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Figure 1. Given a monocular portrait video of a person, we reconstruct a Neural Head Avatar. The resulting 4D avatars feature explicit
geometry reconstruction and photo-realistic appearance.

In this supplemental document, we describe the imple-
mentation details of our Neural Head Avatars method, pro-
vide quantitative evaluations for the novel viewpoint syn-
thesis task, and show further qualitative results. In addition,
we demonstrate facial reenactment.

1. Implementation Details

1.1. Template Model

We utilize the FLAME head model [15] in its up-
dated version from 2020 as the geometric backbone of our
method. As mentioned in the main paper, we perform mi-
nor adjustments to the FLAME topology, namely, we uni-
formly subdivide the faces (four-way subdivision), remove
the faces belonging to the lower neck region, and add faces
to close the mouth cavity, see Figure 2. This increases the
original number of vertices from 5023 to 16227. Inspired
by [4], we use tanh activation functions to limit the joint
rotations of FLAME to physiologically plausible ranges.

* Both authors contributed equally to the paper

(a) Original FLAME topology (b) Our FLAME topology

Figure 2. As our template, we uniformly subdivide the
FLAME [15] mesh and simplify the mouth cavity.

1.2. Network Architectures

Our method relies on two multi-layer perceptrons
(MLPs). The Geometry MLP G refines the mesh resulting
from the linear FLAME head model and adds facial detail
and hair structure. The Texture MLP T synthesizes a dy-
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Figure 3. Overview of our model architectures. Our Neural Head Avatar relies on SIREN-based MLPs [21] with fully connected linear
layers, periodic activation functions and FiLM conditionings [7, 19]. Inspired by [5], surface coordinates and spatial embeddings (either
vertex-wise for G, or as an interpolatable grid in uv-space for T ) are used as an input to the SIREN MLP. The dynamic frequencies and phase
shifts of the Linear FiLM layers are predicted by fully connected mapping networks which are conditioned on the FLAME parameters. For
the Texture MLP T , a fully convolutional normal encoder generates additional conditions from a local patch of the predicted normal map.

namic, photo-realistic texture that is able to reproduce view-
and expression dependent effects, e.g., wrinkles and reflec-
tions. This section details the model architecture of both
networks. An overview is presented in Figure 3.

1.2.1 Geometry MLP G

The Geometry MLP G adds facial detail and hair geometry
to the mesh resulting from the FLAME head model. The in-
puts to the network are the 3D coordinates of the vertices on
the template mesh (see Figure 2), normalized to the range
[−1, 1], as well as vertex-specific embedding vectors that
are optimized during training. Dynamic geometry effects
are enabled by also passing the FLAME pose parameters to
G. In practice, to avoid overfitting only the 3 pose parame-
ters of the neck joint are used.

The core of G is a SIREN-based fully connected MLP
[21] which takes the vertex positions and embeddings as
input, processes them by a sequence of FiLM-conditioned
linear layers [7,19], and predicts the three-dimensional ver-
tex offsets. The linear, FiLM-conditioned layers first per-
form an affine transformation on the input signal, followed
by a sinusoidal activation function. The phase shifts and
frequencies of the sinusoidal activation functions are gen-
erated by a mapping network which is a concatenation of
linear layers with leaky ReLU activations. This architec-
ture was greatly inspired by [5]. The input to the mapping
network is the three-dimensional pose of the FLAME neck

joint which enables the synthesis of dynamically changing
geometry refinements. We ensure spatial geometry consis-
tency by only allowing dynamic geometry refinements for
the neck region. To this end, we compute the offsets twice:
once conditioned on the orignial neck pose values and once
with all conditions set to zero. We smoothly blend both off-
set predictions according to a fading body region mask.

Configuration details. The vertex embedding vectors
have a feature dimension of 32 (for each vertex of template
mesh). The mapping network comprises 3 hidden layers
with 256 neurons each, followed by leaky ReLU activation
functions with slope 0.2. The SIREN MLP consists of 6
consecutive linear FiLM layers with 128 neurons each. The
final layer is a linear layer with 3 output neurons, followed
by a tanh activation function.

1.2.2 Texture MLP T

The architecture of our texture representation T is simi-
lar to G. For obtaining the color value of a point on the
mesh surface, its 3D coordinates on the FLAME template
mesh as well as a surface embedding vector are fed into
a SIREN MLP. The surface embedding vector is sampled
from a discrete 2D grid in uv space. A mapping network
takes features extracted from the FLAME pose and expres-
sion parameters and predicts the phase shifts and frequen-
cies of the sinusoidal activation functions in the linear FiLM



layers of the SIREN MLP to synthesize a dynamic texture.
The dynamic texture is needed in the regions where the re-
constructed geometry does not align well with the target
surface. This is especially the case for the mouth cavity.
Consequently, we process the FLAME pose and expression
parameters into features that are highly correlated with the
mouth articulation. More specifically, we determine the ef-
fective rotation that applies to the mouth region, i.e., com-
bine global rotation and neck rotation, and use its axis-angle
representation together with 10 pair-wise distances between
vertices on the inner side of the lips as inputs to the map-
ping network. These conditions only cover mouth-related
information and, therefore, are only used as input to the
mapping network for the respective surface regions. For
all other regions, we fill the conditioning vector with ze-
ros. Effectively, this approach greatly limits the dynamic
capacities of the T to ensure a close bound to the underly-
ing geometry which in turn enables extrapolation to unseen
poses and expressions. The outputs of the mapping net-
work are used to dynamically adjust the phase shifts and
frequencies of the linear FiLM layers in the SIREN MLP.
Given these conditions and the surface position and surface
embedding, the SIREN MLP produces a latent space vec-
tor. This vector serves as input to two network heads. In
the first head, the latent vector is fed through a linear layer
with 3 output neurons. In the second head, the latent vec-
tor is concatenated with the outputs of a normal encoder
network. This network takes a local patch of the rendered
normal map as input, passes it through a sequence of 2D-
convolutional FiLM layers and outputs a feature vector in
latent space. 2D-convolutional FiLM layers have the same
structure as linear FiLM layers, but instead of a linear layer,
a 2D-convolutional layer is used. The latent vector pro-
duced by the normal encoder contains information on the
local geometry configuration and enables the synthesis of
expression- and view-dependent effects (e.g., ambient oc-
clusions and specular highlights). The output vectors of the
SIREN MLP and the normal encoder are concatenated and
fed through a sequence of linear layers to produce 3 output
activations. The activations of both heads are summed up
and a tanh activation is applied to achieve the final RGB
predictions in a range of (-1, 1).

Configuration details. The surface embedding is sam-
pled in uv space from a discrete feature grid with 256×256
feature vectors with 64 channels each via bilinear interpola-
tion. We use a separate uv map for the inner mouth region
with 64 × 64 vectors. The mapping network has the same
architecture as for the Geometry MLP G. The SIREN MLP
consists of 8 consecutive linear FiLM layers with 256 neu-
rons each, except for the last which has 128 neurons. The
normal encoder is designed as a fully convolutional network
with 3 consecutive 2D-convolutional layers with stride 1

and kernel size 3 and with periodic activations. All lay-
ers have 128 feature channels except for the last one which
has 32. The first model head contains one fully connected
layer with 3 output neurons. The second model head con-
tains one linear FiLM layer with 128 neurons and one linear
layer with 3 neurons.

1.3. Optimization from Monocular RGB Data

Detailed Geometry Objective Egeom (Eq. 2) As defined
in Eq. 2 in the main paper, the geometry energy term is:

Egeom = wlmk · Elmk + wnormal · Enormal

+ wsemantic · Esemantic + wreg,geom · Ereg, geom.
(1)

Enormal and Esemantic are already defined in the main paper,
for the other terms we provide additional explanation.

The landmark energy Elmk measures the distance of de-
tected 2D facial landmarks li ∈ R2 and the projected coun-
terparts on the mesh surface l̂i ∈ R2 and is given by:

Elmk =

70∑
i=1

||li − l̂i||1 + wlid ·
∑

i∈{left,right}

||di − d̂i||1.

Besides the absolute positions of the landmarks l̂i, we mea-
sure relative distances d̂i of the eye landmarks at the upper
and lower lid to improve the reconstruction of eye lid clo-
sure [8]. However, we found that target lid distances di are
less noisy when being computed on the facial segmentation
(computed by [23]) rather than the detected landmarks. The
2D facial landmarks li are detected using [3, 16] and also
contain two iris landmarks.

To avoid convergence to local minima, we employ sev-
eral geometry regularization strategies summing up to the
term Ereg, geom which is given by:

Ereg,geom = wreg,flame · Ereg,flame + wreg,lapl · Ereg,lapl

+ wreg,surface · Ereg,surface + wreg,edge · Ereg,edge.

(2)

Following [1, 22], Ereg,flame uses the statistical properties of
the linear shape model, and regularizes the prediction to-
wards the average face:

Ereg,flame = wβ · |β|22 + wθ · |θ|22 + wψ · |ψ|22.

The Laplacian regularizerEreg,lapl computes the relative loss
of the Laplace values λ∗(V ) of the predicted mesh vertices
V w.r.t. the surface of the FLAME model VFlame, and con-
trols the smoothness of the predicted offsets:

Ereg,lapl = |Wreg,lapl ◦ (λ∗(V )− λ∗(VFlame)) |1.

Note that λ∗(.) denotes the discretized Laplace-Beltrami
operator on the 1-ring neighborhood.Wreg,lapl ∈ RV+ defines



wreg,flame wreg,surface wreg,edge wreg,lapl
Geometry

Optim.
Joint

Optim.
Geometry

Optim.
Joint

Optim.
Geometry

Optim.
Joint

Optim.
Geometry

Optim.
Joint

Optim.

Eyeballs 1.0E-03 1.0E-03 1.0E-04 1.0E-04 0 0 0 0

Eye Surrounding 1.0E-03 1.0E-03 1.0E-04 1.0E-04 0 0 5 10

Forehead 1.0E-03 1.0E-03 1.0E-04 1.0E-04 0 0 0.05 0.1

Face 1.0E-03 1.0E-03 1.0E-04 1.0E-04 0 0 0.05 0.1

Ears 1.0E-03 1.0E-03 1.0E-04 1.0E-04 0 0 25 50

Scalp 1.0E-03 1.0E-03 1.0E-04 1.0E-04 10 10 0.05 0.1

Neck 1.0E-03 1.0E-03 1.0E-04 1.0E-04 0 0 0.1 0.2

Lower Neck 1.0E-03 1.0E-03 1.0E-04 1.0E-04 0 0 0.25 0.5

Nose 1.0E-03 1.0E-03 1.0E-04 1.0E-04 0 0 2.50E-02 5.00E-02

Table 1. Geometry regularization weights. The regularization weights differ for the individual head regions. However, they do not change
among target subjects, i.e., they can be used to reconstruct a wide variety of geometries such as different hair styles.

vertex specific weights which allow to control the smooth-
ness in specific regions (e.g., the neck region has a higher
regularization). ◦ denotes the component-wise Hadamard
product. As in [4], we regularize pose-dependent offset
variations by adding a pair-wise surface consistency term.
For two randomly picked frames i, j, the `1-norm is com-
puted over the difference between G(φi) and G(φj):

Ereg,surface = |G(φi)− G(φj)|1.

For large geometry corrections (e.g., long hair), we no-
ticed an irregular vertex distribution over the surface which
resulted in areas with large triangles and coarse shape mod-
elling. To mitigate this issue, we regularize the length of
edges ei in the scalp region if they deviate too much from
the average edge length ē.

Ereg,edge =
∑
ei

{
ei − ē if ei > 1.5 · ē
0 otherwise

As the individual facial regions are subject to different re-
quirements, the applied regularization weights differ. Ta-
ble 1 presents the weights for the individual regions. Please
note that while the weights differ for the individual face re-
gions, they are the same for all avatars. No subject-specific
fine-tuning of regularization parameters is required while
still being able to reconstruct a wide set of structures (e.g.
long and short hair).

Detailed Appearance Objective Eapp (Eq. 3) The ap-
pearance energy term is defined in Eq. 3 in the main paper
as:

Eapp = wphot · Ephot + wperc · Eperc. (3)

The photo-metric energy term Ephot is defined on the inter-
section V = S ∩ Ŝ of the foreground segmentation of the
input I and the region that is generated by our head model
Î:

Ephot = |V · (Î − I)|1.

To generate sharp textures [11, 14], we employ the style-
based perceptual energy term Eperc proposed by [10].

Initialization and Optimization. As discussed in Section
3.2 of the main paper, texture and geometry have to be ini-
tialized before starting the joint optimization against RGB
sequences to avoid converging to bad local minima. To this
end, the FLAME head model is aligned with the training
sequence to obtain a coarse geometry initialization. Based
on this coarse geometry, the weights of G and the frame-
specific parameters of the FLAME model, i.e., pose and ex-
pressions are optimized w.r.t. Egeom (Eq. (2) in main paper).
As a result of this optimization, we obtain a geometry esti-
mate that aligns well with the target silhouette. Using this
refined geometry, T is trained to minimize Eapp (Eq. (3) in
main paper). In a final optimization step, all components
are optimized jointly to minimize Ejoint (Eq. (1) in main
paper).

Given the 750 input frames of our real sequences, we
initialize G for 150 epochs, T is initialized for another 100
epochs, and we jointly optimize both components as long as
the perceptual loss on the holdout validation set decreases.
This takes approximately 50 epochs. For longer sequences,
we reduce the epoch count such that the number of itera-
tions per optimization stage remains the same.
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Figure 4. Additional qualitative novel view synthesis comparisons. We observe that the advantages of our method, namely spatial consis-
tency and high texture detail even under extreme head rotations, apply to a variety of identities. Also see Figure 1 for additional subjects.
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Figure 5. Expressions ψ and poses φ from the driving frames on
the left are added to the neutral poses of optimized source avatars
at the top. The reenacted avatars are displayed below.

We deploy a standard Adam optimizer [13] for all frame-
agnostic parameters and a standard SGD optimizer for
frame-specific components (e.g. expression and pose pa-
rameters). Weight decay is applied to all texture-related
components. The entire pipeline is implemented with Py-
torch [18] and Pytorch3D [20].

2. Additional Results
2.1. Avatar Reenactment

Neural Head Avatars are controllable by the disentan-
gled pose and expression spaces of the FLAME head model.
This naturally enables the reenactment of an optimized
avatar via a driving sequence. We demonstrate this capabil-
ity in Figure 5. In this experiment, we utilize expressions ψ
and poses φ from a driver’s video and add them to the neu-
tral expression of optimized avatars. ψ and φ are extracted
using our tracking algorithm discussed in the main paper.
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Figure 6. Qualitative novel view synthesis comparison for pitch
rotations. We report the frontal view as well as synthesis results
under a pitch angle of ±15°.

We observe that our method is able to faithfully transfer
pose and expression between various subjects.

2.2. Novel View Synthesis

In Section 4.4 of the main paper, we qualitatively com-
pare the synthesis from novel viewpoints against related
methods. Figure 6 and Figure 4 provide further qualitative
comparisons on different subjects and demonstrate that the
advantages of our method apply to a variety of identities.

We also provide a quantitative evaluation of the novel
view synthesis results in Figure 7. For a quantitative analy-
sis, given that no ground truth is available for novel views,
we evaluate the cosine similarity (CSIM) of the latent fea-
ture vectors predicted by a pretrained face recognition net-
work [3] between front-facing ground truth and novel view
prediction. We report the CSIM scores averaged over all
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Figure 7. Quantitative novel view synthesis comparison. We report the cosine similarity score between latent features predicted by a
pretrained face recognition network [6]. The feature vectors are compared between the front facing ground truth and the predicted image
under different rotation angles. We report the average scores over all validation frames from two sequences in our real dataset together with
the respective 1σ regions. Our method consistently outperforms related approaches for pitch angles between -15° and +15°. For extreme
yaw rotations, we observe significantly reduced CSIM scores even though qualitative comparisons demonstrate high identity preservation
under these conditions (see Figure 7 in main paper).
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Figure 8. Qualitative comparison with paGAN [17] on the valida-
tion sequences. Note that only the facial region is synthesized by
paGAN.

validation frames of two sequences in our real dataset. We
find that our method outperforms related approaches consis-
tently for pitch angles in a range of ±15°. However, we ob-
serve that for large yaw angles (≥ ±30°), the scores for all
considered models decrease rapidly. Still, qualitative com-
parisons demonstrate that our method exhibits high identity
preservation even under viewpoint changes in that range.

a) GT b) Geom. Rec. c) RGB Pred.

Figure 9. Synthesis results for a non-caucasian subject. The high
quality of the synthesis results of our method is consistent also for
people of color.

2.3. Comparison with paGAN [17]

In Figure 8, we compare our generated images of the real
identities with the outputs of paGAN [17] provided by the
authors. As their results are overlays on top of the original
video, only the synthesized parts (facial region) should be
considered when comparing to it.

2.4. Synthesis Results for Non-Caucasian Subjects

To validate that our method also performs well for non-
caucasian subjects, we include synthesis results for a per-
son of color in Figure 9. Also in this case, our method re-
constructs the head geometry faithfully and renders visually
plausible images.
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Figure 10. Geometry evaluation on the real identities. The right
most column visualizes the Hausdorff distance from our predicted
face mesh to the recorded GT. From top to bottom, the total align-
ment errors of the identities are 1.5, 1.6, 1.6, and 1.6 mm.

2.5. Geometry Evaluation

We compare the geometry predicted by our approach on
the real dataset with multi-view stereo (MVS) recordings of
the respective identities, see Figure 10. The MVS data was
captured separately with a handheld DSLR camera. As hair
styles and face dynamics can not be reproduced reliably in
separate recordings, only the neutral pose of the face region
is compared.

2.6. Energy Ablation

Figure 11 demonstrates the effect of further energy terms
on the synthesis results. We observe that Ephot prevents
color shifts, Esemantic improves alignment of overlapping se-
mantic regions within the avatar’s silhouette and Eperc re-
sults in textures with more detail.

w/o Enormal

w/ Enormal

Reference

w/o Ephot

w/ Ephot

GT

w/o Esemantic

w/ Esemantic

GT

w/o Eperc

w/ Eperc

GT

Figure 11. Energy Term Ablation. Reference normals are the in-
puts we use for optimization.
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