Supplementary Material:
Joint Forecasting of Panoptic Segmentations with Difference Attention

This appendix is structured as follows: Appendix A details the background prediction approach which we use to obtain
preliminary background class predictions. Appendix B provides specific model architectural details for the forecasting trans-
former encoder and decoder. Appendix C explains in detail the agent-aware attention approach we use which allows for
identity information to be encoded in the model. Appendix D describes the specific losses computed during training of the
foreground forecasting model. Appendix E presents the model architecture used by the depth completion model introduced
in Sec. 3.3. Appendix F describes additional details of implementation and model training. Appendix G contains additional
information about the AIODrive dataset and experiments. Appendix H contains instance segmentation forecasting experi-
mental results for Cityscapes. Appendix I contains semantic segmentation forecasting experimental results for Cityscapes.
Appendix J presents additional model visualizations on Cityscapes for both the short- and mid-term settings. Appendix K
contains the full per-class breakdown of the panoptic segmentation metrics presented in Tab. 1. Appendix L describes the
major code libraries used to implement our model. Finally, Appendix M discusses potential negative societal impacts that
could arise from the implementation of this work in practice.

A. Background Model

In this work, we utilize the background semantic prediction model introduced by Graber et al. [14]. This approach lifts
background semantics into a 3D point cloud using the estimated input depth, transforms the point cloud based on camera
movement, projects to the image plane, and refines the projected semantics using a semantic segmentation model. Formally,
this model estimates the semantics of background object classes for unseen future frame 1" + I’ as

My, p = BGRef({proj(my, dy, K, Hy, u) }rr), (16)

where K represents camera intrinsic parameters, H is the 6-dof camera transform from input frame ¢ to target frame 7"+ F/,
my is the semantic segmentation for frame ¢ which is obtained from a pre-trained model, d; is the input depth map at time ¢,
and u; denotes the coordinates of all of the pixels in m; which correspond to background semantic classes. Proj refers to the
step which creates the sparse reprojected semantic map for frame 7" + F' given inputs for frame ¢, and BGRef refers to the
background refinement model which produces a complete background prediction from the output of Proj.

The first step of the background model is to produce reprojected semantic point clouds (1.7, a~ltB ) which are processed by
BGRef. These are obtained for each time ¢ € {1,...,T} by applying Proj to the corresponding input frame I;. Given per-
pixel semantic prediction m, and depth map d;, Proj back-projects, transforms, and reprojects the pixels from input frame ¢
to target frame 7' + F'. This process is summarized as
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where u; is a vector whose entries dictate the pixel locations in m; which correspond to background object classes and ur
is the vector which contains the location of these pixels in the target frame at time 7" + F'. During this, we maintain the
semantic class obtained from m; and the projected depth of each pixel location. Whenever multiple pixels u; from an input
frame are projected to the same pixel ur4 F in the target frame, the depth and the semantic label of the pixel with the smallest
depth is kept, as it is closest to the camera.

Given reprojected semantics . and depths JtB from the previous step, the background refinement model is tasked with
predicting a final semantic output. This is done by concatenating the input from all frames and feeding them into a semantic



segmentation model, which can be described as

My Py = BGRef([{mf (urir)df (urir)}ir])

~B _ ~ Prob
My p = argmax(myop),
c

where T?Lfi;ff’fF € Ag};w represents the Cpg-dimensional output probability map per pixel, one for each background class,

and the final output 2 _r 1s obtained per-pixel by choosing the class with the largest probability.
The refinement network is trained using the cross-entropy loss

— bg Bx ~ Pr
Lyt = m xzy 175, plz,y] Z mP: o (z,y, ¢) log (MFLr(z,y)) - (1)
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Here, 1?,? i wlx,y] is an indicator function specifying whether pixel coordinates (,y) correspond to background semantic
classes for frame 7'+ F, and m%, (2, y, ¢) = 1 if the correct class for pixel (z,%) is ¢ and 0 otherwise. For all experiments
presented in this work, we use the specific background prediction model trained by Graber et al. [ 14]. Further implementation
details related to model architecture and training can be found in the Appendix of [14].

B. Architecture details for Forecasting Transformer Encoder and Decoder

The feature model fi,. processes input locations x%, appearances r¢, instance classes c’, odometry o;, and time ¢ to
produce an embedding Xj . , which is processed by the transformer FTE. fioc can be fully specified by the following model
components:

x;" = fy([xi, onehot(c")]), (22)
) = AvgPool(ff(r})), (23)
Xioew = fea([far(xi' 11", 01]), 7)) 24

First, an initial location embedding x;i is produced, where fj, is a linear layer and onehot represents a vector whose c'-th

element is set to one and whose other entries are set to zero. Similarly, initial appearance embedding r," is produced, where
fr is a small convolutional network and AvgPool averages the result over the spatial dimensions. These two embeddings are
concatenated with odometry oy, passed through linear layer f.;, concatenated with temporal encoding 7;, and passed through
the final linear layer f.o. Specifically, the temporal encoding 7* € R%" provides information to the model about the temporal
location of the given instance in the sequence and whose k-th element is defined as
k) = sin(t/lOOOk/‘i’), k %s even (25)

cos(t/1000F=1/dx) "k is odd

Here d is the size of the temporal encoding and is set to 256 everywhere in this work. All linear layers in fi .. have an output
embedding size of 256, and fy contains two 2D convolutional layers with a kernel size of 3, output channel size of 256, and
ReLU activations after each.

The feature model f4pp produces appearance embedding iipp7t as a function of the input appearances r} as well as input
time ¢, and can be fully specified by the following model components:

ij\pp,t = fae2([fael(ri)> %t])» (26)

where f,.1 is a 3 x 3 convolutional layer with output dimension 256, f,e; is a 1 x 1 convolutional layer with output dimension
256, and 7, € R *14x14 j5 equivalent to 7; copied across spatial dimensions to match the size of .

The location transformer encoder FTE; .. consists of two stacks of transformer encoder modules as originally defined
in [42] consisting of layer norm, multi-head self-attention, feed-forward networks, and residual connections. Specifically, all
transformers in this work use the Pre-LN construction [48], where the Layer Norm module is placed before the multi-head
attention and feed-forward network, as we observed improved convergence. As specified in Sec. 3.2, the multi-head attention
modules use both difference attention (Sec. 3.1) and agent-aware attention (Appendix C). The embedding dimension of all



keys, queries, and values as well as the output h};oc,t is 256, the hidden dimension of feedforward modules is 512, the dropout
rate used is 0.1, and the number of heads used for multi-head attention is 8.

The appearance transformer encoder FTEp, additionally consists of two stacks of transformer encoder modules. How-
ever, unlike FTEj ., the standard dot-product attention formulation is used, and all linear projections in both the multihead
attention modules as well as the feedforward network are replaced with 2D convolutional layers with a filter size of 3 x 3.
All embeddings maintain the same spatial dimensions of 14 x 14 during computation, the channel dimension used is 256, the
hidden channel dimension of the feedforward modules is 512, the dropout rate used is 0.1, and the number of heads used for
multi-headed attention is 8.

Note, for readability we formulate all models assuming every instance 7 is present at every input time step ¢t € {1,...,T}.
However, in practice, some instances will not be present in some input time steps due to occlusions or instances enter-
ing/leaving the frame, i.e., there are instances i and input frames ¢ for which p¢ = 0. For all i, ¢ such that pi = 0, we do not
compute )’cioc,t or Xgpp,t since there are no inputs from which we can compute these. Consequentially, neither FTEy o, nor
FTEap, receive input representing instance 4 for time ¢ and thus do not produce encoder representations hi%t and hj‘\ppﬁt for
them.

The decoder location feature model fio. produces the feature representation Scfoc’t containing information about the most

recently predicted location, odometry, and the corresponding instance class. fio. can be fully specified by the following
model components:

x"i = fdl([ii_l,onehot(ci), o), 27
X oot = fao (X1, 7)) (28)

First, an initial representation x’; is computed from the previous location prediction X; _ using linear layer fq;, corresponding

instance class c?, and odometry o;. This is concatenated with temporal encoding 7; and passed through a second linear layer
faz- Both fy; and f4 use output dimension equal to 256.
The decoder appearance feature model fap, produces the feature representation igpp , containing information about the

most recently predicted appearance. prp can be fully specified by the following model components:

Rhapp,t = faao ([faar (F_y), 7)), (29)

where f,q1 and f,q; are convolutional layers with the same structure as f,.; and fye, respectively.

Both the location and appearance transformer decoders FDE o and FDE,, use the same construction and hyperparame-
ters as their encoder counterparts. The primary difference is that they are transformer decoders as defined in [42] and hence
additionally introduce cross attention layers which operate on the encoder representations {hfoc,t LN and {hgm}};? ,

respectively. Output decoder representations hi

Loc,t and h{ ., are computed autoregressively; e.g., previous predictions

Loc, ;
{/)Z;}%]X,_l for times 7" through ¢ — 1 are used to compute the outputs {ﬁiocyt, }. These embeddings are then used to produce

{x;, }1*N for time ¢, and these new predictions are fed back into the model to produce output for the next time step ¢’ + 1,
and so on. Decoder attention is masked to maintain causality, i.e., embeddings representing a given time ¢ are prevented from
attending to representations for future time steps ¢’ > t.

fLocout> frout> and fye are all 3-layer multilayer perceptrons with hidden sizes [512, 256] and ReLU activations. SAppout 18
a 3 x 3 convolutional layer.

C. Agent-aware Attention

Due to their permutation-invarance with respect to their inputs, transformers do not have the inherent capacity to reason
about the identity of the entities corresponding to input trajectories. To address this problem, Yuan et al. [54] introduced
agent-aware attention. This approach allows transformers to encode the identity of its inputs within the model, which makes
it easier for these models to reason about the trajectories of individual entities and leads to better forecasting performance.

Let Xeif € RM1Xd and X ey € RM2Xd of lengths M7 and Ms, respectively, be the input sequences with embedding
dimension d. For self-attention, both input sequences are the same and represent the input trajectories of a number of agents,
while for cross-attention, the first input sequence corresponds to a future trajectory forecast and the second corresponds to



input trajectories. The agent-aware attention output Y € R*1*4 js then computed as

Z=MO (QagemKZ;em) + (1 - M) © (QCOntelez:)ntexl)’ (30)
Y = softmax (Z/\/g) V, (31

where © represents element-wise multiplication. Specifically, agent-aware attention first computes two sets of keys Kgent =
fK,agem(Xother)’ Kcomext = fK,context (Xother) and querieS Qagent = fQ,agent(Xself)s Qcontext = fQ,comexl(Xself) from the Ofiginal
inputs. It then computes two sets of attention scores from the agent keys/queries and from the context keys/queries and selects
between them using mask M € {0, 1}*1*M2_This mask encodes identity information: M;; = 1 if entity i in the first input
sequence and entity j in the second input sequence correspond to the same agent, and M;; = 0 otherwise. In other words,
two sets of attention parameters are computed, and one set is used for input pairs corresponding to the same agent while the
other is used for all pairs corresponding to different agents, i.e., the context for this agent. Value aggregation proceeds as in
standard attention from this step.

We additionally use agent-aware attention within the difference attention module defined in Sec. 3.1. This is implemented
in a similar fashion, where separate attention parameters are computed for input pairs corresponding to the same agent and
for input pairs corresponding to different agents. We formally specify this as

. T
Z=MG0¢O (Qageng,agem — 1]\/[1 delag (KB@geng,agent) ) + (32)
. T
(1 - M) @ (QCOn[eleg’context - 1AI><1dlag (KB,COHIEX[Kgﬂontext) ) 9 (33)
Y = softmax (Z/\/ZZ> Vo — Vg, (34)
with KR,agent = fK,R,agent(Xother)a KR,context = fK,R,context(Xother)a KB,agent = fK,B,agent(Xother)a KB,conlexl

fK,B,context(Xother), VO = fVo (Xother)a and VS = fVS (Xself)-

D. Losses for Foreground Forecasting

The loss used by the foreground forecasting model are

‘CFG = ‘CLoc + EP + £App + ACVel- (35)
The location loss Ly o trains the bounding box predictions ifmll = [ZTo.t, Yo,ts T1,¢, Y1,¢) and depth predictions c/l?E to match

*7

the target boxes g,

and depths d;. This is specified as

N T+F
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‘CLOC =

(36)
where p;? is ground-truth presence, i.e., equals 1 if instance 7 is present in frame ¢ and 0 otherwise, IoU is bounding box
intersection-over-union, SmoothL1 is the function

SmoothL1(a, b) := >~ SmoothL1Fn(a;,b;), (37)
J
— b2, if|a—b| <1,

2(a
SmoothL1Fn(a, b) := !

la —b| — 5 otherwise

(38)

and coefficients A\; = 1, Ao = 10, A3 = 100 are used to balance the magnitudes of the losses.
The presence loss Lp trains the presence predictions pj € R to correctly indicate whether a given instance ¢ is present in
frame ¢, and is computed as

N T+F

Lp = Nfé} > > pitloga(Bh) + (1 - pi*)log(1 — o(B})), (39)
1=1t=T+1

where o is the sigmoid function and A4 = 10.



The appearance loss Lap, trains the appearance predictions ?f; for instance i at frame ¢ to match the target features r;?
extracted for this instance at frame ¢, and consists of the mean-squared error of the features for all valid instance/time pairs,
ie.,

N T+F J
Lap = = a2 2 D @) (40)
Ez 1 Zt T+1 1=1t=T+1 j5=1

where j indexes over all spatial dimensions of the feature tensors, J = 256 x 14 x 14 is the total number of elements of the
feature tensors, and A5 = 10 . ‘

The encoder velocity loss Ly trains the velocity predictions Vé’t € R* to match the ground-truth velocities v’ =
x; | —x;", and is computed as

/\6 ~ i
Lye == Zzp?pfilsmoothLl(VE oV, (41)
Zz 1Zt 1 bt Pt+1 i=1 t=1

where \g = 1.

E. Depth Completion Model

The depth completion model operates on noisy and incomplete reprojected background depth ds along with depth mask
(@ and background class probabilities 7" and produces depth maps dFlll and dB__. This model can be formally represented
using the following components:

Bias*

di = fa ([d7,Q, M), 42)
do = di + Upsample( fg.2(Downsample(d; )), (43)
By = fa(da), (44)
By = frins(d2)- (45)

First, reprojected background depth dB, depth mask @, and predicted background class probabilities M are concatenated

together and processed with convolutional layer f4c; which uses a kernel size of 3 and has output channel dimension 32. The
output of this, d, is downsampled by a factor of 2 using bilinear interpolation, fed into convolutional network fg.,, upsampled
to the original resolution using bilinear interpolation, and added with d; to produce the second intermediate output dy. fyco
contains 2 convolutional layers with a kernel size of 3, output channel dimension of 32, and a ReLU activation between them.
The outputs ng and c?ffias are then obtained from ds using convolutional networks fi; and fiias, respectively. Both of these
networks contain two convolutional layers with a ReLU activation between them, where the first layer uses a kernel size of
3 and an output channel size of 32 and the second layer uses a kernel size of 1. The final background depth estimate dB is
obtained from outputs dFlll and dBm as specified in Eq. (13).

F. Additional Implementation Details

The overall approach is trained in two stages: first, the foreground prediction model is trained; afterwards, the correspond-
ing parameters are frozen, and the refinement model is trained.

The foreground model is trained for 48000 steps using the ADAM optimizer; the initial learning rate is set to 10~%, and it
is lowered to 1072 after 36000 optimization steps. All odometries o; are normalized by subtracting the training data set mean
and then dividing by training data set standard deviation before being used as input. All location inputs x¢ are normalized
to lie within [—1, 1]; furthermore, location outputs X} are made at this normalized scale and unnormalized before being used
at later stages. During training and inference, forecasts are only predicted for instances present in the most recent input
frame, i.e., for instances i such that p’, = 1. During training of the foreground model, ground-truth future odometry is used.
During evaluation, unless otherwise noted, the egomotion estimation module described by Graber ef al. [14] was used to
obtain future odometry which was used as input. We use the same odometry representation as Graber et al. [ 14] consisting of
a five-dimensional vector containing speed and yaw rate of the ego-vehicle at time ¢ as well its top-down displacement and
angular displacement between steps ¢t and ¢ — 1.

Ablation 4 in this work uses odometry during inference that was obtained using ORB-SLAM3 [2]. This was run using
stereo images, where each sequence of 30 frames was treated as its own SLAM session providing 6-dof poses for all frames
in the sequence.



The refinement model is trained for 24000 steps using the ADAM optimizer; the initial learning rate is set to 10~, and it
is lowered to 10~° after 18000 optimization steps. During training, the inputs are scaled to a spatial resolution of % X %,
and the loss is additionally computed at this scale. During inference, inputs are scaled to the final spatial resolution, i.e.,
HxW.

To process a Cityscapes sequence, the model needs 560 ms on average using an NVIDIA A6000, which is on par with the

700 ms required by Graber et al. [14]. This can be significantly reduced by further engineering effort.

G. Additional AIODrive Details

The AIODrive sequences are annotated using 23 object classes. To facilitate comparison against results on the Cityscapes
dataset, we only train and evaluate using background classes which are also present in Cityscapes. This leaves 11 background
“stuff” classes and 2 foreground “things” classes (the only annotated “things” instances in AIODrive are “vehicles” and
“pedestrians”). As annotations are only provided for the trainval dataset, we split this into a training dataset containing all
annotated sequences for towns 1 through 5 and a validation dataset containing all annotated sequences for town 6. We use 5
frames as input and forecast the 5th frame into the future, corresponding to 0.5 seconds of input and a 0.5 second forecast
(which is comparable to the Cityscapes mid-term setting).

During both training and evaluation, we only consider instances whose masks have an area of at least 400 pixels in an
attempt to filter out distant, imperceptible instances. For evaluation, we use non-overlapping sequences of 10 frames from
each validation sequence. Additionally, the data contains some periods of time with little to no motion, which skews the
evaluation metrics artificially high. To ensure that the metrics properly capture the ability of the models to anticipate motion,
we filter out validation sequences where the recording vehicle is moving less than 1 m/s at all points in the input sequence
and where at least half of the instance mask centers move less than 10 pixels. This leaves 814 sequences with motion for
evaluation purposes. To ensure that the tracking-based metrics can be computed, we use ground-truth instance bounding
boxes and ids as input to the forecasting models.

The base semantic and instance segmentation models are the same as that used for Cityscapes, i.e., MaskRCNN [16]
for instance segmentation and Panoptic Deeplab [3] for semantic segmentation. For both, we initialize from the Cityscapes
pre-trained model and finetune on AIODrive. For the models that use predicted depth, we use Cascade-Stereo [15] on the
stereo input images. We do not finetune the depth model on this dataset.

H. Cityscapes Instance Segmentation

We also evaluate our Cityscapes-trained model on instance segmentation. Here, we consider only ‘things’ instances during
evaluation, and hence we disregard the pixels corresponding to the ‘stuff’ classes.

Metrics. We evaluate instance segmentation using the standard metrics [7]: 1) Average Precision (AP) computes true posi-
tives using a number of overlap thresholds, averages over these thresholds, and then averages over classes; 2) AP50 computes
average precision with an overlap threshold of 0.5 and then averages across classes.

Baselines. We compare against the baselines presented by Graber ef al. [14]. F2F is introduced by Luc ef al. [27] and
predicts the features of a future scene using a convolutional model. It then obtains instances by passing these features through
MaskRCNN heads. IndRNN-Stack is the independent RNN and stacking model by Graber et al. [14]. PFA, introduced by
Lin et al. [25], compresses input feature pyramids into a low-resolution feature map for forecasting.

Results. The results for this task are presented in Tab. 4. We outperform F2F and IndRNN-Stack in the mid-term setting but
PFA performs better. This is to be expected because PFA was directly trained on instance segmentation while we directly
apply the model trained on panoptic segmentation, i.e., we don’t retrain our model specifically for instance segmentation.

I. Cityscapes Semantic Segmentation

Following prior work [14], we also evaluate our model on semantic segmentation forecasting. In this context, we do not
care about specific instances. Hence, for each pixel, we discard all predicted identity information.
Metrics. Semantic segmentation forecasting is evaluated using the standard intersection over union (IoU) metric computed
between predictions and ground truth per class and averaged over classes. IoU (MO), meanwhile, computes an average IoU
over ‘things’ classes only.



Short term: At =3 Midterm: At =9
AP AP50 AP AP50

Oracle 34.6 57.4 34.6 57.4
Last seen frame 8.9 21.3 1.7 6.6
F2F [27] 19.4 39.9 7.7 19.4
IndRNN-Stack [14] 17.8 38.4 10.0 22.3
PFA [25] 24.9 48.7 14.8 30.5
Ours 19.9 39.9 11.2 25.2

Table 4. Instance segmentation forecasting on the Cityscapes Validation dataset. Higher is better for all metrics.

Short term: At =3 Mid term: At =9

Accuracy (mloU) All MO All MO
Oracle 80.6 81.7 80.6 81.7
Copy last 59.1 55.0 42.4 33.4
Bayesian S2S [1] 65.1 / 51.2 /

DeformF2F [36] 65.5 63.8 53.6 49.9
LSTM M2M [40] 67.1 65.1 51.5 46.3
F2MF [37] 69.6 67.7 57.9 54.6
IndRNN-Stack [14] 67.6 60.8 58.1 52.1
PFA [25] 71.1 69.2 60.3 56.7
Ours 67.9 61.2 58.1 51.7

Table 5. Semantic forecasting results on the Cityscapes validation dataset. Baseline numbers, besides oracle and copy last, are
from [37]. Higher is better for all metrics. Our model exploits stereo and odometry, which are provided by typical autonomous vehicle
setups and are included in Cityscapes.

Baselines. Many of the baselines operate by predicting the features of a future scene [1,25,36,37]. LSTM M2M [40] warps
input semantics using a predicted optical flow between the most recent frame and the target frame. Note that these approaches
do not use depth inputs, and all except Bayesian S2S [1] do not use egomotion as input.

Results. The results for this task are given in Tab. 5. We outperform IndRNN-Stack by a small margin in the short-term
setting, and have comparable results in the mid-term setting. We additionally outperform most other baselines. Note that
this metric does not care about the boundaries between individual instances and hence weights some types of errors differ-
ently than the other metrics we use. These other metrics more properly evaluate whether specific instances are localized in
the correct places, which we argue better captures the goals of forecasting. Note that PFA is directly trained on semantic
segmentation forecasting while our approach was trained on forecasting of panoptic segmentations.

J. Additional Cityscapes Visualizations

Fig. 6 presents a visual comparison between our approach and IndRNN-Stack for the short-term setting for the sequences
which were shown for the mid-term setting in Fig. 3. We present additional visualizations for the mid-term setting in Fig. 7
and for the short term setting in Fig. 8.

K. Additional Cityscapes Metrics

Tabs. 6 to 8 present metrics computed for the Cityscapes test dataset using the mid-term setting for panoptic, instance, and
semantic segmentation forecasting, respectively. We outperform all other approaches for panoptic and instance segmentation
forecasting on the test data. On semantic segmentation, we outperform IndRNN-Stack on the test data, whereas F2MF [37]
outperforms our approach. However, note that the F2MF model used for test evaluation was trained on both the training and
validation datasets, while the other models were trained only on the training data.

Tabs. 9 to 14 contain the per-class breakdown of all panoptic segmentation metrics shown in Tab. 1. The results shown in
Tab. | consist of the average of these metrics taken over the values obtained for each individual class. Our model is better



All Things Stuff
PQ SQ RQ PQ SQ RQ PQ SQ RQ

Flow 25.6 70.1 34.0 124 663 181 353 729 45.5
Hybrid [40] (bg) and [27] (fg) 29.4 69.8 385 180 67.2 257 37.6 71.6 47.8
IndRNN-Stack 35.7 720 46.5 240 69.0 33.7 442 742 558
Ours 369 727 48.0 26.7 703 370 444 744 559

Table 6. Panoptic segmentation forecasting evaluated on the Cityscapes test set, mid-term. Higher is better for all metrics.

AP AP50 Accuracy (mloU) All MO
F2F [27] 6.7 17.5 F2MF [37]* 59.1 56.3
IndRNN-Stack 8.4  19.8 IndRNN-Stack 57.7 48.8
Ours 99 20.7 Ours 58.3  50.0
Table 7. Instance segmentation forecasting on the Cityscapes Table 8. Semantic segmentation forecasting results on the
Test dataset, mid-term. Higher is better for all metrics. Cityscapes test dataset. Baseline numbers, are from [37]; the

* indicates training on both train and validation data. Higher is
better for all metrics.
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Deeplab (Oracle)f \ 979 782 885 294 389 60.0 55.6 745 89.5 36.1 87.9 508 46.4 673 51.5 66.6 37.8 442 44.1 \ 60.3
Deeplab (Last seen frame) 94.3 524 71.1 11.3 194 6.1 129 150 721 169 727 103 80 296 351 51.7 242 938 7.9 | 32.7
Flow 95.6 61.5 79.8 17.3 28.6 87 262 368 80.7 269 79.7 21.0 14.0 434 40.6 56.8 26.7 232 18.7 |41.4
Hybrid [40] (bg) and [27] (fg) | 96.2 63.4 81.4 231 237 7.1 19.1 369 823 203 79.8 26.8 21.8 46.4 422 60.0 414 25.6 22.5 | 43.2
IndRNN-Stack 96.2 66.1 835 261 274 31.7 37.0 499 848 26.1 82.0 31.8 31.5 488 422 61.2 47.0 31.4 273 | 49.0
Ours 96.2 66. 838 259 274 344 370 503 848 26.5 821 349 36.7 512 41.2 631 47.6 324 32.0 | 502

Table 9. Per-class results for Panoptic Quality on Cityscapes validation dataset (short-term).

on average for every metric than all other approaches, and it is additionally better than prior approaches for every metric for
most classes.

L. Code Details

All models are implemented using PyTorch v. 1.10.0 %, which is made available for use with a custom BSD-style license.
We additionally use the Detectron2 framework (version 0.4.1)*, which is released under the Apache 2.0 license.” Code
implementing our models and experiments can be found at https://github.com/cgraber/psf-diffattn.
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M. Potential Negative Societal Impact

One of the primary applications of this work is to better enhance the ability of autonomous agents to anticipate the future
and respond appropriately to a dynamic environment. In this context, problems can arise if an agent makes a decision based
on a faulty prediction — for example, if a self-driving car does not anticipate a pedestrian stepping into the street, it could
unintentionally hurt the pedestrian if they step out in front of the car. For such a system, the consequence of prediction errors
can be injury or death. It is thus critical that appropriate care be taken before deployment of such a system to ensure that not
only are prediction errors sufficiently low across a variety of environments but also that proper failsafes are put in place to
minimize the negative consequences of acting upon a misprediction.

2https://pytorch.org/
3https://qithub.com/pytorch/pytorch/blob/vl.10.O/LICENSE
4https://github.com/facebookresearch/detectron2
5https://qithub.com/facebookresearch/detectronZ/blob/vO.4.1/LICENSE
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Figure 6. Short-term panoptic segmentation forecasts on Cityscapes.
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Deeplab (Oracle) | 97.9 782 885 294 389 600 55.6 745 89.5 36.1 879 50.8 464 67.3 515 66.6 37.8 442 441|603
Deeplab (Last seen frame) | 90.4 325 57.6 7.6 106 46 89 74 551 88 573 53 25 132 192 273 101 47 3.0 | 224
Flow 90.5 358 66.2 7.7 150 4.6 119 111 656 11.6 644 59 25 190 215 27.7 135 118 53 | 259
Hybrid [40] (bg) and [27] (fg) | 93.2 44.9 705 124 148 1.2 80 108 69.7 13.9 672 80 45 273 335 41.7 279 83 6.1 |29.7
IndRNN-Stack 939 50.8 764 182 199 87 187 285 770 186 727 162 120 333 361 530 298 141 12.6 | 36.3
Ours 939 509 765 181 208 93 188 286 77.0 186 727 199 146 395 388 569 262 18.6 14.5 | 37.6
Table 10. Per-class results for Panoptic Quality on Cityscapes validation dataset (mid-term).
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Deeplab (Oracle) | 980 85.6 905 743 748 69.7 73.5 80.1 909 757 926 760 70.8 842 884 908 87.6 738 721 ]|8L5
Deeplab (Last seen frame) | 944 715 788 654 656 67.0 683 67.4 77.8 67.7 83.0 644 60.1 692 747 767 757 627 634 |7L3
Flow 95.6 760 83.2 685 683 650 659 67.3 834 69.1 866 656 614 758 77.5 80.0 741 66.1 644 | 73.4
Hybrid [40] (bg) and [27] (fg) | 96.3 77.2 849 70.0 69.0 59.5 63.6 659 846 70.8 865 668 61.9 77.2 80.3 831 80.5 656 638 |74.1
IndRNN-Stack 963 77.0 863 711 694 614 654 70.6 86.6 713 883 67.7 638 77.7 814 814 748 67.6 658 | 749
Ours 963 77.1 864 714 698 617 654 708 866 709 883 694 664 789 817 841 779 681 672|757

Table 11. Per-class results for Segmentation Quality on Cityscapes validation dataset (short-term).
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Deeplab (Oracle)f ‘ 98.0 85.6 905 743 748 69.7 735 80.1 90.9 757 926 76.0 70.8 842 884 90.8 876 T73.8 721 ‘ 81.5
Deeplab (Last seen frame) 90.7 682 726 634 624 661 727 730 712 64.0 773 63.7 61.3 668 629 70.8 743 56.4 64.4 | 685
Flow 90.8 68.6 76.0 66.1 641 64.1 69.0 67.2 750 64.5 785 63.5 604 69.1 702 743 758 60.2 63.0 | 69.5
Hybrid [40] (bg) and [27] (fg) | 93.3 69.7 779 66.6 653 59.9 629 619 769 651 79.6 63.7 584 715 726 722 737 621 60.6 | 69.1
IndRNN-Stack 94.1 71.3 815 684 668 59.0 64.1 65.1 80.9 68.1 83.0 643 614 734 769 76.1 T44 625 629|713
Ours 942 715 817 691 66.1 60.1 642 65.7 81.0 685 83.0 647 61.1 747 765 794 677 63.6 64.7 | 714

Table 12. Per-class results for Segmentation Quality on Cityscapes validation dataset (mid-term).



AoeIS-NNIPUI

AoeIS-NNIPUT

AoeIS-NNIPUI

-term visualizations.

Figure 7. Additional mid
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Figure 8. Additional short
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Deeplab (Oracle)t [99.9 91.3 978 395 521 861 756 93.0 985 47.7 949 66.9 655 80.0 582 734 431 599 612|729
Deeplab (Last seen frame) 999 734 90.2 173 29.7 9.1 189 222 927 250 87.6 160 13.2 428 47.0 674 32.0 156 124 | 42.7
Flow 99.9 81.0 959 252 419 134 397 547 968 39.0 920 321 228 57.3 524 710 36.0 351 29.0 | 53.4
Hybrid [40] (bg) and [27] (fg) | 99.9 82.1 958 33.0 344 11.9 300 56.0 97.3 288 922 40.1 353 602 526 722 514 391 353|551
IndRNN-Stack 999 858 96.7 367 394 51.6 56.6 70.7 979 36.6 929 47.0 493 629 519 752 629 463 41.5 | 63.3
Ours 999 860 97.0 362 393 557 56.6 711 979 374 929 503 553 649 504 750 611 475 47.6 | 64.3
Table 13. Per-class results for Recognition Quality on Cityscapes validation dataset (short-term).
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Deeplab (Oracle)t [99.9 913 97.8 395 521 861 756 93.0 985 47.7 949 66.9 655 80.0 582 734 431 59.9 612|729
Deeplab (Last seen frame) 99.7 476 79.3 121 17.0 7.0 122 101 774 13.7 741 8.3 42 198 30.6 385 13.6 8.3 4.7 | 304
Flow 99.7 522 87.1 117 234 7.2 173 165 874 18.0 821 92 42 275 306 37.3 178 196 84 | 346
Hybrid [40] (bg) and [27] (fg) | 99.9 64.5 90.4 187 227 21 127 174 905 214 844 125 7.7 382 46.2 57.9 37.8 134 10.1 | 394
IndRNN-Stack 99.7 712 937 266 298 147 292 438 951 273 87.6 252 195 454 47.0 69.6 40.0 22.6 20.0 | 47.8
Ours 99.7 71.1 937 262 314 155 293 435 951 271 87.6 30.8 239 529 507 717 387 292 224 | 495

Table 14. Per-class results for Recognition Quality on Cityscapes validation dataset (mid-term).



