6 ±2.2 73.9 ±2.1 55.9 ±2.2 85.0 ±0.8 40.4 ±1.4 53.0 ±2.2 72.7 ±1.3 78.6 ±0.3 33.6 ±1.7 62.5 ±0.8

SimCLR [6] 91.0 ±0.8 65.3 ±1.5 79.5 ±0.9 64.6 ±2.2 97.1 ±0.6 82.0 ±3.7 70.0 ±1.8 82.1 ±1.6 85.8 ±2.3 57.2 ±0.5 77.4 ±1.0

SimCLR+TCN 87.9 ±1.2 59.7 ±1.6 76.8 ±0.4 60.7 ±2.2 95.4 ±0.7 76.1 ±4.9 63.3 ±1.8 80.3 ±0.6 82.3 ±3.5 46.3 ±3.5 72.9 ±1.3

Semantic supervision

via EPIC action classification 88.5 ±1.1 55.0 ±1.6 83.1 ±0.9 72.2 ±0.2 95.9 ±0.7 68.8 ±3.7 60.0 ±1.8 73.4 ±2.2 79.7 ±3.3 44.5 ±1.5 72.1 ±0.8

via MIT States dataset [24] 89.9 ±0.1 58.5 ±1.6 81.1 ±1.2 70.0 ±3.1 96.3 ±1.2 78.9 ±3.3 66.5 ±2.0 86.3 ±1.3 86.6 ±1.3 50.4 ±3.9 76.4 ±0.6

Ours [TSC] 91.9 ±0.5 65.6 ±1.0 83.6 ±0.6 69.8 ±2.3 98.2 ±0.0 86.7 ±2.6 74.3 ±2.7 88.3 ±1.5 90.3 ±0.1 65.2 ±0.6 81.4 ±1.0

Ours [TSC+OHC] 91.9 ±0.6 63.5 ±1.6 88.7 ±0.4 77.9 ±0.2 98.2 ±0.1 88.5 ±1.1 73.5 ±0.9 89.5 ±0.7 89.8 ±0.6 64.8 ±2.2 82.6 ±0.2

All Objects [100%] OPEN CLOSE INHAND OUTOFHAND RAW COOKED WHOLE CUT PEELED UNPEELED Mean

ImageNet Pre-trained 92.9 ±0.0 68.3 ±0.0 85.3 ±0.0 78.2 ±0.0 98.3 ±0.0 88.5 ±0.0 73.0 ±0.0 89.4 ±0.0 91.4 ±0.0 65.1 ±0.0 83.1 ±0.0

TCN [53] 87.0 ±1.0 56.7 ±0.6 80.6 ±1.0 67.2 ±0.8 94.2 ±0.9 68.5 ±2.3 65.8 ±2.3 82.7 ±1.5 85.1 ±1.5 46.4 ±4.7 73.4 ±1.4

SimCLR [6] 92.1 ±0.8 67.6 ±2.3 82.9 ±0.5 71.3 ±1.2 97.8 ±0.6 86.0 ±3.1 72.8 ±1.6 86.9 ±0.8 88.9 ±2.2 64.1 ±3.0 81.0 ±0.9

SimCLR+TCN 90.5 ±1.2 65.5 ±1.3 81.3 ±0.3 69.1 ±1.5 96.9 ±0.9 78.3 ±6.3 68.9 ±3.1 84.2 ±1.8 84.9 ±2.6 54.2 ±2.5 77.4 ±1.2

Semantic supervision

via EPIC action classification 91.1 ±0.7 63.2 ±1.2 86.6 ±0.7 79.2 ±1.3 97.0 ±0.3 73.4 ±4.4 65.2 ±1.4 80.9 ±1.3 87.1 ±1.7 56.0 ±9.9 77.9 ±1.3

via MIT States dataset [24] 92.0 ±0.1 66.9 ±1.7 83.3 ±0.5 73.9 ±1.3 96.7 ±1.8 82.5 ±4.6 75.6 ±2.3 89.3 ±1.3 90.3 ±1.7 64.4 ±7.8 81.5 ±1.3

Ours [TSC] 93.0 ±0.3 69.6 ±2.1 86.9 ±0.6 75.8 ±2.1 98.6 ±0.1 89.0 ±2.5 77.5 ±2.6 89.8 ±1.5 92.1 ±0.6 69.3 ±4.2 84.2 ±1.0

Ours [TSC+OHC] 92.4 ±0.8 66.1 ±2.5 90.5 ±0.5 83.1 ±1.4 98.5 ±0.1 91.1 ±0.8 76.3 ±2.9 91.2 ±1.1 92.5 ±1.1 66.7 ±4.1 84.8 ±0.4
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S6.3.2 TSC+OHC Ablations

Table S9. We perform ablations on the components of TSC+OHC on the validation
set. Both hand motion and appearance contribute to the performance over TSC,
with motion being more important.

Novel Objects All Objects

Linear classifier training data 12.5% 100% 12.5% 100%

TSC 72.3 ±1.3 77.8 ±0.4 78.3 ±0.3 81.2 ±0.3
TSC+OHC (appearance) 73.8 ±0.8 77.3 ±0.5 78.4 ±0.5 82.5 ±0.6
TSC+OHC (motion) 74.6 ±1.6 78.7 ±0.6 78.8 ±0.4 82.4 ±0.2
TSC+OHC (motion + appearance) 75.1 ±0.4 78.2 ±0.2 78.6 ±0.2 81.7 ±0.3

We analyse the individual contribution of hand
motion (hm

i ) and hand appearance (ha
i ) towards

the performance of TSC+OHC. Table S9 shows
that both components, by themselves, improve
upon just TSC. Motion information gives larger
boosts than appearance information; and both
together lead to the best performance in the
challenging setting of novel categories with
limited data.

S6.3.3 Track Ablations

Mining object-level tracks from in-the-wild videos presents two challenges: a) how to select a useful patch to track, and b)
how to successfully track it in the given ego-centric video.

Egocentric videos showcase objects that are undergoing non-trivial transformations (deformations, state changes,
occlusion by hands). Furthermore, use of hand context could aid with tracking in egocentric videos that have large amounts
of egomotion. We test the extent to which these advantages of working with egocentric videos contributes to performance.
We generate several sets of tracks that ablate the two aforementioned factors. Visualizations for these tracks are shown by
Figure S10, and the quantitative results are presented in Table S10.

Source for Starting Patches. We experiment with the following sources for the starting patch.

1. Object-agnostic Starting Patch. Here, we consider an arbitrary starting patch source, either a random crop or center
crop in a frame. Random crops vary in scale and location, while the center crop is always a 256 × 256 crop from the
456× 256 image.

2. Starting Patch on Background Object. We detect background objects (i.e. not overlapping with objects of interaction
as detected by the model from [55]) using Mask RCNN [22] with a ResNet101-FPN backbone trained on MS-COCO
2017 instance segmentation dataset. We only detections for categories commonly found in kitchens and remove classes
like car, train, etc. We only consider the 10 highest scoring detections, and sample a detection that doesn’t overlap with
the object-of-interaction as the starting patch.

3. Starting Patch on Object-of-Interaction (Ours). We use the object-of-interaction detections from Shan et al. [55]. As
noted in the main paper, we use leave one out predictions from [55]: we split the train set into 5 parts by participants,
retrain [55] on 4, use predictions on the 5th (i.e. unseen participants); and repeat this 5 times over.

4. Ground Truth Objects-of-Interaction (Ceiling). For reference, we also report performance on using ground truth
objects of interaction as annotated in the EPIC-KITCHENS dataset. We use these with ground truth tracking (see below).

Tracking Algorithm. We experiment with the following tracking algorithms.

1. No Tracking. Here, we don’t do any tracking and copy over the box from the previous frame, to the same location in
the current frame.

2. Off-the-Shelf Tracker. We use SiamRPN++ tracker from [35] to track the object from one frame to the next. Given
a starting crop, the tracker produces bounding boxes for crop in consecutive frames. In practice, we only consider a
tracker-produced bounding box to be valid if it has a score above 0.1. We allow for up to two frames of either missing
or invalid detections, or a max of 256 frames tracked, before sub-sampling and saving the track.

3. Hand-context (Ours). To construct our tracks, we focus on objects-of-interaction detected by [55] along with informa-
tion about what hands do they correspond to. We do this jointly with the object-of-interaction starting patches described
above. In more detail, we utilize hand-object detections for both, finding the starting patch and tracking it. Specifically,
we start with a frame and find all interacted objects with a score above 0.2 and start tracking them independently. At
the next frame, we receive another set of valid objects bounding boxes and try to match them with the previous frame’s
detections by posing the problem as a linear sum assignment in a bipartite graph where the cost is the intersection over
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Figure S10. Sample track from the random crop with no tracking (Random), the background object crop with MaskRCNN + tracking
with SiamRPN++ (MaskRCNNN + SiamRPN++), and our tracks that use objects-of-interaction and track using hand context. We see
that ego-motion in egocentric videos leads to large drift by the end without any tracking. We see that the background object tracks fail to
capture meaningful appearance changes. For our tracks, we see the object in a variety of poses with distinct appearances.

union (IoU) over the two bounding boxes (provided that IoU > 0.4). Boxes still not matched with previous boxes start
their own track. Tracks also have an 8 frame buffer with no matches before they are closed. We subsample the tracks to
10fps. We cap the track length at 25.6s, and split longer tracks. We get a total of 61.3K tracks.

4. Ground Truth (Ceiling). Here we use the ground truth object-of-interaction tracks provided in the EPIC-KITCHENS
dataset (used in conjunction with ground truth object-of-interaction above). We use the bounding box annotations for
the object-of-interaction from Damen et al. [10] on EPIC-KITCHENS dataset. Since these annotations are provided at 0.5
fps, we interpolate the bounding box for the intermediate frames to get dense tracks. This gives us 16,474 tracks with
an average length of 66 frames.

Table S10. Comparison on validation set for various tracking ap-
proaches used for learning state sensitive features with Temporal Sim-
CLR. Tracks obtained with the hand-object-interaction detector perform
the best and come close to hand annotated tracks [10] in performance.
Italicized rows correspond to our proposal in this paper.

Starting Patch Source Tracking Algorithm TSC Val mAP

Center crop None 72.9
Random crop None 77.1
Object-of-interaction [55] None 79.2
Random Background Crop SiamRPN++ [35] 77.6
Random Background Object SiamRPN++ [35] 80.6
Object-of-interaction [55] SiamRPN++ [35] 79.7
Object-of-interaction [55] Hand context 81.2
GT Object-of-interaction Ground Truth 83.5

Object-of-interaction [55] Hand context 81.7 (TSC+OHC)

Results. Table S10 shows the performance of TSC on
the various tracks. As noted in the main paper, use of
object-of-interaction tracks offers two advantages: they
stabilize for the large egomotion in egocentric videos, and
focus on aspects of the scene that are undergoing inter-
esting (non-viewpoint) transformations. No stabilization
performs poorly. Stabilization using off-the-shelf tracker
SiamRPN++ [35] also works well. However, tracking
with hand context enables use of Object-Hand Consis-
tency which aids performance. Ground truth tracks an-
notated in EPIC-KITCHENS dataset lead to better learning,
indicating that better detection and tracking of objects-of-
interaction can improve performance further.
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S7. Object Affordance Prediction

S7.1. EPIC-ROI Dataset and Task

Task Definition. The ROI (Region of Interaction) task is to predict regions where human hands frequently touch in everyday
interaction. Specifically, image regions that afford any of the most frequent actions: TAKE, OPEN, CLOSE, PRESS, DRY,
TURN, PEEL are considered as positive.
Data Sampling. We randomly sampled 500 images from 9 participants: P01, P08, P11, P02, P32, P18, P04, P09, P03. From
these participants, we only use videos present in the test set of EPIC-KITCHENS dataset (2018 version). We annotated frames
at 1920 × 1080 resolution. The images may or may not contain participant hands (if they were present, they were annotated
and ignored during evaluation) . We manually filter out images to minimize motion blur, out of distribution frames (for
example, completely dark frames at the starting of some videos or rare views such as picking a spoon that fell onto the floor).
We made sure to minimize redundancy among frames by selecting the most diverse 7 – 15 frames from each participant.
Annotation Procedure. To determine where participants frequently interact in the scene, we manually watched the videos
from these participants and created a list of objects that underwent interaction objects and also identified the interacted
regions. Then, for every considered action, we annotated applicable regions of interaction using polygons for larger objects
(such as bottles, jars etc.), and lines for thin regions (wires, rims and object edges). The lines for the rims and edges of
objects were converted to regions by dilating them by 25 pixels to convert them to strips. Annotation for 10 images from 1
participant took 120 minutes on average. Lastly, we aggregate the annotations across all actions to generate the EPIC-ROI
ground truth segmentation mask.

To enable detailed analysis, every annotation is also assigned one of the four labels: COCO objects, Non-COCO objects,
COCO parts, and Non-COCO parts. To determine the set of COCO objects, we first select only the relevant classes remov-
ing categories like cat, dog, bird etc. This leaves us with the following categories: BACKPACK, UMBRELLA, HANDBAG,
TIE, SUITCASE, SPORTS BALL, BASEBALL BAT, BASEBALL GLOVE, TENNIS RACKET, BOTTLE, WINE GLASS, CUP, FORK,
KNIFE, SPOON, BOWL, BANANA, APPLE, SANDWICH, ORANGE, BROCCOLI, CARROT, HOT DOG, PIZZA, DONUT, CAKE,
CHAIR, MOUSE, REMOTE, KEYBOARD, CELL PHONE, TOASTER, BOOK, VASE, SCISSORS, HAIR DRIER, TOOTHBRUSH,
MICROWAVE, OVEN, SINK, and REFRIGERATOR. We further observed that removing MICROWAVE, OVEN, SINK, and RE-
FRIGERATOR from the relevant categories improves the performance of Mask RCNN on the validation split (see Table S12).
Thus, we don’t include objects from these 4 categories into COCO objects. Figure S11 shows some annotated images from
our validation split where different categories (out of above four) are assigned different colors.

Table S11. Val and test sets for EPIC-ROI dataset.

Split Participants # Frames

Validation P03, P04, P09 32
Test P01, P02, P08, P11, P18, P32 71

Dataset Splits. We split the collected dataset into validation and testing
sets based on the participants. P03, P04, and P09 are in the validation
set with a total of 32 frames. P01, P02, P08, P11, P18, and P32 are in
the test set with a total of 71 images.

S7.2. Grasps Afforded by Objects (GAO) Task

Task Definition. The task is to predict the hand-grasps afforded by objects present in the scene where each object can
afford multiple grasps. The task also requires reasoning about the occlusion between objects which can leave some of the
hand-grasps inapplicable.
Datasets. We utilize YCB-Affordance dataset [9] that builds upon YCB-Videos [62] (sample frames shown in Figure S12)
to set up GAO Task. The dataset annotates each object with the afforded hand grasps (see Figure S12 (right)).

For our methods and the baseline alike, we assume that objects have already been localized (we use the object masks
provided with the dataset). This side-steps the detection problem and allows us to focus on the task of predicting afforded
grasps. For the baselines, predictions are made on a crop around the object of interest. For our method, dense predictions
from our model are aggregated over the segmentation mask to obtain the final classification (more below).
Splits. We divide the YCB-Affordance dataset into three parts for training, validation and testing. We make sure that the
training, validation and test sets do not overlap in the objects. Further, there is no overlap in the videos from training,
validation and test sets. This results in a training set consisting of 77 videos, validation set with 6 videos and testing set with
9 videos. We further only use 15 objects (out of 21) from the training set to train the supervised baseline. For validation
and testing, we use the remaining 6 objects to compute the metrics. Since the scene is static, and the camera motion is slow,
we sub-sample 60 frames (10 from each video) from the validation videos to create the validation set, and 180 frames (20
from each video) to create the testing set. We use all the frames (110K) from training videos to create the training set for
supervised ceiling. The splits ensure that we test generalization to novel objects.
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Figure S11. Annotated images from EPIC-ROI dataset. We show some sample images from the dataset annotated for evaluating region
of interaction predictions. Each annotated region is attributed with one of the four labels: COCO objects (red), Non-COCO objects (green),
COCO parts (blue), and Non-COCO parts (magenta).

1. Precision Disk

1. Medium Wrap

2. Power Sphere

3. Sphere 4 Finger

4. Sphere 3 Finger

1. Large Diameter

2. Sphere 4 Finger

Figure S12. Sample frames from YCB-Videos [62]. We use annotations from Corona et al. [9] on the YCB-Videos [62] to setup the
GAO task. The task is to predict the hand-grasps afforded by the objects present in the scene (see right figure). This requires reasoning
about object shape and occlusion patterns that can render some grasps inapplicable.

S7.3. Model Details

S7.3.1 Affordances via Context Prediction (ACP) Details

Architecture. We use the ResNet-50 backbone as the encoder. The region of interaction branch uses a decoder that consists
of 4 deconvolution layers with 4 × 4 kernels and stride length of 2 and a padding of 1. Lastly, we have a 5 × 5 average
pooling layer with padding 2 and stride 1 which outputs the final ROI-prediction. The grasp prediction branch, uses one
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fully-connected layer followed by 33 binary classifiers on top of the output from the encoder.
Training Splits. We use participants P05, P06, P07, P10, P12, P13, P14, P15, P16, P17, P19, P20, P21, P22, P23, P24, P25,
P26, P27, P28, P29, P30, P31 for training the model. Note that these are disjoint from the participants used for validation and
testing in EPIC-ROI, as listed in Table S11.
Data Sampling. For training our ACP model, we extract patches from 456×256 EPIC-KITCHENS frames (2018 version). We
use the hand and object-of-interaction detections to generate the ground-truth segmentation mask (by pasting the detections).
We only use object-of-interaction detections that have a confidence score ≥ 0.8, and that are smaller than 150 pixels in width
and height. Next, we sample positives around the detected hands and detected objects-of-interaction. For hands, we randomly
select a square patch 1 to 1.3 times the size of the detected hand box, centered at the hand (positive) or randomly located
elsewhere in the image (negative). For sampling around the objects, we only consider object-of-interaction detections that
have width and height greater than 20 pixels, and we sample a square patch inside the object-of-interaction box (positive).
The width of the sampled patch is randomly varied between 0.5 to 0.75 times the size of the detected object-of-interaction
box. We train on all participants except the ones in the EPIC-ROI validation and testing sets. For training the grasp prediction
branch, we only use the positive patches sample centered at the hand.

Patches are resized to 128× 128 for training. Note that the bottom center 64 region is masked out before feeding into the
networks both at train and test times.
Loss function. Our loss contains two terms Lseg and Lgrasp, the former training the region of interaction branch and the
latter training the grasp prediction branch. Both losses encourage the network to focus on the surrounding context to make
prediction about the hidden hand.

Lseg computes the binary cross-entropy between the predicted segmentation mask and the ground truth segmentation mask
(as derived by pasting detection boxes). We weight the positive pixels by a factor of 4.

Lgrasp is trained on predictions from a classifier trained on the GUN-71 dataset [51]. We only consider scores for the 33
hand grasps (that are annotated in YCB-Affordance dataset) from the GUN-71 classifier. We use the highest scoring class as
the positive class. We create a set of negatives which consists of the least scoring K = 15 classes. This generates both the
positive and negative data for training the grasp prediction head.

Lseg is trained on all positive and negative patches described above. Lgrasp is only trained on positive patches (i.e. those
that are around the hands).

We train both the segmentation head and the grasp prediction branch jointly by combing the two loss functions as,

L = Lseg + 0.5 · Lgrasp. (9)

Training Details. We use a batch size of 64 and Adam optimizer with a learning rate of 10−4. During training, we also
perform horizontal flips, motion blur and color jitter augmentations on the input image. The masked context region is resized
to 128× 128 before being input to the model. We train for a total of 400 epochs (each epoch consisting of 256 iterations on
randomly sampled batches with batch size of 64) and then validate checkpoints at epoch 300, 350, and 400 to select the best
model for evaluation. Training took 6 hours on a single modern GPU (RTX 2080 Ti or equivalent).
Supervision for Grasp Prediction Branch. Here, we provide more details about the GUN-71 classifier that is used to
generate the necessary supervision for training ACP.

This GUN-71 classifier is trained on hands cropped from the GUN-71 dataset from Rogez et al. [51]. We use a hand
detector [55] to crop out hands from the GUN-71 dataset resulting in 8403 crops for training (Subjects 1, 2, 3, 4, 5, and 6)
and 1655 crops for validation (Subject 7). The classifier uses a ResNet-18 backbone with two fully connected layers (512
and 128 units), followed by a 71-way classification layer. This model is trained using hand grasp annotations in the GUN-71
dataset with a cross-entropy loss.

In addition to this grasp classification layer, we also have another head consisting of one linear layer (128-dimensional
output) that is trained using Ltemporal on the EPIC-KITCHENS dataset to adapt the GUN-71 classifier to work well on EPIC-
KITCHENS dataset. This Ltemporal uses the hand tracks obtained using detector from [55] on the EPIC-KITCHENS dataset, as
used by the other parts of our paper.

This network is trained jointly by minimizing Lc + Ltemporal using Adam optimizer with a learning rate of 10−4 and 0.05
weight decay. We use a batch size 128. We perform random crops, horizontal flips, and color jitter as augmentations. We
train for a maximum of 60 epochs where we early stop based on the validation performance. For Ltemporal, we use a window
of length 10 to sample positive hand crops. We only train on tracks with a minimum length of 15 frames. We save the model
after every 3 epochs, and select the snapshot based on the validation performance on the GAO task. Typically, training for
24-30 epochs resulted in the best performance where each epoch consisted of training for 64 iterations.
ACP (no Ltemporal). This model is trained similarly to ACP but only for minimizing Lc cross entropy loss for classification.
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Inference. At test time, we uniformly sample square context regions of size 60, 100, and 160 from 1920 × 1080 images.
We sample 4000 regions for each size, resulting in a total of 12000 regions. We resize the sampled patches to 128 × 128
and mask out their bottom center 64 × 64 region, before feeding them into our learned models to obtain the 12000 64 × 64
predictions.

These predictions are spatially aggregated, individually for both the afforded hand grasps and regions of interaction, by
resizing and pasting at the corresponding locations. For GAO task, we only use the spatially aggregated grasp predictions,
and for the ROI-prediction task, we only use the spatially aggregated ROI prediction. For evaluation on EPIC-ROI, we also
smooth our predictions using a Gaussian kernel (with standard deviation of 25) to suppress high frequencies. To generate
affordances (for example in Figure 8), we simply multiply the two spatial predictions.
Inference on YCB-Affordance. We do inference over 800 160×160 patches to obtain pixel-wise grasp predictions for each
of the 33-hand grasps. We then compute the average score within each object mask and use that to compute 33 scores, one
each for each grasp type.

S7.3.2 Region of Interaction (RoI) Baselines

Mask RCNN. We use an FPN-based (Feature Pyramid Network) Mask RCNN model trained on MSCOCO with a ResNet-
101 backbone for implementing this baseline. For inference, we predict 1000 detections per image with an NMS threshold
of 0.7. To get the RoI prediction, we multiply the class-score with the soft instance segmentation mask, and paste it at the
corresponding detection locations.

Table S12. Selecting Relevant COCO Categories to Maximize Mask RCNN
Performance. We observe that using predictions for microwave, oven, sink, re-
frigerator or all four, reduces the performance of Mask RCNN on validation set.
This is because the region-of-interaction task requires localizing the regions of
interaction on these objects and not segmenting them out as a whole. Con-
sequently, we remove these 4 object classes from the relevant categories. We
compare to this stronger Mask RCNN baseline.

Overall AP

Slack at segment boundaries 0% 1%

Mask RCNN [relevant] 65.7 72.1
Mask RCNN [relevant] w/ oven 50.0 58.1
Mask RCNN [relevant] w/ microwave 61.7 73.1
Mask RCNN [relevant] w/ sink 54.4 60.7
Mask RCNN [relevant] w/ refrigerator 52.6 57.7
Mask RCNN [relevant] w/ oven, microwave, sink, refrigerator 47.3 53.3

Mask RCNN [relevant]. Before pasting the pre-
dicted segmentations, we filter out detections cor-
responding to the relevant categories. Specifi-
cally, we consider the following object categories
that we selected so as to maximize the AP on
the validation set (see ablation in Table S12):
BACKPACK, UMBRELLA, HANDBAG, TIE, SUIT-
CASE, SPORTS BALL, BASEBALL BAT, BASEBALL
GLOVE, TENNIS RACKET, BOTTLE, WINE GLASS,
CUP, FORK, KNIFE, SPOON, BOWL, BANANA,
APPLE, SANDWICH, ORANGE, BROCCOLI, CAR-
ROT, HOT DOG, PIZZA, DONUT, CAKE, CHAIR,
MOUSE, REMOTE, KEYBOARD, CELL PHONE,
TOASTER, BOOK, VASE, SCISSORS, HAIR DRIER,
and TOOTHBRUSH.

Interaction Hotspots. We use the pre-trained model (with a dilated ResNet-50 backbone) provided by Nagarajan et al. [42]
to predict interaction hotspots on EPIC-ROI. Specifically, we uniformly sample 800 patches of size 400 × 400, resize to
224 × 224 to feed into their model, get 28 × 28 predictions from their model, upsample and paste these predictions at the
corresponding location. We selected the (400× 400) patch size based on the validation set performance. We did not observe
any improvement in performance on increasing the number of patches sampled. Note that the model from [42] is a action-
specific model. We convert their predictions into per-pixel interaction probability by taking the max score across actions at
each pixel.
DeepGaze2. We use the predictions from DeepGaze2 [30] model to compute the AP on the RoI-prediction task.
SalGAN. We use the predictions from SalGAN [46] model to compute the AP on the RoI-prediction task.
Mask RCNN + X. We combine predictions, PX from models (DeepGaze2, Ours) with predictions PMask RCNN
from Mask RCNN [relevant] to obtain combined predictions which are denoted as Mask RCNN + DeepGaze2 and
Mask RCNN+ACP in the main paper. This is done by a pixel-wise combination with scalar weights:

P comb
X = w · PMask RCNN + (1− w) · PX (10)

We set w to 2/3 when combining with ACP, and to 1/2 when combining with DeepGaze2. This scalar weight was
obtained through validation on the validation set. We additionally found it useful to smooth the output from our model
(Gaussian filtering with standard deviation of 25 pixels, image size was 1920 × 1080). Such blurring wasn’t useful for
predictions from DeepGaze2.
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S7.3.3 Grasps Afforded by Objects (GAO) Baselines

Chance. As chance performance, we report the fraction of positive data for each grasp in the dataset. This corresponds to a
flat precision recall plot.
Supervised Ceiling. To train the supervised ceiling, we use the training split with 15 objects and 77 videos. We use a
ResNet-50 backbone with a classifier head containing one fully-connected layer, followed by 33 binary classifiers. We train
this network by sampling square patches centered at the object bounding boxes and use a binary cross entropy loss for
training. We also use color jitter, horizontal flips and random crops on the sampled patches as data augmentation during
training. We validate on the validation split on the held-out 6 objects.

S7.4. Detailed Results, Ablations, and Visualizations

S7.4.1 ACP Ablations

We study the effect of the different choices regarding supervision, data preparation and network input, and network architec-
ture, made in the design of ACP. We conduct these experiments on the validation sets and report performance on the ROI task
and the GAO task (where applicable). For the ROI task, we report the performance in isolation, and upon combination with
Mask RCNN. Results are presented in Table S13.
Data preparation and network input. Our full model masks out the hand before feeding in patches to the network for
training, and uses an asymmetrical context window around the masked region. Furthermore, we only make predictions for
objects and hands when they are in contact with the hand. We ablate these choices, and find that all three of these choices
contribute to the performance of the full ACP model.
Supervision and data sampling. Our full model uses the regions for both the hand and the object as target and for sampling
data during training. We see a large drop in performance on the ROI task when not using the object regions for data sampling
or as target (denoted as ‘no object’). Not using the hand regions for data sampling or as targets (denoted as ‘no hand’) leads
to a small drop in performance for the ROI task but additionally renders it impossible to train for the GAO task. The role of
hands is further emphasized when we switch to using hand segmentation masks rather than box masks (as used in all other
experiments). Richer understanding of the hands leads to improved performance on the ROI task.
Network architecture. Our ACP model as used in the main paper takes in a 2s× 2s input and produces a s× s output. We
also experimented with a symmetric architecture (2s × 2s input and output). This can lead to better spatial alignment and
ease learning. We report metrics with two such architectures, (i) where we put the loss on the bottom center patch, and (ii)
where we put the loss in the entire output window. We observe slight improvements in performance from these architectural
modifications.

Table S13. Variations of ACP. Average precision for Region-of-Interaction prediction and mean average precision for GAO task, each
on the respective validation sets. For ROI prediction task, we report results using raw ACP predictions as well as when combined with
Mask RCNN. We train each ablation three times and report the mean and the standard deviation (µ±σ).

ROI (Overall AP) ROI (Overall AP) [+Mask RCNN] GAO (mAP)

Methods 0% Slack 1% Slack 0% Slack 1% Slack

ACP (full model) 61.4 ±0.3 73.3 ±0.5 70.9 ±0.1 79.5 ±0.2 42.2 ±2.6

Data preparation and network input
ACP (no hand hiding) 60.8 ±0.3 72.4 ±0.4 70.3 ±0.1 78.8 ±0.1 42.0 ±5.2
ACP (no contact filtering) 59.9 ±0.7 71.4 ±0.8 70.5 ±0.2 79.0 ±0.3 43.0 ±1.2
ACP (symmetric context) 60.2 ±0.2 72.4 ±0.2 70.0 ±0.2 78.5 ±0.1 39.1 ±1.0

Supervision and data sampling
ACP (no object) 53.6 ±1.0 65.1 ±1.3 69.5 ±0.2 77.3 ±0.3 41.4 ±5.9
ACP (no hand) 60.8 ±0.8 72.8 ±0.7 70.7 ±0.3 79.3 ±0.2 N/A
ACP (hand segmentation masks as opposed to box-masks) 62.1 ±0.5 74.0 ±0.4 71.1 ±0.4 79.7 ±0.4 42.5 ±2.7

Network architecture
ACP (2s× 2s output, loss everywhere) 61.5 ±0.4 73.7 ±0.5 70.6 ±0.2 79.2 ±0.1 40.7 ±2.6
ACP (2s× 2s output, loss on bottom center) 61.7 ±0.3 73.4 ±0.1 71.1 ±0.2 79.7 ±0.2 41.6 ±5.0
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S7.4.2 GAO Category-wise Performance

The test set only contains 7 (out of 33) grasps, we report the mean average precision over these 7 categories. The class-wise
performance for ACP is shown in Table S14. We also report the chance performance along with a supervised ceiling.

Table S14. Class-wise performance on the GAO test set. We report average precision for each of the 7 hand grasp type contained in the
test set. For ACP (no Ltemporal) and ACP, we conducted the experiment three times and report the mean performance. We also report the
standard deviation over three runs for ACP and ACP (no Ltemporal).

Grasp Type Chance ACP (no Ltemporal) [Ours] ACP [Ours] Supervised Ceiling

Large Diameter 55.6 56.3 ±5.7 45.2 ±3.6 80.2
Medium Wrap 27.8 26.6 ±5.8 20.4 ±1.5 67.2
Power Sphere 27.8 23.6 ±0.7 36.0 ±3.6 68.4
Precision Disk 22.2 15.1 ±0.8 14.9 ±1.5 94.7
Parallel Extension 11.1 11.0 ±0.4 28.1 ±5.6 14.8
Sphere 4 Finger 50.0 68.8 ±6.9 64.6 ±1.9 56.6
Sphere 3 Finger 16.7 39.3 ±6.2 57.3 ±0.2 15.4

Mean 30.2 34.3 ±0.8 38.1 ±0.2 56.8

S7.4.3 Qualitative Results

1. We provide additional visualizations for ROI predictions made by ACP on the validation split of EPIC-ROI dataset (see
Figure S13). We observe that our method can locate regions that afford interaction such as drawer handles, knobs and
buttons which are not typically annotated in object segmentation datasets. We also see that predictions are localized to
object regions that afford interaction e.g. edges of plates.

2. We also visualize predictions for afforded grasps on the EPIC-KITCHENS dataset. We convert predicted grasp-specific
heatmaps into detections (by finding scale-space blobs in the heatmaps) and visualize the top scoring detections across
the validation dataset in Figure S14.

3. In Figure S15, we show the top detections for each of the 7 grasps made by ACP on the validation set of GAO benchmark.
The images are colored green if the corresponding grasp is applicable to the highlighted object or else colored in red.
We observe that for many hand-grasp types, the top scoring objects actually afford the corresponding hand-grasp type.
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Figure S13. Regions-of-Interaction (ROI) predictions on EPIC-ROI dataset. We show ROI predictions on 18 images from the validation
dataset. We observe that our method can locate regions that afford interaction: drawer handles, knobs and buttons (not typically annotated
in object segmentation datasets). We also see that predictions are localized to object regions that afford interaction e.g. edges of plates.
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Figure S14. Visualizations for Afforded Grasps. Top detections for selected hand grasp types on the validation split of EPIC-ROI
dataset. We convert predicted grasp-specific heatmaps into detections (by finding scale-space blobs in the heatmaps) and visualize the top
scoring detections across the validation dataset. Many of these detections are plausible, e.g. lid handles for power sphere, and sphere 4
finger grasps; bottle caps and stove knobs for quadpod grasp.
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Large Diameter Medium Wrap Power Sphere Parallel ExtensionPrecision Disk Sphere 4 Finger Sphere 3 Finger

Figure S15. Visualizations of predictions for GAO task on YCB-Affordance dataset. Here we show the top predictions (object-wise)
made by ACP for the 7 grasps contained in the validation set. For each of the 7 grasps, we visualize the grasp (reproduced from [15])
in the top row, and show the top three predictions (after removing images that were very similar). We highlight the object for which the
prediction is being made for (in cyan). We color the image frame to indicate correctness of prediction based on ground truth from Corona
et al. [9] (green indicates correct, red indicates incorrect).

17


