
Supplementary Material:
Joint Forecasting of Panoptic Segmentations with Difference Attention

This appendix is structured as follows: Appendix A details the background prediction approach which we use to obtain
preliminary background class predictions. Appendix B provides specific model architectural details for the forecasting trans-
former encoder and decoder. Appendix C explains in detail the agent-aware attention approach we use which allows for
identity information to be encoded in the model. Appendix D describes the specific losses computed during training of the
foreground forecasting model. Appendix E presents the model architecture used by the depth completion model introduced
in Sec. 3.3. Appendix F describes additional details of implementation and model training. Appendix G contains additional
information about the AIODrive dataset and experiments. Appendix H contains instance segmentation forecasting experi-
mental results for Cityscapes. Appendix I contains semantic segmentation forecasting experimental results for Cityscapes.
Appendix J presents additional model visualizations on Cityscapes for both the short- and mid-term settings. Appendix K
contains the full per-class breakdown of the panoptic segmentation metrics presented in Tab. 1. Appendix L describes the
major code libraries used to implement our model. Finally, Appendix M discusses potential negative societal impacts that
could arise from the implementation of this work in practice.

A. Background Model

In this work, we utilize the background semantic prediction model introduced by Graber et al. [14]. This approach lifts
background semantics into a 3D point cloud using the estimated input depth, transforms the point cloud based on camera
movement, projects to the image plane, and refines the projected semantics using a semantic segmentation model. Formally,
this model estimates the semantics of background object classes for unseen future frame T + F as

m̂B
T+F = BGRef({proj(mt, dt,K,Ht, ut)}1:T), (16)

where K represents camera intrinsic parameters, Ht is the 6-dof camera transform from input frame t to target frame T +F ,
mt is the semantic segmentation for frame t which is obtained from a pre-trained model, dt is the input depth map at time t,
and ut denotes the coordinates of all of the pixels in mt which correspond to background semantic classes. Proj refers to the
step which creates the sparse reprojected semantic map for frame T + F given inputs for frame t, and BGRef refers to the
background refinement model which produces a complete background prediction from the output of Proj.

The first step of the background model is to produce reprojected semantic point clouds (m̃B
t , d̃

B
t) which are processed by

BGRef. These are obtained for each time t ∈ {1, . . . , T} by applying Proj to the corresponding input frame It. Given per-
pixel semantic prediction mt and depth map dt, Proj back-projects, transforms, and reprojects the pixels from input frame t
to target frame T + F . This process is summarized asxt

yt
zt

 = Ht

K−1

[
ut

1

]
diag(dt)

1

 , (17)

[
uT+F

1

]
= K

xt/zt
yt/zt
1

 , (18)

m̃B
t (uT+F) = mB

t (ut), (19)

d̃Bt (uT+F) = zt, (20)

where ut is a vector whose entries dictate the pixel locations in mt which correspond to background object classes and uT+F

is the vector which contains the location of these pixels in the target frame at time T + F . During this, we maintain the
semantic class obtained from mt and the projected depth of each pixel location. Whenever multiple pixels ut from an input
frame are projected to the same pixel uT+F in the target frame, the depth and the semantic label of the pixel with the smallest
depth is kept, as it is closest to the camera.

Given reprojected semantics m̃B
t and depths d̃Bt from the previous step, the background refinement model is tasked with

predicting a final semantic output. This is done by concatenating the input from all frames and feeding them into a semantic

segmentation model, which can be described as

m̂Prob
T+F = BGRef([{m̃B

t (uT+F)d̃
B
t (uT+F)}1:T])

m̂B
T+F = argmax

c
(m̂Prob

T+F),

where m̂Prob
T+F ∈ ∆H×W

CBG
represents the CBG-dimensional output probability map per pixel, one for each background class,

and the final output m̂B
T+F is obtained per-pixel by choosing the class with the largest probability.

The refinement network is trained using the cross-entropy loss

Lbf :=
1∑

x,y 1bg
T+F [x,y]

∑
x,y

1bg
T+F [x, y]

∑
c

mB∗
T+F (x, y, c) log

(
m̂Prob

T+F (x, y)
)
. (21)

Here, 1bg
T+F [x, y] is an indicator function specifying whether pixel coordinates (x, y) correspond to background semantic

classes for frame T +F , and mi∗
T+F (x, y, c) = 1 if the correct class for pixel (x, y) is c and 0 otherwise. For all experiments

presented in this work, we use the specific background prediction model trained by Graber et al. [14]. Further implementation
details related to model architecture and training can be found in the Appendix of [14].

B. Architecture details for Forecasting Transformer Encoder and Decoder
The feature model fLoc processes input locations xi

t, appearances rit, instance classes ci, odometry ot, and time t to
produce an embedding x̄i

Loc,t which is processed by the transformer FTE. fLoc can be fully specified by the following model
components:

x′
t
i
= fb([x

i
t, onehot(ci)]), (22)

r′t
i
= AvgPool(ff (rit)), (23)

x̄i
Loc,t = fe2([fe1([x

′
t
i
, r′t

i
, ot]), τt]). (24)

First, an initial location embedding x′
t
i is produced, where fb is a linear layer and onehot represents a vector whose ci-th

element is set to one and whose other entries are set to zero. Similarly, initial appearance embedding r′t
i is produced, where

ff is a small convolutional network and AvgPool averages the result over the spatial dimensions. These two embeddings are
concatenated with odometry ot, passed through linear layer fe1, concatenated with temporal encoding τt, and passed through
the final linear layer fe2. Specifically, the temporal encoding τ t ∈ Rdτ provides information to the model about the temporal
location of the given instance in the sequence and whose k-th element is defined as

τ t(k) =

{
sin(t/1000k/dτ), k is even
cos(t/1000(k−1)/dτ), k is odd

. (25)

Here dτ is the size of the temporal encoding and is set to 256 everywhere in this work. All linear layers in fLoc have an output
embedding size of 256, and ff contains two 2D convolutional layers with a kernel size of 3, output channel size of 256, and
ReLU activations after each.

The feature model fApp produces appearance embedding x̄i
App,t as a function of the input appearances rit as well as input

time t, and can be fully specified by the following model components:

x̄i
App,t = fae2([fae1(r

i
t), τ̃t]), (26)

where fae1 is a 3×3 convolutional layer with output dimension 256, fae2 is a 1×1 convolutional layer with output dimension
256, and τ̃t ∈ Rdτ×14×14 is equivalent to τt copied across spatial dimensions to match the size of rit.

The location transformer encoder FTELoc consists of two stacks of transformer encoder modules as originally defined
in [42] consisting of layer norm, multi-head self-attention, feed-forward networks, and residual connections. Specifically, all
transformers in this work use the Pre-LN construction [48], where the Layer Norm module is placed before the multi-head
attention and feed-forward network, as we observed improved convergence. As specified in Sec. 3.2, the multi-head attention
modules use both difference attention (Sec. 3.1) and agent-aware attention (Appendix C). The embedding dimension of all

keys, queries, and values as well as the output hi
Loc,t is 256, the hidden dimension of feedforward modules is 512, the dropout

rate used is 0.1, and the number of heads used for multi-head attention is 8.
The appearance transformer encoder FTEApp additionally consists of two stacks of transformer encoder modules. How-

ever, unlike FTELoc, the standard dot-product attention formulation is used, and all linear projections in both the multihead
attention modules as well as the feedforward network are replaced with 2D convolutional layers with a filter size of 3 × 3.
All embeddings maintain the same spatial dimensions of 14×14 during computation, the channel dimension used is 256, the
hidden channel dimension of the feedforward modules is 512, the dropout rate used is 0.1, and the number of heads used for
multi-headed attention is 8.

Note, for readability we formulate all models assuming every instance i is present at every input time step t ∈ {1, . . . , T}.
However, in practice, some instances will not be present in some input time steps due to occlusions or instances enter-
ing/leaving the frame, i.e., there are instances i and input frames t for which pit = 0. For all i, t such that pit = 0, we do not
compute x̄i

Loc,t or x̄i
App,t since there are no inputs from which we can compute these. Consequentially, neither FTELoc nor

FTEApp receive input representing instance i for time t and thus do not produce encoder representations hi
Loc,t and hi

App,t for
them.

The decoder location feature model f̃Loc produces the feature representation x̃i
Loc,t containing information about the most

recently predicted location, odometry, and the corresponding instance class. f̃Loc can be fully specified by the following
model components:

x′′it = fd1([x̂
i
t−1, onehot(ci), ot), (27)

x̃i
Loc,t = fd2([x′′

i
t, τt]). (28)

First, an initial representation x′′it is computed from the previous location prediction x̂it−1 using linear layer fd1, corresponding
instance class ci, and odometry ot. This is concatenated with temporal encoding τt and passed through a second linear layer
fd2. Both fd1 and fd2 use output dimension equal to 256.

The decoder appearance feature model f̃App produces the feature representation x̃i
App,t containing information about the

most recently predicted appearance. f̃App can be fully specified by the following model components:

x̃t
App,t = fad2([fad1(r̂

i
t−1), τ̃t]), (29)

where fad1 and fad2 are convolutional layers with the same structure as fae1 and fae2, respectively.
Both the location and appearance transformer decoders FDELoc and FDEApp use the same construction and hyperparame-

ters as their encoder counterparts. The primary difference is that they are transformer decoders as defined in [42] and hence
additionally introduce cross attention layers which operate on the encoder representations {hi

Loc,t}1:N1:T and {hi
App,t}1:N1:T ,

respectively. Output decoder representations h̃i
Loc,t and h̃i

Loc,t are computed autoregressively; e.g., previous predictions

{x̂i
t}1:NT :t′−1 for times T through t′ − 1 are used to compute the outputs {h̃

i

Loc,t′}. These embeddings are then used to produce
{x̂i

t′}1:N for time t′, and these new predictions are fed back into the model to produce output for the next time step t′ + 1,
and so on. Decoder attention is masked to maintain causality, i.e., embeddings representing a given time t are prevented from
attending to representations for future time steps t′ > t.

fLocOut, fPOut, and fvel are all 3-layer multilayer perceptrons with hidden sizes [512, 256] and ReLU activations. fAppOut is
a 3× 3 convolutional layer.

C. Agent-aware Attention

Due to their permutation-invarance with respect to their inputs, transformers do not have the inherent capacity to reason
about the identity of the entities corresponding to input trajectories. To address this problem, Yuan et al. [54] introduced
agent-aware attention. This approach allows transformers to encode the identity of its inputs within the model, which makes
it easier for these models to reason about the trajectories of individual entities and leads to better forecasting performance.

Let Xself ∈ RM1×d and Xother ∈ RM2×d of lengths M1 and M2, respectively, be the input sequences with embedding
dimension d. For self-attention, both input sequences are the same and represent the input trajectories of a number of agents,
while for cross-attention, the first input sequence corresponds to a future trajectory forecast and the second corresponds to

input trajectories. The agent-aware attention output Y ∈ RM1×d is then computed as

Z = M⊙ (QagentK
T
agent) + (1−M)⊙ (QcontextK

T
context), (30)

Y = softmax
(
Z/

√
d
)
V, (31)

where ⊙ represents element-wise multiplication. Specifically, agent-aware attention first computes two sets of keys Kagent =
fK,agent(Xother), Kcontext = fK,context(Xother) and queries Qagent = fQ,agent(Xself), Qcontext = fQ,context(Xself) from the original
inputs. It then computes two sets of attention scores from the agent keys/queries and from the context keys/queries and selects
between them using mask M ∈ {0, 1}M1×M2 . This mask encodes identity information: Mij = 1 if entity i in the first input
sequence and entity j in the second input sequence correspond to the same agent, and Mij = 0 otherwise. In other words,
two sets of attention parameters are computed, and one set is used for input pairs corresponding to the same agent while the
other is used for all pairs corresponding to different agents, i.e., the context for this agent. Value aggregation proceeds as in
standard attention from this step.

We additionally use agent-aware attention within the difference attention module defined in Sec. 3.1. This is implemented
in a similar fashion, where separate attention parameters are computed for input pairs corresponding to the same agent and
for input pairs corresponding to different agents. We formally specify this as

Z = M⊙
(
QagentK

T
R,agent − 1M1×1diag

(
KB,agentK

T
R,agent

)T)
+ (32)

(1−M)⊙
(
QcontextK

T
R,context − 1M×1diag

(
KB,contextK

T
R,context

)T)
, (33)

Y = softmax
(
Z/

√
d
)
VO −VS , (34)

with KR,agent = fK,R,agent(Xother), KR,context = fK,R,context(Xother), KB,agent = fK,B,agent(Xother), KB,context =
fK,B,context(Xother), VO = fVO

(Xother), and VS = fVS
(Xself).

D. Losses for Foreground Forecasting
The loss used by the foreground forecasting model are

LFG = LLoc + LP + LApp + LVel. (35)

The location loss LLoc trains the bounding box predictions x̂i
Box,t := [x̂0,t, ŷ0,t, x̂1,t, ŷ1,t] and depth predictions d̂it to match

the target boxes x∗iBox,t and depths d∗t . This is specified as

LLoc :=
1∑N

i=1

∑T+F
t=T+1 p

∗i
t

N∑
i=1

T+F∑
t=T+1

p∗it

(
λ1SmoothL1(x̂iBox,t, x∗iBox,t) + λ2SmoothL1(d̂it, d

i∗
t) + λ3IoU(x̂i

Box,t, x∗iBox,t)
)
,

(36)
where p∗it is ground-truth presence, i.e., equals 1 if instance i is present in frame t and 0 otherwise, IoU is bounding box
intersection-over-union, SmoothL1 is the function

SmoothL1(a,b) :=
∑
j

SmoothL1Fn(aj ,bj), (37)

SmoothL1Fn(a, b) :=

{
1
2 (a− b)2, if |a− b| < 1,

|a− b| − 1
2 otherwise

, (38)

and coefficients λ1 = 1, λ2 = 10, λ3 = 100 are used to balance the magnitudes of the losses.
The presence loss LP trains the presence predictions p̂it ∈ R to correctly indicate whether a given instance i is present in

frame t, and is computed as

LP :=
λ4

NF

N∑
i=1

T+F∑
t=T+1

p∗it log σ(p̂it) + (1− p∗it) log(1− σ(p̂it)), (39)

where σ is the sigmoid function and λ4 = 10.

The appearance loss LApp trains the appearance predictions r̂it for instance i at frame t to match the target features r∗it
extracted for this instance at frame t, and consists of the mean-squared error of the features for all valid instance/time pairs,
i.e.,

LApp :=
λ5∑N

i=1

∑T+F
t=T+1 Jp

∗i
t

N∑
i=1

T+F∑
t=T+1

J∑
j=1

p∗it (r̂ij,t − r∗ij,t)
2, (40)

where j indexes over all spatial dimensions of the feature tensors, J = 256× 14× 14 is the total number of elements of the
feature tensors, and λ5 = 10 .

The encoder velocity loss LVel trains the velocity predictions v̂iE,t ∈ R4 to match the ground-truth velocities v∗it :=

x∗it+1 − x∗it , and is computed as

LVel :=
λ6∑N

i=1

∑T
t=1 p

∗i
t p∗it+1

N∑
i=1

T∑
t=1

p∗it p∗it+1SmoothL1(v̂iE,t, v∗it), (41)

where λ6 = 1.

E. Depth Completion Model
The depth completion model operates on noisy and incomplete reprojected background depth d̃B along with depth mask

Q and background class probabilities m̂Prob and produces depth maps d̂B
Fill and d̂BBias. This model can be formally represented

using the following components:

d1 = fdc1([d̃
B , Q, m̂Prob]), (42)

d2 = d1 + Upsample(fdc2(Downsample(d1)), (43)

d̂BFill = ffill(d2), (44)

d̂BBias = fBias(d2). (45)

First, reprojected background depth d̃B , depth mask Q, and predicted background class probabilities m̂Prob are concatenated
together and processed with convolutional layer fdc1 which uses a kernel size of 3 and has output channel dimension 32. The
output of this, d1, is downsampled by a factor of 2 using bilinear interpolation, fed into convolutional network fdc2, upsampled
to the original resolution using bilinear interpolation, and added with d1 to produce the second intermediate output d2. fdc2
contains 2 convolutional layers with a kernel size of 3, output channel dimension of 32, and a ReLU activation between them.
The outputs d̂B

Fill and d̂BBias are then obtained from d2 using convolutional networks ffill and fbias, respectively. Both of these
networks contain two convolutional layers with a ReLU activation between them, where the first layer uses a kernel size of
3 and an output channel size of 32 and the second layer uses a kernel size of 1. The final background depth estimate d̂B is
obtained from outputs d̂B

Fill and d̂BBias as specified in Eq. (13).

F. Additional Implementation Details
The overall approach is trained in two stages: first, the foreground prediction model is trained; afterwards, the correspond-

ing parameters are frozen, and the refinement model is trained.
The foreground model is trained for 48000 steps using the ADAM optimizer; the initial learning rate is set to 10−4, and it

is lowered to 10−5 after 36000 optimization steps. All odometries ot are normalized by subtracting the training data set mean
and then dividing by training data set standard deviation before being used as input. All location inputs xi

t are normalized
to lie within [−1, 1]; furthermore, location outputs x̂i

t are made at this normalized scale and unnormalized before being used
at later stages. During training and inference, forecasts are only predicted for instances present in the most recent input
frame, i.e., for instances i such that piT = 1. During training of the foreground model, ground-truth future odometry is used.
During evaluation, unless otherwise noted, the egomotion estimation module described by Graber et al. [14] was used to
obtain future odometry which was used as input. We use the same odometry representation as Graber et al. [14] consisting of
a five-dimensional vector containing speed and yaw rate of the ego-vehicle at time t as well its top-down displacement and
angular displacement between steps t and t− 1.

Ablation 4 in this work uses odometry during inference that was obtained using ORB-SLAM3 [2]. This was run using
stereo images, where each sequence of 30 frames was treated as its own SLAM session providing 6-dof poses for all frames
in the sequence.

The refinement model is trained for 24000 steps using the ADAM optimizer; the initial learning rate is set to 10−4, and it
is lowered to 10−5 after 18000 optimization steps. During training, the inputs are scaled to a spatial resolution of H

4 × W
4 ,

and the loss is additionally computed at this scale. During inference, inputs are scaled to the final spatial resolution, i.e.,
H ×W .

To process a Cityscapes sequence, the model needs 560 ms on average using an NVIDIA A6000, which is on par with the
700 ms required by Graber et al. [14]. This can be significantly reduced by further engineering effort.

G. Additional AIODrive Details

The AIODrive sequences are annotated using 23 object classes. To facilitate comparison against results on the Cityscapes
dataset, we only train and evaluate using background classes which are also present in Cityscapes. This leaves 11 background
“stuff” classes and 2 foreground “things” classes (the only annotated “things” instances in AIODrive are “vehicles” and
“pedestrians”). As annotations are only provided for the trainval dataset, we split this into a training dataset containing all
annotated sequences for towns 1 through 5 and a validation dataset containing all annotated sequences for town 6. We use 5
frames as input and forecast the 5th frame into the future, corresponding to 0.5 seconds of input and a 0.5 second forecast
(which is comparable to the Cityscapes mid-term setting).

During both training and evaluation, we only consider instances whose masks have an area of at least 400 pixels in an
attempt to filter out distant, imperceptible instances. For evaluation, we use non-overlapping sequences of 10 frames from
each validation sequence. Additionally, the data contains some periods of time with little to no motion, which skews the
evaluation metrics artificially high. To ensure that the metrics properly capture the ability of the models to anticipate motion,
we filter out validation sequences where the recording vehicle is moving less than 1 m/s at all points in the input sequence
and where at least half of the instance mask centers move less than 10 pixels. This leaves 814 sequences with motion for
evaluation purposes. To ensure that the tracking-based metrics can be computed, we use ground-truth instance bounding
boxes and ids as input to the forecasting models.

The base semantic and instance segmentation models are the same as that used for Cityscapes, i.e., MaskRCNN [16]
for instance segmentation and Panoptic Deeplab [3] for semantic segmentation. For both, we initialize from the Cityscapes
pre-trained model and finetune on AIODrive. For the models that use predicted depth, we use Cascade-Stereo [15] on the
stereo input images. We do not finetune the depth model on this dataset.

H. Cityscapes Instance Segmentation

We also evaluate our Cityscapes-trained model on instance segmentation. Here, we consider only ‘things’ instances during
evaluation, and hence we disregard the pixels corresponding to the ‘stuff’ classes.

Metrics. We evaluate instance segmentation using the standard metrics [7]: 1) Average Precision (AP) computes true posi-
tives using a number of overlap thresholds, averages over these thresholds, and then averages over classes; 2) AP50 computes
average precision with an overlap threshold of 0.5 and then averages across classes.

Baselines. We compare against the baselines presented by Graber et al. [14]. F2F is introduced by Luc et al. [27] and
predicts the features of a future scene using a convolutional model. It then obtains instances by passing these features through
MaskRCNN heads. IndRNN-Stack is the independent RNN and stacking model by Graber et al. [14]. PFA, introduced by
Lin et al. [25], compresses input feature pyramids into a low-resolution feature map for forecasting.

Results. The results for this task are presented in Tab. 4. We outperform F2F and IndRNN-Stack in the mid-term setting but
PFA performs better. This is to be expected because PFA was directly trained on instance segmentation while we directly
apply the model trained on panoptic segmentation, i.e., we don’t retrain our model specifically for instance segmentation.

I. Cityscapes Semantic Segmentation

Following prior work [14], we also evaluate our model on semantic segmentation forecasting. In this context, we do not
care about specific instances. Hence, for each pixel, we discard all predicted identity information.
Metrics. Semantic segmentation forecasting is evaluated using the standard intersection over union (IoU) metric computed
between predictions and ground truth per class and averaged over classes. IoU (MO), meanwhile, computes an average IoU
over ‘things’ classes only.

Short term: ∆t = 3 Mid term: ∆t = 9
AP AP50 AP AP50

Oracle 34.6 57.4 34.6 57.4
Last seen frame 8.9 21.3 1.7 6.6

F2F [27] 19.4 39.9 7.7 19.4
IndRNN-Stack [14] 17.8 38.4 10.0 22.3
PFA [25] 24.9 48.7 14.8 30.5
Ours 19.9 39.9 11.2 25.2

Table 4. Instance segmentation forecasting on the Cityscapes Validation dataset. Higher is better for all metrics.

Short term: ∆t = 3 Mid term: ∆t = 9
Accuracy (mIoU) All MO All MO

Oracle 80.6 81.7 80.6 81.7

Copy last 59.1 55.0 42.4 33.4
Bayesian S2S [1] 65.1 / 51.2 /
DeformF2F [36] 65.5 63.8 53.6 49.9
LSTM M2M [40] 67.1 65.1 51.5 46.3
F2MF [37] 69.6 67.7 57.9 54.6
IndRNN-Stack [14] 67.6 60.8 58.1 52.1
PFA [25] 71.1 69.2 60.3 56.7
Ours 67.9 61.2 58.1 51.7

Table 5. Semantic forecasting results on the Cityscapes validation dataset. Baseline numbers, besides oracle and copy last, are
from [37]. Higher is better for all metrics. Our model exploits stereo and odometry, which are provided by typical autonomous vehicle
setups and are included in Cityscapes.

Baselines. Many of the baselines operate by predicting the features of a future scene [1, 25, 36, 37]. LSTM M2M [40] warps
input semantics using a predicted optical flow between the most recent frame and the target frame. Note that these approaches
do not use depth inputs, and all except Bayesian S2S [1] do not use egomotion as input.
Results. The results for this task are given in Tab. 5. We outperform IndRNN-Stack by a small margin in the short-term
setting, and have comparable results in the mid-term setting. We additionally outperform most other baselines. Note that
this metric does not care about the boundaries between individual instances and hence weights some types of errors differ-
ently than the other metrics we use. These other metrics more properly evaluate whether specific instances are localized in
the correct places, which we argue better captures the goals of forecasting. Note that PFA is directly trained on semantic
segmentation forecasting while our approach was trained on forecasting of panoptic segmentations.

J. Additional Cityscapes Visualizations
Fig. 6 presents a visual comparison between our approach and IndRNN-Stack for the short-term setting for the sequences

which were shown for the mid-term setting in Fig. 3. We present additional visualizations for the mid-term setting in Fig. 7
and for the short term setting in Fig. 8.

K. Additional Cityscapes Metrics
Tabs. 6 to 8 present metrics computed for the Cityscapes test dataset using the mid-term setting for panoptic, instance, and

semantic segmentation forecasting, respectively. We outperform all other approaches for panoptic and instance segmentation
forecasting on the test data. On semantic segmentation, we outperform IndRNN-Stack on the test data, whereas F2MF [37]
outperforms our approach. However, note that the F2MF model used for test evaluation was trained on both the training and
validation datasets, while the other models were trained only on the training data.

Tabs. 9 to 14 contain the per-class breakdown of all panoptic segmentation metrics shown in Tab. 1. The results shown in
Tab. 1 consist of the average of these metrics taken over the values obtained for each individual class. Our model is better

All Things Stuff
PQ SQ RQ PQ SQ RQ PQ SQ RQ

Flow 25.6 70.1 34.0 12.4 66.3 18.1 35.3 72.9 45.5
Hybrid [40] (bg) and [27] (fg) 29.4 69.8 38.5 18.0 67.2 25.7 37.6 71.6 47.8
IndRNN-Stack 35.7 72.0 46.5 24.0 69.0 33.7 44.2 74.2 55.8
Ours 36.9 72.7 48.0 26.7 70.3 37.0 44.4 74.4 55.9

Table 6. Panoptic segmentation forecasting evaluated on the Cityscapes test set, mid-term. Higher is better for all metrics.

AP AP50

F2F [27] 6.7 17.5
IndRNN-Stack 8.4 19.8
Ours 9.9 20.7

Table 7. Instance segmentation forecasting on the Cityscapes
Test dataset, mid-term. Higher is better for all metrics.

Accuracy (mIoU) All MO

F2MF [37]∗ 59.1 56.3
IndRNN-Stack 57.7 48.8
Ours 58.3 50.0

Table 8. Semantic segmentation forecasting results on the
Cityscapes test dataset. Baseline numbers, are from [37]; the
* indicates training on both train and validation data. Higher is
better for all metrics.

ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic
lig

ht

tr
af

fic
si

gn

ve
ge

ta
tio

n

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
cy

cl
e

bi
cy

cl
e

m
ea

n

Deeplab (Oracle)† 97.9 78.2 88.5 29.4 38.9 60.0 55.6 74.5 89.5 36.1 87.9 50.8 46.4 67.3 51.5 66.6 37.8 44.2 44.1 60.3

Deeplab (Last seen frame) 94.3 52.4 71.1 11.3 19.4 6.1 12.9 15.0 72.1 16.9 72.7 10.3 8.0 29.6 35.1 51.7 24.2 9.8 7.9 32.7
Flow 95.6 61.5 79.8 17.3 28.6 8.7 26.2 36.8 80.7 26.9 79.7 21.0 14.0 43.4 40.6 56.8 26.7 23.2 18.7 41.4
Hybrid [40] (bg) and [27] (fg) 96.2 63.4 81.4 23.1 23.7 7.1 19.1 36.9 82.3 20.3 79.8 26.8 21.8 46.4 42.2 60.0 41.4 25.6 22.5 43.2
IndRNN-Stack 96.2 66.1 83.5 26.1 27.4 31.7 37.0 49.9 84.8 26.1 82.0 31.8 31.5 48.8 42.2 61.2 47.0 31.4 27.3 49.0
Ours 96.2 66.3 83.8 25.9 27.4 34.4 37.0 50.3 84.8 26.5 82.1 34.9 36.7 51.2 41.2 63.1 47.6 32.4 32.0 50.2

Table 9. Per-class results for Panoptic Quality on Cityscapes validation dataset (short-term).

on average for every metric than all other approaches, and it is additionally better than prior approaches for every metric for
most classes.

L. Code Details
All models are implemented using PyTorch v. 1.10.0 2, which is made available for use with a custom BSD-style license.3

We additionally use the Detectron2 framework (version 0.4.1)4, which is released under the Apache 2.0 license.5 Code
implementing our models and experiments can be found at https://github.com/cgraber/psf-diffattn.

M. Potential Negative Societal Impact
One of the primary applications of this work is to better enhance the ability of autonomous agents to anticipate the future

and respond appropriately to a dynamic environment. In this context, problems can arise if an agent makes a decision based
on a faulty prediction – for example, if a self-driving car does not anticipate a pedestrian stepping into the street, it could
unintentionally hurt the pedestrian if they step out in front of the car. For such a system, the consequence of prediction errors
can be injury or death. It is thus critical that appropriate care be taken before deployment of such a system to ensure that not
only are prediction errors sufficiently low across a variety of environments but also that proper failsafes are put in place to
minimize the negative consequences of acting upon a misprediction.

2https://pytorch.org/
3https://github.com/pytorch/pytorch/blob/v1.10.0/LICENSE
4https://github.com/facebookresearch/detectron2
5https://github.com/facebookresearch/detectron2/blob/v0.4.1/LICENSE

https://github.com/cgraber/psf-diffattn
https://pytorch.org/
https://github.com/pytorch/pytorch/blob/v1.10.0/LICENSE
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2/blob/v0.4.1/LICENSE

In
dR

N
N

-S
ta

ck
O

ur
s

Figure 6. Short-term panoptic segmentation forecasts on Cityscapes.

ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic
lig

ht

tr
af

fic
si

gn

ve
ge

ta
tio

n

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
cy

cl
e

bi
cy

cl
e

m
ea

n

Deeplab (Oracle)† 97.9 78.2 88.5 29.4 38.9 60.0 55.6 74.5 89.5 36.1 87.9 50.8 46.4 67.3 51.5 66.6 37.8 44.2 44.1 60.3

Deeplab (Last seen frame) 90.4 32.5 57.6 7.6 10.6 4.6 8.9 7.4 55.1 8.8 57.3 5.3 2.5 13.2 19.2 27.3 10.1 4.7 3.0 22.4
Flow 90.5 35.8 66.2 7.7 15.0 4.6 11.9 11.1 65.6 11.6 64.4 5.9 2.5 19.0 21.5 27.7 13.5 11.8 5.3 25.9
Hybrid [40] (bg) and [27] (fg) 93.2 44.9 70.5 12.4 14.8 1.2 8.0 10.8 69.7 13.9 67.2 8.0 4.5 27.3 33.5 41.7 27.9 8.3 6.1 29.7
IndRNN-Stack 93.9 50.8 76.4 18.2 19.9 8.7 18.7 28.5 77.0 18.6 72.7 16.2 12.0 33.3 36.1 53.0 29.8 14.1 12.6 36.3
Ours 93.9 50.9 76.5 18.1 20.8 9.3 18.8 28.6 77.0 18.6 72.7 19.9 14.6 39.5 38.8 56.9 26.2 18.6 14.5 37.6

Table 10. Per-class results for Panoptic Quality on Cityscapes validation dataset (mid-term).

ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic
lig

ht

tr
af

fic
si

gn

ve
ge

ta
tio

n

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
cy

cl
e

bi
cy

cl
e

m
ea

n

Deeplab (Oracle)† 98.0 85.6 90.5 74.3 74.8 69.7 73.5 80.1 90.9 75.7 92.6 76.0 70.8 84.2 88.4 90.8 87.6 73.8 72.1 81.5

Deeplab (Last seen frame) 94.4 71.5 78.8 65.4 65.6 67.0 68.3 67.4 77.8 67.7 83.0 64.4 60.1 69.2 74.7 76.7 75.7 62.7 63.4 71.3
Flow 95.6 76.0 83.2 68.5 68.3 65.0 65.9 67.3 83.4 69.1 86.6 65.6 61.4 75.8 77.5 80.0 74.1 66.1 64.4 73.4
Hybrid [40] (bg) and [27] (fg) 96.3 77.2 84.9 70.0 69.0 59.5 63.6 65.9 84.6 70.8 86.5 66.8 61.9 77.2 80.3 83.1 80.5 65.6 63.8 74.1
IndRNN-Stack 96.3 77.0 86.3 71.1 69.4 61.4 65.4 70.6 86.6 71.3 88.3 67.7 63.8 77.7 81.4 81.4 74.8 67.6 65.8 74.9
Ours 96.3 77.1 86.4 71.4 69.8 61.7 65.4 70.8 86.6 70.9 88.3 69.4 66.4 78.9 81.7 84.1 77.9 68.1 67.2 75.7

Table 11. Per-class results for Segmentation Quality on Cityscapes validation dataset (short-term).

ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic
lig

ht

tr
af

fic
si

gn

ve
ge

ta
tio

n

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
cy

cl
e

bi
cy

cl
e

m
ea

n

Deeplab (Oracle)† 98.0 85.6 90.5 74.3 74.8 69.7 73.5 80.1 90.9 75.7 92.6 76.0 70.8 84.2 88.4 90.8 87.6 73.8 72.1 81.5

Deeplab (Last seen frame) 90.7 68.2 72.6 63.4 62.4 66.1 72.7 73.0 71.2 64.0 77.3 63.7 61.3 66.8 62.9 70.8 74.3 56.4 64.4 68.5
Flow 90.8 68.6 76.0 66.1 64.1 64.1 69.0 67.2 75.0 64.5 78.5 63.5 60.4 69.1 70.2 74.3 75.8 60.2 63.0 69.5
Hybrid [40] (bg) and [27] (fg) 93.3 69.7 77.9 66.6 65.3 59.9 62.9 61.9 76.9 65.1 79.6 63.7 58.4 71.5 72.6 72.2 73.7 62.1 60.6 69.1
IndRNN-Stack 94.1 71.3 81.5 68.4 66.8 59.0 64.1 65.1 80.9 68.1 83.0 64.3 61.4 73.4 76.9 76.1 74.4 62.5 62.9 71.3
Ours 94.2 71.5 81.7 69.1 66.1 60.1 64.2 65.7 81.0 68.5 83.0 64.7 61.1 74.7 76.5 79.4 67.7 63.6 64.7 71.4

Table 12. Per-class results for Segmentation Quality on Cityscapes validation dataset (mid-term).

In
dR

N
N

-S
ta

ck
O

ur
s

In
dR

N
N

-S
ta

ck
O

ur
s

In
dR

N
N

-S
ta

ck
O

ur
s

Figure 7. Additional mid-term visualizations.

In
dR

N
N

-S
ta

ck
O

ur
s

In
dR

N
N

-S
ta

ck
O

ur
s

In
dR

N
N

-S
ta

ck
O

ur
s

Figure 8. Additional short-term visualizations.

ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic
lig

ht

tr
af

fic
si

gn

ve
ge

ta
tio

n

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
cy

cl
e

bi
cy

cl
e

m
ea

n

Deeplab (Oracle)† 99.9 91.3 97.8 39.5 52.1 86.1 75.6 93.0 98.5 47.7 94.9 66.9 65.5 80.0 58.2 73.4 43.1 59.9 61.2 72.9

Deeplab (Last seen frame) 99.9 73.4 90.2 17.3 29.7 9.1 18.9 22.2 92.7 25.0 87.6 16.0 13.2 42.8 47.0 67.4 32.0 15.6 12.4 42.7
Flow 99.9 81.0 95.9 25.2 41.9 13.4 39.7 54.7 96.8 39.0 92.0 32.1 22.8 57.3 52.4 71.0 36.0 35.1 29.0 53.4
Hybrid [40] (bg) and [27] (fg) 99.9 82.1 95.8 33.0 34.4 11.9 30.0 56.0 97.3 28.8 92.2 40.1 35.3 60.2 52.6 72.2 51.4 39.1 35.3 55.1
IndRNN-Stack 99.9 85.8 96.7 36.7 39.4 51.6 56.6 70.7 97.9 36.6 92.9 47.0 49.3 62.9 51.9 75.2 62.9 46.3 41.5 63.3
Ours 99.9 86.0 97.0 36.2 39.3 55.7 56.6 71.1 97.9 37.4 92.9 50.3 55.3 64.9 50.4 75.0 61.1 47.5 47.6 64.3

Table 13. Per-class results for Recognition Quality on Cityscapes validation dataset (short-term).

ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic
lig

ht

tr
af

fic
si

gn

ve
ge

ta
tio

n

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
cy

cl
e

bi
cy

cl
e

m
ea

n
Deeplab (Oracle)† 99.9 91.3 97.8 39.5 52.1 86.1 75.6 93.0 98.5 47.7 94.9 66.9 65.5 80.0 58.2 73.4 43.1 59.9 61.2 72.9

Deeplab (Last seen frame) 99.7 47.6 79.3 12.1 17.0 7.0 12.2 10.1 77.4 13.7 74.1 8.3 4.2 19.8 30.6 38.5 13.6 8.3 4.7 30.4
Flow 99.7 52.2 87.1 11.7 23.4 7.2 17.3 16.5 87.4 18.0 82.1 9.2 4.2 27.5 30.6 37.3 17.8 19.6 8.4 34.6
Hybrid [40] (bg) and [27] (fg) 99.9 64.5 90.4 18.7 22.7 2.1 12.7 17.4 90.5 21.4 84.4 12.5 7.7 38.2 46.2 57.9 37.8 13.4 10.1 39.4
IndRNN-Stack 99.7 71.2 93.7 26.6 29.8 14.7 29.2 43.8 95.1 27.3 87.6 25.2 19.5 45.4 47.0 69.6 40.0 22.6 20.0 47.8
Ours 99.7 71.1 93.7 26.2 31.4 15.5 29.3 43.5 95.1 27.1 87.6 30.8 23.9 52.9 50.7 71.7 38.7 29.2 22.4 49.5

Table 14. Per-class results for Recognition Quality on Cityscapes validation dataset (mid-term).

