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Supplementary video is here: https:
//drive.google.com/file/d/
1zoYA2As2igeVghdZPmfOnKxmgXFuJUyG/view?
usp=sharing

A. Data Collection
This section overviews the collection procedures and scenarios

per site.

International Institute of Information Technology
(IIIT), Hyderabad, India: At IIIT, Hyderabad, we followed a
protocol of distributed data collection with a centralized team doing
coordination and verification. We first identified local coordinators
in different parts of the country and explained the data collection
plans, goals and process. They then helped in collecting data in
their own local regions from natural settings with informed partic-
ipants. Participants were recruited locally considering the range
of activities, and also the guidelines and restrictions of COVID-19.
The central team could not travel to all these locations for train-
ing the coordinators or collecting the data. We shipped multiple
cameras to the local coordinators and remotely guided them on
data collection following the COVID protocols. The collected data
and consent forms were then shipped back to the university, where
manual verification, de-identification (wherever applicable), and
sharing with the consortium took place.

At IIIT Hyderabad, we recorded 660.5 hours of data with the
help of 138 subjects. The videos were collected in 5 different
states in India, geographically well apart. We cover 36 different
scenarios, such as making bricks using hands, knitting, making egg
cartons, and hairstyling. The age of subjects ranged from 18-84
years with 10 distinct professional backgrounds (teachers, students,
farmers, blacksmiths, homemakers, etc.). Out of all the subjects,
94 were males, and 44 were females. We use GoPro Hero 6 and
GoPro Hero 7 for recording the videos. The GoPro’s were shipped
to the participants in different parts of the country. Videos were
shared back either in external hard disks or over the cloud storage.

Each video was manually inspected for any sensitive content before
sharing.

Primary contributors: Raghava Modhugu - data collection
pipeline, design of the setup and workflow. Siddhant Bansal -
IRB application, consent forms and de-identification. C. V. Jawahar
- lead contributor for data collection. We also acknowledge the con-
tributions of Aradhana Vinod (coordination and communication),
Ram Sharma (local data management and verification), and Varun
Bhargavan (systems and resources).

University of Tokyo, Japan: We recruited 81 Japanese partic-
ipants (41 male, 40 female) living around Tokyo, Japan through a
temporary employment agency. The participant’s gender and age
(from the 20s to 60s) were balanced to collect diverse behavior
patterns. We focused on two single-actor activities: cooking (40
participants, 90 hours) and handcraft (41 participants, 51 hours). In
the cooking scenario, participants were asked to record unscripted
videos of cooking at their homes. In the handcraft scenario, par-
ticipants visited our laboratory and performed various handcraft
activities (e.g., origami, woodworking, plastic model, cutout pic-
ture). We collected data using GoPro HERO 7 Black camera for
cooking and Weeview SID 3D stereo camera for handcraft. Our
data collection protocol was reviewed and approved by University
of Tokyo ethical review board.

Primary contributors: Yoichi Sato – lead coordinator for data
collection, Takuma Yagi and Takumi Nishiyasu – contributed to par-
ticipant recruiting, protocol design, data collection and inspection,
and IRB submission, Yifei Huang and Zhenqiang Li – contributed
to data inspection and transfer, Yusuke Sugano – contributed to
selecting video recording scenarios, protocol design and IRB sub-
mission.

University of Bristol, UK: Participants were recruited through
adverts on social media and university internal communication
channels. These participants then spread the word to their ac-
quaintances and some participants joined the project through word-
of-mouth recommendations of previous participants. Data was
collected between Jan and Dec 2020, from 82 participants. With
the pandemic taking over in March, the project shifted to online
operation where cameras were posted, and training took place over
Zoom meetings. Participants first expressed interest by sending an
email and they were provided with an information sheet. This was
followed by a preliminary Zoom meeting with a researcher to brief
participants about the procedure, answer any questions and agree
on the scenarios to be recorded.

We set a limit to the total number of minutes per scenario, to
increase diversity of recordings. For example, driving cannot be
longer than 30 minutes while cooking can be up to 1.5 hours. Each
participant was instructed to record a minimum of 2 hours across
4 scenarios. Importantly, participants were encouraged to collect
activities they naturally do. For example if one regularly cycles
or practices music, they were asked to record these scenarios. Ad-
ditionally, paired scenarios (people cooking together or playing
games) were encouraged and multiple (2-3) cameras were posted
for participants sharing a household. All participants signed a
consent form before a camera was posted to their residence. Cam-
eras were posted to 9 UK cities in England, Wales and Scotland
including one participant in the Isle of North Uist.

11

https://drive.google.com/file/d/1zoYA2As2igeVghdZPmfOnKxmgXFuJUyG/view?usp=sharing
https://drive.google.com/file/d/1zoYA2As2igeVghdZPmfOnKxmgXFuJUyG/view?usp=sharing
https://drive.google.com/file/d/1zoYA2As2igeVghdZPmfOnKxmgXFuJUyG/view?usp=sharing
https://drive.google.com/file/d/1zoYA2As2igeVghdZPmfOnKxmgXFuJUyG/view?usp=sharing


Upon receipt of the camera, a second Zoom meeting was sched-
uled to train the participant on the equipment and detail how footage
is reviewed and uploaded. Participants were given 2 weeks to
record, with an additional week of extension upon request. Once
recording is completed, footage is uploaded by the participant and
reviewed for good lighting, correct setting and viewpoint. Partici-
pants were reimbursed for their participation in the project.

Scenarios recorded in the UK covered: commuting (driving,
walking, cycling, taking the bus, hiking, jogging), entertainment
(card games, board games, video games, lego, reading, practis-
ing a musical instrument, listening to music, watching TV), jobs
(lab work, carpentry), sports (football, basketball, climbing, golf,
yoga, workouts) and home-based daily activities (cooking, clean-
ing, laundry, painting, caring for pets, tidying, watering the plants),
DIY (fixing, gardening, woodwork) and crafts (colouring, crafting,
crochet, drawing, knitting, sewing). Footage was captured using
GoPro Hero-7, Hero-8 and Vuzix.

Footage was then reviewed by researchers to identify any PII.
36% of all videos required de-identification. We used Primloc’s
Secure Redact software suite, with integrated tools and user in-
terfaces for manual tracking and adjusting detections. Redacted
recordings were reviewed manually, then encoded and uploaded to
the AWS bucket. During encoding, IMU meta data was separately
extracted. Integrated audio and video using native 50fps recordings
are available.

In total, 262 hours were recorded by 82 participants. On average,
each participant recorded 3.0 hours (σ = 0.7 hours) The data
is published under General Data Protection Regulation (GDPR)
compliance.

Primary contributors: Michael Wray - data collection, consent
forms and information sheets; Jonathan Munro - data collection
and ethics application; Adriano Fragomeni - data collection and
de-identification oversight; Will Price - data ingestion, encoding
and metadata; Dima Damen - scenarios, procedures, data collection
oversight and participant communication. We acknowledge the
efforts of Christianne Fernee in manually reviewing all data.

Georgia Tech, Atlanta, GA, USA: Participant groups from
the Atlanta, Georgia, USA metro area were recruited via online
posts and advertisements on sites such as Facebook, Reddit, and
Instagram. Each group of participants was comprised of friends
or family members who knew each other prior to participating in
the study. Participants were required to be aged 18-64, to not be
considered high risk for COVID-19, and to be able to play social
deduction games in English. Our study protocol was reviewed and
approved by the Georgia Tech Institutional Review Board (IRB).
In total, approximately 43 hours of egocentric video were collected
from 19 participants (per participant disclosure - 10 male, 7 female,
1 non-binary, 1 not reported). Participants had a mean age of 31.6
years with 7 participants aged 20-29 years, 10 participants aged
30-39 years, and 2 participants aged 40-49 years.

Participants wore an egocentric head-worn camera and on-ear
binaural microphones. Some participants wore the ORDRO EP6
camera while others wore the Pupil Invisible cameras. The audio
was recorded using a Tascam DR-22WL and Sound Professionals
MS-EHB-2 Ear-hook binaural microphones. A third-person video
was also captured via a Logitech C930e Webcam. Participants wore
the provided recording devices while eating, drinking, and playing
social deduction games such as One Night Ultimate Werewolf and

The Resistance: Avalon in their own home. This at-home game-
night setting elicited a wide range of spontaneous and naturalistic
social behaviors and interactions. In addition, eating and drinking
behaviors were captured from both the egocentric and third-person
cameras.

In addition to participating in the recorded session, participants
completed a survey that captured their demographic information.
All data was screened and censored by study personnel to remove
any identifying information including visible personal information
on their phone screens or the exterior of the home. Participants
also had the opportunity to review the videos and request additional
censoring.

Primary contributors: Fiona Ryan - lead coordinator for data col-
lection, including synchronization, de-identification, and ingestion;
Audrey Southerland - lead coordinator for IRB development and
recruiting; Miao Liu - contributed to data collection and ingestion;
James M. Rehg - contributed to protocol design and data collection.

Indiana University, Bloomington, IN, USA: Participants
in the Bloomington, Indiana, USA area were recruited through
advertisements on social media, online classifieds boards, and email
lists. We also used snowball sampling by asking participants to
share our ads with their friends. We recruited participants who
were willing to perform interactive small group activities such
as playing sports, playing board or card games, playing musical
instruments, assembling puzzles, etc. The health of participants
and study personnel was safeguarded by collecting data either
outdoors (where people can more safely interact without wearing
masks), or indoors in the homes of the participants. In either case,
we initially required that all participants in a social group be part
of the same household to minimize the risk of spreading disease
between households, but later we allowed groups of people who
were comfortable interacting with one another (e.g., because they
are vaccinated for COVID-19). Group sizes ranged from 1 to 6
people, with groups of 2 or 3 being the most common.

We collected data with four different devices: zShade 1080p
camera glasses, iVue Rincon 1080 camera glasses, ORDRO EP-6,
and Pupil Labs Invisible camera and gaze tracking glasses. We
used multiple devices because each has various advantages and
disadvantages; zShade has a large horizontal field of view, for ex-
ample, while iVue has an adjustable vertical field of view, ORDRO
sits by the ear and is mounted on a headband which works well
for people wearing prescription glasses, and Invisible offers gaze
tracking but is very expensive. We asked as many participants as
possible in the group to wear cameras. We primarily used our two
Pupil Labs Invisibles whenever possible, because of their ease of
use and ability to collect gaze data, but we also used the ORDRO
EP-6 when there were larger groups or when participants wore
prescription glasses.

Our protocol was reviewed and approved by the Indiana Univer-
sity Institutional Review Board (IRB). We first conducted an online
meeting with potential participants to describe the study, explain
the use of the cameras, agree on an activity for them to perform, and
answer their questions. We ask participants to try to limit capture
of potentially privacy-sensitive content by choosing a place within
their home that did not have personally identifiable information,
by avoiding recording people other than those participating in the
study, and by avoiding saying last names or other sensitive audio.

We then arrange a time to meet them, typically outside their
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home or in an outdoor public place. We set up the cameras, help
the participants put them on, give them our contact information in
case they have any problems, and then we leave while they perform
the activity. We then return after about one hour to pick up the
cameras. Within a few days, we send each participant a copy of the
video taken by their camera, and ask them to review the footage
and identify any privacy-sensitive content (video or audio) that they
would prefer to be blurred or removed. We manually edit out any
such content (using Adobe Premiere Pro). We also review all video
for faces of non-participants and personally-identifying informa-
tion such as house numbers or license plates, and blurred these
accordingly. We use Pupil Labs software to synchronize eye gaze
with the video for each participant, and then used Adobe Premiere
Pro to temporally synchronize video across different participants
using audio track comparison.

In total, approximately 103 hours of video were collected from
66 participants (42 female, 23 male, 1 non-binary; for age, 46 were
20-29 years old, 14 were 30-39 years old, 1 was 40-49, 2 were
50-59, 1 was 60-69, and 2 were 70-79).

Primary contributors: David Crandall - lead coordinator for
data collection; Yuchen Wang - contributed to protocol design,
participant recruiting, and data collection; Weslie Khoo - developed
multi-camera synchronization and de-identification pipelines.

University of Minnesota, Twin Cities, MN, USA: Partici-
pants in the Minneapolis and St. Paul, Minnesota, USA area were
recruited through advertisements on social media and university
bulletins such as Facebook AD, Craiglist, and Redhat. A total of
approximately 313 hours of data was collected from 45 participants
(22 males and 23 females). Age groups include 5 teenagers, 20
people in their twenties, 11 people in their thirties, 8 people in their
forties, and 1 person in their fifties. We recruited participants as
multiple groups and encouraged them to engage in unstructured
natural social interactions. Such interactions included playing card
games, talking in the kitchen while cooking, playing basketball,
and building a tent at a camp site. In all cases, we required that
all participants in a social group be part of the same household
to minimize the COVID-19 risk. Group sizes ranged from 1 to 6
people, with groups of 2 or 3 being the most common.

We collected data with the zShade 1080p camera glasses that
have a large field of view. Our protocol was reviewed and approved
by the University of Minnesota Institutional Review Board (IRB).
We first conducted an online meeting with potential participants
to describe the study, explain the use of the cameras, agree on
an activity for them to perform, and answer their questions. We
then arranged a time for them to receive the cameras and provided
them with a postage-paid box for camera return. A few days later,
participants shipped the cameras to our designated return address.
We downloaded the data after sanitizing cameras and equipment.
After the data capture was complete, we visually inspected every
second of video in order to exclude any privacy-sensitive infor-
mation (e.g. license plates, smart phone screens, and credit card
numbers), and to assess the duration of non-social activities. For
incidental participants (i.e. bystanders) appearing in data collected
by the camera wearer in public settings (e.g., shopping, concert,
at a park, etc.), data collection consists only of recording publicly
observable behavior with no manipulation or direct interaction with
the participants, and this university’s IRB allows an assumed waiver
of consent for those participants.

Primary contributors: Hyun Soo Park - lead coordinator for data
collection; Jayant Sharma - contributed to participant recruiting,
data collection, IRB submission, analysis, and data ingestion.

National University of Singapore, Singapore: Participants
were recruited from Singapore through advertisements on social
media, via flyers and surveys, as well as from sourcing by the
project coordinator. Residents of Singapore aged 21 to 70 who
could wear a camera while participating in social sessions were
eligible for inclusion in our study. During the recording session,
the participants were required to attend social events such as family
gatherings, exercising with a trainer, hairdressing, getting manicure,
attending a session for teaching assistants, attending a group meet-
ing, etc. The devices used for data collection were GoPro Hero
8, GoPro Hero 9, and AR glasses. GoPro cameras have binaural
microphones while the AR glasses can only record mono audio. In
total, 51 hours of videos were collected from 40 participants (25
males and 15 females). Age groups include 31 twenties, 5 thirties,
3 fifties, and 1 sixties.

Primary contributors: Mike Zheng Shou - lead coordinator for
data collection; Eric Zhongcong Xu - contributed to data collection;
Ruijie Tao - contributed to data collection.

Meta Reality Labs, Redmond, WA, USA: Participants were
recruited from the Seattle area through a FRL-hired vendor com-
pany. In total, there were 400 hours collected from 206 unique
participants in 6 scenes staged in FRL’s research labs in 2019. The
ethnic groups include 50.8% Caucasian, 28.2% African, 11.9%
Asian and 9% Hispanic. The staged environments include four
types of apartments, a clothing store, and a grocery store. During
the recording sessions, the participants were asked to wear Vuzix
glasses to go through the following everyday scenarios as natu-
rally as possible: grocery shopping, buying clothes, watching TV,
playing video games, listening to music, dancing, weight lifting,
stretching, reading email, paying bills, online gaming, cooking, talk-
ing with other people, meetings, whiteboarding, and video calling.
The emails and bills were always mock data, not personal emails
or bills of the participants. The video calls took place between
participants only.

Three out of four apartments have corresponding 3D scans.
We use the state-of-the-art dense reconstruction system [209] to
obtain the 3D photo-realistic reconstruction of those apartments.
Volumetric representations are obtained from a customized capture
rig and dense 3D meshes are extracted by the Marching Cubes
algorithm with textures. We further annotate the dense meshes
by labeling object categories over the mesh polygons; 35 object
categories plus a background class label are used in annotation.

Primary contributors: Mingfei Yan, Richard Newcombe, Kiran
Somasundaram, Chao Li.

Universidad de los Andes, Colombia: We gather 302.5
hours across 20 scenarios from 77 unique participants. We record
videos using GoPro Hero 9 cameras between July and August 2021.
We recruit volunteer participants from within the Uniandes com-
munity and their families and friends. The ethnic groups include
89.9% Hispanic, 1.4% African, and 5.8%Caucasian. The gender
distribution follows 41.6% male and 58.4% female with ages rang-
ing from 18 to 65 (6 teens, 44 twenties, 3 thirties, 2 forties, 6 fifties,
and 1 sixties). Our data collection focuses mainly on simultaneous
video recording in groups of camera wearers within a common
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Baker > 9.5 hrs of videos Carpenter > 7 hrs of videos Scooter Mechanic > 9.5 hrs of videosBike Mechanic > 5.5 hrs of videos Bike Mechanic > 17.5 hrs of videosCrafting > 12 hrs of videos Car Mechanic > 3.5 hrs of videos

Figure 11. Matterport3D scans (top) related to seven different locations coupled with some videos (bottom).

setting. Thus, these data capture a single scene and social interac-
tions from different points of view. We include both outdoor and
indoor scenarios in Colombia. Outdoor scenarios include Bogotá
and Cartagena’s historical and colonial centers, as urban settings,
and a Natural National Park and a stream, as rural settings. Indoor
locations include professional activities such as laboratory workers
and hair stylers. Furthermore, we include sports events such as
salsa and urban dance rehearsals and rock climbing.

Primary contributors: Cristina González and Paola Ruiz
Puentes.

Carnegie Mellon University, Pittsburgh, PA, USA and
Kigali, Rwanda: Carnegie Mellon University (CMU) Pittsburgh
gathered a large portion of its data from skilled workers such as
carpenters, construction workers, landscapers, mechanics, arborists,
painters, and artists. This portion of the dataset does not include any
graduate students with the explicit goal of capturing a diverse range
of real-world occupational activities. Over 500 hours of video were
captured in the Pittsburgh area. The data was mostly recorded using
a GoPro camera and a small portion was collected using WeeView,
a wearable stereo camera.

Carnegie Mellon University Africa gathered data from hobbyist
craftspeople and daily workers working in Kigali, Rwanda. An
effort was made to collect data most representative of how tasks
are carried out in Rwanda (such as doing laundry manually as
opposed to with a washing machine). Over 150 hours of video were
captured, and a portion of those hours are available in the current
release. All of the data was collected using a GoPro camera.

Primary contributors: Kris Kitani - project coordinator for both
CMU Pittsburgh and CMU Africa video collection. Sean Crane
- lead coordinator of CMU Pittsburgh data collection (over 500
hours), main lead of CMU IRB review. Abrham Gebreselasie - lead
coordinator of CMU Africa data collection. Qichen Fu and Xindi
Wu - development of video de-identification pipeline, manual video
de-identification annotation of CMU Pittsburgh data. Vivek Roy -
main architecture of the license signing web server, coordinating
with America Web Developers.

University of Catania, Italy: More than 359 hours of video
have been recorded from 57 different subjects recruited through
word of mouth, starting from family members, friends and ac-
quaintances of students and faculty members of the research group.
Videos are related to 25 scenarios. We chose the participants to
cover a wide variety of professional backgrounds (24 backgrounds

including carpenters, bakers, employees, housewives, artists, and
students) and ages (subjects were aged from 20 to 77, with an
average age of 36.42). 21 of the participants were female, while the
remaining 36 were male. Female participants collected about 137
hours of video, whereas males collected 222 hours of video. The
average number of hours of videos acquired by each participant is
6h:18m:23s, with a minimum number of hours of 06m:34s, and a
maximum number of hours of 15h:40m:42s.

To prepare participants to record videos, we demonstrated to
them the operations of the camera and how to wear it. We pro-
vided examples of valid recording and invalid recordings before
they started the acquisition session. The recording procedure was
described in a document left to the participants to help them re-
member the device usage and how to perform a good acquisition.
Acquisition of videos has been performed using different models
of GoPro cameras (GoPro 4, GoPro7, GoPro8, and GoPro Hero
Max), which were handed over to the participants who typically
acquired their videos autonomously over a period of a few days or
weeks. 3D scans for 7 locations using the Matterport 3D scanner
have been also collected (Figure 11).

Primary contributors: Giovanni Maria Farinella and Antonino
Furnari - scenarios, procedures, data collection oversight, data
formatting, encoding, metadata and ingestion. Irene D’Ambra -
data collection, consent forms and information sheets, manual data
review, de-identification oversight.

King Abdullah University of Science and Technology
(KAUST), Saudi Arabia: A total of 453 hours of videos have
been collected from 66 unique participants in 80 different scenarios
with GoPro Hero 7. All the participants were KAUST commu-
nity members, who are from various countries and have various
occupations. All recordings took place in the KAUST university
compound, which is 3600 hectares in area with diversified facili-
ties (e.g., sports courts, supermarkets, a 9-hole golf course, and 2
beaches) and scenes (e.g., buildings, gardens, the red sea, and the
desert). Therefore, the team was able to collect videos of various
scenarios such as snorkeling, golfing, cycling, and driving.

The participants were recruited from multiple sources, such
as friends and families, individuals referred to us by earlier par-
ticipants, as well as people who were interested in our Facebook
advertisements or posters in campus restaurants and supermarkets.
Each candidate participant was required to register through an on-
line form, which contained an introduction to and requirements of
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the recording task, and collected his/her basic demographic infor-
mation. The participants’ ages range from 22 to 53. They come
from 20 different countries, and about half are females. Many
participants were graduate students and researchers, while others
had various kinds of occupations such as chefs, facility managers,
and teachers.

In order to prepare the participants for the recording process,
the team described in documents and demonstrated to them the
operations of the camera. The team also provided examples of
what constitute valid and invalid recordings before they started.
Each participant was provided a GoPro mountable camera with
2 batteries and a 512/256 GB SD card. Each participant needed
to choose at least 2 different activities from our scenario list and
record 1-10 hours of video within 2 days. The university team went
through the recordings after the participants returned the camera
to check their quality as well as to make sure the videos meet the
university’s IRB requirements.

Primary contributors: Chen Zhao, Merey Ramazanova, Meng-
meng Xu, and Bernard Ghanem.
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B. De-identification Process
The dataset has two types of video. The first includes videos

recorded indoors where informed consent for capturing identities
is explicitly collected from all participants in the scene, including
faces and voice. Only video of this type is used in our Audio-
Visual Diarization and Social Interaction benchmark studies. All
400 hours of data collected by Meta Reality Labs falls in that cat-
egory. The second category, which forms the majority of our
videos, requires de-identification as consent for capturing identi-
ties is not given—including footage captured outdoors in public
spaces.4 Only video collected by the universities falls into this
second category. See Appendix A for details about the per-site
collection approaches.

B.1 De-identification overview

All videos in the second category were manually screened to ad-
dress any de-identification needs, and are further divided into two
groups. Group1: videos that do not contain any personally identifi-
able information (PII).5 This is when the video is recorded indoors
with one person wearing the camera performing tasks such as clean-
ing or knitting for example, and no PII is present in the video.
These videos did not require de-identification. Group2: videos
where PII is captured. These include indoor settings with multiple
participants present, PII captured accidentally such as an address
on an envelope or a reflection of the wearer’s face on a mirror or a
surface, as well as videos recorded outdoors in a public space where
bystanders or cars appear in the footage. Videos in Group2 were
marked for de-identification, deploying advanced video redaction
software, open source tools, and hours of human reviews to redact
visible PIIs. University partners undertook this de-identification
effort for their own data. We summarize the approach below.

Videos marked for redaction were processed through de-
identification software that removes specific identifiers at scale.
We used two commercial softwares: brighter.ai6 and Primloc’s
Secure Redact7 that enabled detecting faces and number plates
automatically. We carefully reviewed all outputs from automated
blurring, identifying both instances of false positives (blurring
that mistakenly occurred on non-privacy related items) or false
negatives (inaccurate or insufficient automated blurring of faces
and number plates). Additionally, other PII data such as written
names/addresses, phone screens/passwords or tattoos had to be
manually identified and blurred per-frame. For this part of our
de-identification process, we used both commercial tools within the
above-mentioned commercial software and open source software,
including Computer Vision Annotation Tool (CVAT)8, Anonymal9

and SiamMask10.

4The exception is data from University of Minnesota, whose IRB per-
mitted recording of incidental participants in public spaces having no ma-
nipulation or direct interaction with study personnel.

5We use the abbreviation PII to capture data protected under various
data protection regimes including the General Data Protection Regulation
(GDPR) where the term “personal data” is used.

6http://brighter.ai
7http://secureredact.co.uk
8https://github.com/openvinotoolkit/cvat
9https://github.com/ezelikman/anonymal

10https://github.com/foolwood/SiamMask

Figure 12. CMU’s de-identification pipeline

Time costs. The relative time costs with respect to the original
video length varied significantly for the different scenarios. Videos
captured outdoors could take 10x the length of the video to carefully
redact.

B.2 Sample pipeline

While partners followed varying pipelines, we offer a sample
pipeline to showcase the process followed by Carnegie Mellon
University that uses brighter.ai as the commercial software. This
sample pipeline showcases the combination of automated processes
and human labor with relative speeds of these steps.

This semi-automatic de-identification process was performed in
four sequential stages (Figure 12): (1) automatic face and license
plate detection, (2) false positive removal, (3) negative detection
handling, and (4) image blurring.

Sensitive object detection Given the collected videos (raw
data), a reviewer scans through videos and marks those contain-
ing sensitive objects such as human faces, license plates, credit
cards, etc. Then de-identification software (brighter.ai) was used to
automatically detect sensitive information.

False positive removal To improve the quality of the detection,
false positives were removed. Reviewers manually scanned through
the bounding boxes detected by the de-identification software, and
rejected those bounding boxes which did not contain sensitive
information.

False negative correction Additionally, reviewers studied ev-
ery video to search for false negatives and manually annotated them
using a bounding box. To make the process more efficient, an on-
line object tracking algorithm [222] was used to generate bounding
box proposals across frames. Reviewers verified that all tracked
bounding boxes were correct.

Image blurring Once all of the detections were modified and
corrected, a robust blurring process was used to de-identify image
regions defined by the bounding boxes.

Time costs The relative time costs with respect to the original
video length for each step are shown in Figure 12. Though this
number depends greatly on the scenario captured in the video,
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roughly speaking to de-identify 500 hours of video data, it took 780
hours of manual labor. Review 1 of 500 hours of video required 250
hours of work, removal of false positive over 115 hours of video
took 115 hours of work, Review 2 of 115 videos took 115 hours of
work, correcting false negatives in 35 hours of videos required 50
hours of work, and Review 3 of 500 hours of video took 250 hours
of work (250+115+115+50+250 = 780 hrs).

17



C. Demographics

We further provide self-declared information on ethnic groups
and/or country of birth by the participants. We report these sep-
arately per state/country due to the differences in granularity of
ethnic groupings. All participants are residents in the country spec-
ified per paragraph. This data is not available for participants from
Minnesota, US.

United Kingdom Residents Reporting demographics was op-
tional and thus 63% of participants (52/82) that reside in the United
Kingdom self-reported their ethnic group membership as follows:

White — English, Welsh, Scottish, Northern Irish or British 35
White — Any other White background 12
Mixed — White and Asian 1
Mixed — Any other Mixed or Multiple ethnic background 2
Arab 1
Prefer not to say 1

Italy Residents 100% of participants that reside in Italy self-
reported their country of birth as follows:

Italy 53
Germany 1
Russia 1
Portugal 1
Poland 1

India Residents 100% of participants that reside in India self-
reported their ethnic group membership as follows:

Eastern India 10
Northern India 15
Southern India 108
Western India 5

Pennsylvania, USA, Residents 100% of participants that re-
side in Pennsylvania, USA, self-reported their ethnic group mem-
bership as follows:

White 42
Asian 4
Mixed — White and Black African 2
Black, African, Caribbean 1

Washington, US, Residents 100% of participants that reside
in Washington, USA, self-reported their ethnic group membership
as follows:

Caucasian 101
Black or African American 58
American Indian (Native American) 24
Hispanic 19
Indian (South Asian) 4

Indiana, US, Residents 95% of participants that reside in Indi-
ana, US, self-reported their country of birth as follows:

US 39
China 10
India 10
Bangladesh 2
Vietnam 2

Georgia, USA, Residents 100% of participants that reside in
Georgia, USA, self-reported their ethnic group membership as
follows:

White / Caucasian 16
Black / African American 1
Asian / Indian & White / Caucasian 1
Other / Taiwanese 1

Japan Residents 100% of participants that reside in Japan self-
reported their ethnic group membership as follows:

Asian (Japanese) 81

Kingdom of Saudi Arabia Residents 100% of participants
that reside in KSA self-reported their country of birth as follows:

China 12
Russia 9
Colombia 8
Mexico 5
Kazakhstan 4
India 4
US 4
Saudi Arabia 3
Kyrgyzstan 2
New Zealand 2
Greece 2
Ukraine 2
Italy 2
Lebanon 1
Jordan 1
Egypt 1
Kashmir 1
Portugal 1
South African 1
Thailand 1

Singapore Residents 100% of participants that reside
in Singapore self-reported their nationalities as follows:

Chinese 26
Singaporean 12
Indian 1
Malayan 1

Colombia Residents 90% of participants that reside in Colom-
bia self-reported their ethnic group membership as follows:

Hispanic/Latin 62
White/Caucasian 4
Black, African or Caribbean 1
Mixed - White an African 1
Prefer not to say 1

Rwanda Residents 100% of participants that reside in Rwanda
self-reported their ethnic group membership as follows:

Black, African or Caribbean 14
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D. Narrations
The goal of the narrations is to obtain a dense temporally-

aligned textual description of what happens in the video, particu-
larly in terms of the activities and object interactions by the camera
wearer. The Ego4D narration data is itself a new resource for learn-
ing about language grounded in visual perception. In addition, as
described in the main paper, we leverage the narrations as a form of
“pre-annotation” to index the videos by semantic terms. Specifically,
the narrations are used to construct action and object taxonomies
to support various benchmarks, to identify videos that are relevant
to each benchmark, and to select regions within the videos that
require annotation.

This section overviews how we instructed annotators to narrate
the videos, and how we transformed narration text into taxonomies
of objects and actions.

D.1 Narration instructions and content

We divide the dataset into clips of (max) 5 minutes long when
acquiring narrations. Each 5-minute clip is then passed to two
different annotators, to collect two independent sets of narrations
for every video clip in the dataset for better coverage and to account
for narration errors.11 Narrators are instructed to watch the 5 minute
video clip first, and then asked to provide a short 1-3 sentence
“summary” narration for the entire clip that corresponds to the
overall activity and setting of the video clip (e.g., “the person does
laundry in the washing machine”). These summaries are marked
with the tag “#summary” in the released narrations.

Following this first screening, which is critical for the overall
understanding of the clip, the dense narrations are collected as
follows. Annotators re-watch the clip, pause and mark the timepoint
when something happens in the video, then enter a short natural
language description of the ongoing action or interaction, before
resuming watching the video.

Narrators are provided the following prompt: “Pretend as you
watch this video that you are also talking to a friend on the phone,
and you need to describe to your friend everything that is happening
in the video. Your friend cannot see the video.” This prompt is
intended to elicit detailed descriptions that provide a play-by-play
of the action. See Figure 13 for an illustration of the narration
tool interface. Each narration thus corresponds to a single, atomic
action or object interaction that the camera wearer performs (e.g.,
“#C opens the washing-machine” or “#C picks up the detergent”,
where the tag #C denotes the camera wearer). Importantly, our
narrations also capture interactions between the camera-wearer and
others in the scene, denoted by other letter tags, e.g. #X (e.g. “#C
checks mobile while #X drives the car”, “#C passes a card to #Y”).
See Figure 14 for narration examples.

D.2 Narration analysis

We present some statistics on the collected narrations. Altogether,
we collected 3.85M sentences across the 3,670 hours of video.
Figure 15 (left) shows the distribution of frequency of narrations
across all videos in the dataset. Depending on the activities depicted,

11We simply keep both independent narrations; they are not merged
because they do not serve as ground truth for any benchmark.

videos are annotated at varying frequencies. For example, a video
of a person watching television is sparsely annotated as very few
activities occur (0.17 sentences/minute), while a video of a person
harvesting crops, performing repetitive actions is densely annotated
(63.6 sentences/minute). On average, there are an 13.2 sentences
per minute of video.

Figure 15 (middle and right) show the distribution of length
of the collected narrations. The individual timepoint narrations
are short, highlight a single action or object interaction, and have
an average of 7.4 words. Though short, these narrations cover
a variety of activities ranging from object interactions, tool use,
camera wearer motions, activities of other people etc. In contrast,
the summary narrations are longer (on average, 16.8 words) and
describe activities at a higher level. Table 2 shows a few text exam-
ples of each type of narration in addition to the visual examples in
Figure 14.

Finally, we study the diversity of the video dataset by looking
at the frequency of occurrence of words in the narrations collected
for videos of each scenario type. Figure 16 shows word clouds
depicting objects that prominently feature in across various scenar-
ios. The word clouds highlight characteristic objects per scenario
(e.g., bowl, spoon, plate in “Cooking” videos; card, dice, pawn
in “Playing board games” videos) while also hinting at common
objects across all scenarios (e.g., hands, paper, phones). The diver-
sity in narrations collected highlights the diversity of video content
captured in the dataset.

D.3 Action and object taxonomy

In total the raw narrations describe the Ego4D video using 1,772
unique verbs and 4,336 unique nouns. The distribution of the most
frequently occurring verbs and nouns can be seen in Figure 17.

Following ideas from [44], we leverage the narrations data to
construct a taxonomy over the actions and objects that appear in
the video, as follows. We use a part-of-speech (POS) tagger and
dependency parser to identify verbs and nouns from each narrated
action. We use an ensemble of parser models from the Spacy [98]
toolkit to do this. Given a natural language narration, we first
identify verbs using their POS tag. Then using the dependency tree,
we identify all direct objects of the verb. To ensure verbs and nouns
are accurately parsed, we adopt several heuristics: Parsed verbs
are split into multiple senses (e.g., “turn” is split into “turn-on”,
“turn-off” and “turn-over”); compound nouns are decomposed into
a root noun coupled with a modifier to ensure the noun taxonomy
is unambiguous (e.g., modifier “egg” and root noun “shell” in
“egg shell”); collective nouns are mapped to their main entity (e.g,.
“piece of cheese” → “cheese”). Finally, we manually cluster the
verbs and nouns to avoid redundancy in the taxonomy (e.g., “cut”,
“chop”, “slice” are all mapped to the verb cluster “cut”).

The resulting taxonomy consists of a set of 115 verbs (V) and
a set of 478 nouns (N ). Figure 39 shows the distribution of verbs
and nouns in a set of video data annotated with the taxonomy. See
Section J.2 for details on how the taxonomy is used in the context
of the benchmark tasks.
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Figure 13. Narration tool interface. Narrators mark a timepoint where something happens in the video (bottom bar), and enter a text
description of the activity (left sidebar).

Object interaction Context objects Multi-person actions Manipulation actions
#c c flips the paper #c c taps a hand on the floor #o a man x moves the legs. #c c cuts a leaf from the plant with his left hand.
#c c lifts the t-shirt #c c holds the wheel with his left hand. #o a man y sits on a chair #c c pulls his hand off the chess piece
#c c drops the plate #c c puts the brush in the colours. #o a woman x steps forward. #c c holds the knitting needle with the other hand
#c c holds the piece of cloth #c c places plastic models kit on the table #o a person x hits the cricket ball #c c opens the screwdriver container with his hands
#c c fixes on the model craft #c c arranges the doughs on the tray #o a man y throws the ball towards man x #c c touches the piece of wood with the hand
Camera wearer motion Summary narrations
#c c raises hands c was in a room,fixed a wood model kit. #summary
#c c stands c tightened the motor on the head of the hoe of the lawn mower. c cut grasses on the field with the lawn mower. #summary
#c c stands up from the stairs c was in a kitchen, he cut sausages in to pieces with a knife, mixed the sausages and cooked them with a pan. #summary
#c c walks around a kitchen c was in the house and she studied #summary
#c c sits up c studied in a room. c went through a mobile phone and a mobile tablet while reading in the room. #summary

Table 2. Text examples of narrations. The collected narrations describe diverse aspects of human activity. Summary narrations capture
high level descriptions of activities in a 5 minute clip. See Figure 14 for visual examples.

D.4 Narrations for annotation prioritization

All videos in Ego4D are narrated, and subsets of them are manually
labeled for each benchmark. Rather than randomly label instances
for a given benchmark, we aim to target those that are most relevant
to the task. For example, videos likely to contain multi-person con-
versation are most interesting for the AV Diarization benchmark,
whereas videos with ample hand-object interaction are most inter-
esting for Hands and Objects. To that end, we use the narrations
and summaries as a tool to automatically prioritize certain videos
to label per benchmark. The benchmark appendices below provide
details.

D.5 Contributions statement

Tushar Nagarajan developed the taxonomy, helped develop narra-
tion instructions, and performed the narration analysis presented

in the paper. Kristen Grauman developed narration instructions,
helped coordinate pilots and annotation work, and contributed to
taxonomy formation. Michael Wray co-developed the taxonomy.
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Figure 14. Example narrations at keyframes of video. #C refers to the camera-wearer. The last row shows narrations that include other
people that participate in activities with the camera-wearer (denoted by other letter tags, e.g., #O, #X).

21



0 20 40 60 80
# narrations / minute

0

200

400

600

800

1000

1200

1400

co
un

t

Narrations per minute

0 10 20 30 40 50
# words

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

co
un

t

1e6 Narration length distribution

0 10 20 30 40 50 60 70
# words

0

250

500

750

1000

1250

1500

1750

2000

co
un

t

Summary narration length distribution

Figure 15. Collected narration statistics. Left: Distribution of frequency of narrations collected. Middle and right: The distribution of
length of the collected narrations and summaries. Summaries are naturally longer, and describe activities at a higher level compared to
individual action narrations. See text for discussion.

Figure 16. Distribution of objects in narrations of videos from eight common scenarios. The variety of objects covered across scenarios
showcases the diversity of activities in the video collected.
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Figure 17. Narration verb/noun distribution. Distribution of automatically extracted verbs (top) and nouns (bottom) from narrations. Top
150 most frequently occurring of each is shown for clarity.
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E. Benchmark Data Splits and Accessibility
For each benchmark task, certain portions of the Ego4D video

repository are labeled. Table 3 shows the breakdown of the amount
of data annotated for each. Note that there are 764 total hours
of video relevant to the AVD and Social tasks (i.e., have audio,
conversation, and unblurred faces), including the annotated set of
47.7 hours above. For other benchmarks, the relevance has a softer
dependency on the specific video content (e.g., a memory query
can apply to any of the 3,670 hours). The following appendices will
explain how we sampled data to be annotated for each benchmark.

For the public Ego4D benchmark challenge, we ensure that the
splits are consistent within a family of related tasks. For instance,
all the Forecasting and Hands+Objects tasks share the same splits
and ensure training videos in one do not occur as validation videos
in another. Similarly, the Episodic Memory tasks share the same
splits. However, it is harder to ensure this across very different
tasks, since the videos selected for annotations are different. For
example, the Social benchmark considers multi-person interactions
which may not have many hand-object interactions; hence the set
of videos labeled for Social and Hands+Objects have little overlap
and the train/val/test splits are naturally different.

Since we plan to use the test set for the public challenge, we are
withholding all the test annotations and making them accessible
only through a submission server. We are also withholding the
narrations that overlap with any of the test sets.

At 3,670 hours of video, we are mindful that Ego4D’s scale can
be an obstacle for accessibility for some researchers, depending
on their storage and compute resources. To mitigate this, we have
taken several measures. First, we provide precomputed action
features (SlowFast 8x8 with ResNet 101 backbone pretrained for
Kinetics 400) with the dataset, an optional starting point for any
downstream work. Second, only portions of the data constitute
the formal challenge train/test sets for each benchmark—not all
3,670 hours (see Appendix E). As Ego4D annotations increase, we
will create standardized mini-sets. Finally, we provide the option
to download only the data targeting an individual benchmark or
modality of interest.

Num hours Num clips Avg clip length
EM VQ-2D 432.9 5,831 6.1 min
EM VQ-3D 13 159 4.9 min

EM Moments 328.7 2,522 7.9 min
EM NLQ 227.1 1,659 8.2 min

Hands+Obj. 196.2 88,585 8.0 sec
Forecasting 110.5 1,498 4.4 min

AVD 47.7 572 5 min
Social 47.7 572 5 min

Table 3. Amount of annotated data for each benchmark. EM refers
to Episodic Memory and AVD refers to Audio-Visual Diarization.
All 3,670 hours of video have narrations and features.
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F. Episodic Memory Benchmark
This section details the Episodic Memory benchmark task defi-

nitions, annotations, baseline models, and results.

F.1 Formal task definitions

As presented in the main paper, there are three kinds of Episodic
Memory queries—visual, natural language, and moments—each of
which requires localizing the response in the video. Their formal
definitions are as follows.

Visual queries (VQ) This task aims to query an egocentric
video based on a static image crop of an object. Specifically, it
asks the question ‘Where was object X last seen in the video?’,
where X is a single ‘canonical’ image crop in which the object is
clearly visible and human-identifiable. A potential use case for
visual queries is where a user teaches the system a new object by
showing a photo (“these are my keys”) and then later queries for
it among past video. By enabling visual queries, as opposed to
categorical queries, this is a form of open-world object localization.

We formulate the problem as follows. Given an egocentric video
V , a query object o specified via a static visual crop v, and a query
frame q, the goal is to identify when the object o was last seen in
the video before the query frame q. The response is specified as a
‘response track’ r which is a temporally contiguous set of bounding
boxes surrounding the object o in each frame:

r = {rs, rs+1, · · · , re−1, re}, (1)

where s is the frame where the object o (at least partially) enters
the camera-wearer’s field of view, e is the frame where the object
exits the camera-wearer’s field of view, and ri is a bounding box
(x, y, w, h) in frame i. If the object appears multiple times in the
video, the response only refers to the ‘most recent occurrence’ of
the object in the past, i.e., the response track which minimizes
q − re with q > re.

When a 3D scan of the environment associated with the video
is available, the response additionally includes a 3D displacement
vector ∆d = (∆x,∆y,∆z) between the 3D location where the
query was made (i.e., at query frame q), and the 3D location in the
environment where the object was last seen (i.e., at the end of the
response track re).

Natural language queries (NLQ) The motivation behind the
NLQ task is to enable searching through an egocentric video using
a natural language query. The system responds to a query by
providing a temporal window localized in the video, from which
the answer to the query can be deduced. These queries can be
related to objects, places, people, and activities that appeared in
the episodic memory of the user. Note that we only consider
episodic queries, i.e., queries that can be answered/deduced from
the egocentric videos, and not factual queries, i.e., queries that
require an external knowledge base to answer.

NLQ is a challenging multimodal task requiring visual and lin-
guistic understanding and reasoning. Consider the query “What did
I pick up before leaving the party?” In order to fulfill this request,
the system needs to: (a) break down and understand the language
query as a search for an object (what) with which the user interacted
(pick up) before an event (leaving the party), (b) go through the ego-
centric video and identify the desired event of “leaving the party”,

(c) visually search for the object with which the user interacted
prior to this event. This example demonstrates the complexity of
NLQ from both visual (recognizing events, objects, places, etc.)
and linguistic (breaking down reasoning, understanding relations,
etc.) perspective. In addition, the diverse set of queries within NLQ,
while facilitating a flexible search and retrieval through an intuitive
interface of language, also increases the complexity of the task.

Concretely, NLQ is formulated as follows: Given an egocentric
video V and a natural language query Q, the goal is again to identify
a ‘response track’ r, such that the answer to Q can be deduced from
r. The response track should be a set of temporally contiguous
frames within V . Given the episodic nature of our task, r should
be sufficient to answer Q, without the additional need for V or any
external knowledge bases.

Moments queries (MQ) This task aims to query an egocentric
video based on a category of actions. Specifically, it poses the fol-
lowing request ‘Retrieve all the moments that I do X in the video.’,
where ‘X’ comes from a pre-defined taxonomy of action categories,
such as ‘interact with someone’ or ‘use phone’. Compared to the
natural language queries, the moment queries focus on daily-life
actions or activities. One moment query can correspond to multiple
response instances (temporal windows) in the video. This task
provides the user a fast and convenient way to retrieve multiple
action moments at a time, where the user does not need to come
up with a sentence to describe what he/she wants, but instead can
directly choose among the pre-defined categories.

The moment queries task is related to the task of temporal action
detection [141, 229, 237], which aims to identify and localize all
instances of all action categories that take place in a video. Both
tasks have a list of action categories pre-defined, and both aim to
predict multiple action instances with their temporal boundaries.
The difference is that 1) our moment queries task is a retrieval task
where action categories are provided as queries, meaning it does
not need to produce instances of categories that are not among the
queries; and 2) our moments taxonomy is specific to first-person
activity. We aim for moments that are activities at a medium level
of granularity—coarser than the actions in Forecasting, and finer
than the “scenario” labels shown in Figure 3 of the main paper.

The MQ task is also related to temporal language grounding in
videos [236], which aims to retrieve a segment from a video, as
queried by a natural language sentence. Both tasks have a query and
aim to predict corresponding temporal segments. The difference
is that MQ uses pre-defined query categories rather than natural
language sentences, and one query can correspond to multiple
instances rather than a unique one.

We formulate the problem as follows. Given an egocentric
video V , and a query action category c, the goal is to retrieve all
the instances of this action category in the video, assuming that the
query is made at the end of the video. The response is a set of ac-
tion instances of the category c Φc = {ϕn = (tn,s, tn,e, sn)}Nn=1,
where n is the number of instances for this category, tn,s and tn,e

are start time and end time of the nth instance respectively, and sn
is its prediction confidence.

F.2 Selecting clips for annotation

For all benchmarks we sample video clips to annotate based on
criteria for geographic diversity and scenario diversity. For Episodic
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Navigation verbs for entropy-based video selection

appear ascend bend bring carry catch
climb close come descend dig dispose
drag dribble drop enter fall fetch
find fly gather get give grab
hang jog jump kick lean leave
lift lower move navigate open propel

raise return ride rise run shut
steer step turn vaccum walk

Table 4. We prioritize videos to annotate for visual queries based
on the entropy of these navigation-related verbs in the narrations.

Memory we impose additional sampling criteria meant to highlight
data most interesting for the task, as follows.

Visual queries Video clips to annotate for visual queries (VQ)
are selected based on the frequency of object occurrences and
amount of navigation in the video. To have interesting visual
queries in a video, there must be several ‘interesting’ objects that
can be queried about. An object is ‘interesting’ in the context of
visual queries if there is a sufficiently high separation in space and
time between any two occurrences of the object. This typically
happens when the camera-wearer visits the location near the object
briefly, and then navigates elsewhere before revisiting the object
again. For example, consider a person who finishes cleaning a
living room, visits the kitchen for some period of time before
revisiting the living room again. Most objects in the living room
are interesting to query about when the person is in the kitchen.

To select videos based on these considerations, we use a two-
step process. First, we filter out videos based on the associated
‘scenario‘ labels (see Figure 3) that provide high-level information
about the content and activities in videos (e.g., cooking, cleaning,
golfing, etc.). We manually preview randomly sampled videos
from each scenario to identify interesting scenarios such as cooking,
indoor navigation, farmer, cleaning, and grocery shopping. We then
sort videos within each scenario based on a scoring function using
the narrations for the video. Specifically, we extract the list of verbs
in the narrations (along with their frequencies). We then measure
the entropy of the distribution of manually curated navigation verbs
(See Tab. 4). The video is more likely to allow challenging visual
queries if its navigation entropy is higher. For videos with near-
zero entropy, we observe that the camera-wearer is usually staying
static in a single location without any movement. Finally, a limited
number of 3D scans were available for the 3D localization task.
Videos associated with these scans were prioritized, regardless of
their navigation entropy, in support of the 3D response version of
the VQ task.

Natural language queries For NLQ we apply similar sampling
criteria as above for VQ, but augment it to avoid repetitive actions
(e.g., sewing while sitting on the couch). First, we manually select
amenable scenarios (see Figure 3). Among those, we prioritize
clips with high entropy computed over navigational terms as above.
Finally, we prioritize non-repetitive actions by computing the ratio
of the number of unique verbs in a clip’s narration vs. the total
number of verbs in that same narration—higher is better.

Moments queries To select clips for moments queries, we com-
pute the overlap of verbs/nouns with the moments taxonomy. We
calculate a similar entropy-based score and sort videos according to
this score. In addition, we restrict videos to a fixed set of categories
present in our taxonomy to avoid labeling videos that do not contain
relevant activities.

F.3 Annotation

Next we describe the annotation procedures and outputs for
Episodic Memory.

Visual queries For annotating visual queries, we first sample
contiguous clips of varying lengths (5 mins, 8 mins, and 16 mins)
from the set of interesting videos. The annotators are instructed
to create and annotate 3 visual queries for each clip. A visual
query consists of the query frame q, the visual crop v of the query
object o, the response track r = {rs, rs+1, · · · , re−1, re}, and a
textual name for the object (eg. cup, hammer, broomstick, etc). The
annotators performed the following steps to annotate a given clip:

1. Identify three interesting query objects in the clip. An object
is interesting if it occurs in at least two different parts of the
video.

2. For a given object, enter a textual name. While our current
task queries with the image crop, not the name, this annotation
will allow future variants that do query for the object by name.

3. Select one of the object occurrences in the video and mark a
visual crop v = (xv, yv, wv, hv). The visual crop must be a
good representative view of the object, and it must have good
lighting, large-enough size, and must not be blurred.

4. Mark a different occurrence of the object as the response track
r = {rs, · · · , re}. The response track starts from the frame
when the object is first visible and ends when the object leaves
the field-of-view. The response track must also be contiguous
in time and the bounding boxes must accurately mark the
position and size of the object.

5. The query frame q is sampled some time after the response
track r. The object o must not appear anywhere between the
response track r and the query frame q, so that the ground
truth is well-defined and unique for “when did I last see...?”.

For each annotation, we apply automated and manual quality
checks to ensure correctness. In case the quality falls below a
certain threshold, the clip is reannotated.

For visual queries associated with 3D scans, we also collect
3D annotations in the form of 3D bounding boxes capturing where
the object was last seen. We then use those bounding boxes to
establish the ground truth displacement vector from the query frame
to the object, which is the target of the task. Each annotation aq is
collected in the scan coordinate system s:

Ts = [Rs|ts], (2)

where q ∈ {1, . . . ,Q}, Q the total number of queries, and where
Ts ∈ R4 is the transformation matrix of the bounding box. Rs and
ts are the corresponding rotation and translation for annotation aq .

The annotation procedure is defined as follows: A query consists
of a video clip, a visual crop, and a response track. For each query,
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the goal is to retrieve in the scan the location of the object defined
in the video. Once the location is found, we draw a 3D bounding
box at this position with the appropriate scale and orientation. It
is important to note that 3D scans and videos have been recorded
at different times. Therefore, it is likely that an object at a certain
location in the video will not be present at that same location in
the 3D scan. In such cases, we ask the annotator to hallucinate a
3D bounding box in the 3D scan at the position of the target object
defined in the video.

In order to validate an annotation we collect two 3D bounding
boxes per query from two different annotators. Leveraging the two
boxes we compute the following validation metrics:

dnorm =
∥c1 − c2∥2
mdiag

(3)

Vnorm =
Vglobal

Vunion
, (4)

where c1 and c2 are the centroids of the two boxes, mdiag is the
average diagonal length of the two boxes, Vglobal is the volume of
the 3D convex hull of the two boxes, and Vunion is the volume of
the union of the two boxes. These metrics measure the agreement
level betwen the two annotators. When the two annotations are
perfectly aligned, the metrics are equal to dnorm = 0 and Vnorm =
1.0. The assumption is that if the two annotators agree on the
position, scale, and orientation of the bounding box then it is likely
to be correct. If the two annotations are far from each other we will
discard the query. There are a couple of reasons that can explain
such case: (1) one annotator mislabeled the query, (2) the query
is hard to annotate. Some queries require a significant amount
of hallucination to retrieve the object location in the scan which
clearly leads to subjective annotations. We empirically defined two
thresholds of 1.5 over dnorm and 15 over Vnorm to filter out poor
annotations. Any query that has either one of the two metrics above
the threshold of acceptance is rejected.

Natural language queries To collect NLQ annotations, we
sample contiguous clips of length 8 minutes and 20 minutes. The
annotators are instructed to watch these clips and generate natural
language queries, focused on retrieving information about objects,
places, and people in the egocentric video clips. To reduce the
cognitive overload on the annotators, and focus their efforts on
memory-relevant queries, we also provide a list of 13 query tem-
plates (see Table 5), corresponding to queries a user might ask to
augment their memory. Note that these templates are provided only
to guide their choice of query, and does not limit the linguistic
variability since the annotators are instructed to paraphrase the
template without copying them as is.

To elaborate, the annotators performed the following steps:

1. Watch the entire video clip V in order to understand the high-
level context (optionally in 2× fast-forward),

2. Pick a query template from the available list and para-
phrase/reword the query to obtain Q, e.g., template ‘Where
was object X before/after event Y?’ can be paraphrased as

‘Where was the blue bucket prior to my dog exiting the living
room?’

3. Find the temporal window where the response to the natural
language query can be deduced visually, and annotate it as r.

Category Template

Objects

Where is object X before / after event Y?
Where is object X?
What did I put in X?
How many X’s? (quantity question)
What X did I Y?
In what location did I see object X ?
What X is Y?
State of an object
Where is my object X?

Place Where did I put X?

People
Who did I interact with when I did activity X?
Who did I talk to in location X?
When did I interact with person with role X?

Table 5. The NLQ templates capture a diverse set of queries that
humans can ask to augment their memory and recollect objects,
places, and people in their everyday experience.

During our data collection, we also requested the annotators
to mark the slot values and corresponding verbs, for the selected
language query templates. While we do not use this information
for our task, it may be useful for other future research.

The desiderata for the collected queries are as follows. They
should: (a) reflect the underlying motivation of augmenting human
memory, (b) be rich and diverse in terms of language and the
objects, places, people, and events, and, (c) be challenging enough
for an intelligent system but not too complicated or convoluted
to reduce the naturalness of the queries. For instance, though a
query like ‘What was playing on the television when I was folding
my seventh T-shirt after my dog exited the room?’ is challenging
from a learning perspective, it is not natural from an application
standpoint. In order to ensure the above qualities for NLQ, we
enforce the following constraints:

• All paraphrased language queries must be in past tense, and
must be posed as questions asked at the end of the entire video
clip. This resembles the real-life scenario of querying about
episodic memory (past) of the user, and resolves ambiguity
when there are multiple occurrences of an object to the the
last relevant one.

• To account for momentary shifts of view for the egocentric
video, we allow small interruptions (< 3 seconds) between
the truly relevant frames for a given query. In other words,
frames where the object/person/place of interest goes out of
view for less than 3 seconds as a result of momentary gaze
shift are still considered to be contiguous.

• For a given query, if there are multiple non-contiguous tem-
poral windows (separated by more than 3 seconds) as inde-
pendently valid answers, we instruct the annotators to either
discard the query and create a different one, or add more
details to the wording to make it more specific. Similarly,
queries that require multiple temporal windows (separated
by more than 3 seconds) to deduce the answer are also dis-
allowed. For example, ‘How many shirts did I pack in my
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suitcase?” is invalid if packing happens across multiple tem-
poral windows, separated by more than 3 seconds (e.g., the
user pauses to make coffee, and then returns to packing).

• We encourage diversity by instructing that the query responses
not be concentrated at one part of the video clip, or around
few objects/places/people. In addition, we also disallow the
query response window to be more than 50% of the total clip
length.

• Finally, queries that require reasoning and knowledge on top
of visual evidence are invalid. For instance, ‘What country‘s
flag was hanging on the wall?” is invalid while ‘Where was
the flag that was hanging on the wall?” is valid. Similarly,
queries that guess the motivation or intentions of the user or
people in the video clip are also not allowed. As an example,

‘Why did the person at the door leave a package on the porch?’
is disallowed while ‘What did the person leave on the porch?’
is accepted.

After the annotation process, we apply both automatic and
manual quality checks, including the diversity of language queries
and temporal window locations, to score the annotations. If the
overall quality score is below a threshold, the clip is re-annotated.

Moments queries To annotate moments queries, we sample
contiguous clips of 8 minutes from the set of interesting moments
videos. The annotators are instructed to mark instances of activi-
ties with a temporal window and the activity’s name from a fixed
taxonomy of activities. We have each instance labeled by three inde-
pendent annotators. By assuming each annotator is reliable, we take
the union of moments across annotators to ensure completeness of
annotations.

The taxonomy was created semi-automatically from the narra-
tions. Specifically, we use the summary narrations collected for
five-minute clip segments, as they capture higher-level events and
activities that are suitable for the moments retrieval task. This is in
contrast to the verb-noun taxonomy that is sourced from individual
narrations for each atomic action, which are used in the Forecasting
and Hands and Objects benchmarks (see Appendices G and J).

The taxonomy was created as follows. First, each summary
narration was encoded into a feature vector using a pre-trained
BERT [51] language model, and then concatenated with the word
embeddings for the main verb and noun extracted from the sum-
mary. These summaries were then clustered into groups, and then
labels were manually assigned to groups based on the coherent
activities they described.

Note that this process was done independently for a set of sce-
narios that we selected based on how frequently they occur in the
dataset, the diversity of activities they represent, and how likely they
contain high-level, event-like activities. For example videos that
primary involve a single activity like “driving” are not interesting
categories in this context, whereas “household cleaning” contains
several different activities that are shared across other indoor tasks,
making it an appropriate scenario. In total, we select videos from
5 scenarios to create our moments taxonomy: Cooking, Cleaning,
Shopping, Handyman, Farmer/Gardener. Each annotation is in the
format of (start time, end time, label).

Split Train Val Test

# video hours 262 (19) 87 (5) 84 (9)
# clips 3.6k (164) 1.2k (44) 1.1k (69)
# queries 13.6k (604) 4.5k (164) 4.4k (264)

Table 6. Visual queries dataset statistics. The numbers in the
parantheses correspond to the subset of data used for 3D localiza-
tion, where we focus on videos for which we have Matterport3D
scans.

F.4 Data Analysis

We now overview the statistics of the annotations per query type.

Visual queries The VQ annotations consist of samples from a
diverse set of scenarios and universities (see Figure 20 and 21). In
total, 433 hours of videos are annotated with 22, 602 visual queries.
These videos are sampled from 10 universities and consist of 54
scenarios. The statistics over the train/val/test splits are provided in
Table 6. We ensured that the splits contain a disjoint set of videos.
To look for possible biases in the data, we plot the distribution over
three measures.
1) Query to response separation is the temporal distance (in
frames) between the query frame and the end of the response track.
This measures how far back in time an algorithm needs to search in
order to find the query object.
2) Response track size measures the temporal length of the re-
sponse track.
3) Response bbox position is the spatial start and end (x, y) coor-
dinates for each bounding box in the response track. We normalize
the coordinates by the image width and height to account for vary-
ing image sizes in the data. Each pixel within the bounding box
contributes to an image heatmap that shows the frequency of each
pixel belonging to a response track bounding box.

The analyses are shown in Figure 22. The query to response
separation distances are fairly spread between 1 to 200 frames
with a mode of ∼ 30 frames (see Figure 22, left). The response
track sizes are well distributed between 1 to 40 frames with a
mode of ∼ 8 frames (see Figure 22, center). The bounding boxes
are near-uniformly distributed throughout the image, with very
few bounding boxes annotated at the top 10% of the image (see
Figure 22, right). Our analyses indicate that there may be a potential
bias in the first two measures, while the bounding boxes positions
are largely unbiased.

For the 3D localization task, we annotate a subset of 1,043 visual
queries with 3D annotations. These comprise of 13 video hours
associated with 4 scans from the University of Catania (UNICT).

Natural language queries As outlined in Table 7, the NLQ
annotations are from 227 hours of video, with a total of 19.2K
queries spanning the selected 13 query templates. The associated
video clips come from 10 different universities with a total of 34
scenarios (with at least 1 hour of video annotated). Similar to other
tasks within the episodic memory, we ensure that the train/val/test
splits (60%, 20%, 20%) contain a disjoint set of video clips. We
further analyze the data through: (a) Distribution over template
queries, shown in Figure 24. The challenging ‘Where is object X
before/after event Y?’ is the most popular template with around
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Figure 18. Distribution of moments labels. The figure shows the number of instances per category across 5 scenarios and 300 hours of
data. All 110 categories are shown, sorted by frequency. The distribution is long tailed, with the smallest classes containing at least 50
instances. Note that these are only the Moments for Episodic Memory with temporal window annotations in the current release; Ego4D has
many other scenarios and activities not reflected in this distribution.

Figure 19. Distribution of query words in NLQ.

3K queries, with a reasonable distribution over other templates.
Overall, the queries in NLQ have 8.3 ± 2.1 words in them. (b)
Distribution of the response window length is shown in Figure 25.
Typically, the windows are 9.3± 21.5 seconds long.

Most response windows are quite short compared to the full
video clip, making the task a challenging “needle in the haystack”
search problem. (c) Distribution of query words is shown in Figure
19. The branching off evidences the richness and diversity of the
queries in NLQ.

Moments queries For MQ, similar to other tasks in episodic
memory, we maintain a ratio of 6:2:2 among the train/val/test splits,
which contains disjoint sets of video clips. To make sure there are
enough samples in each category, we only keep categories that have
at least 50 instances from the annotations and have instances in all

Split Train Val Test

# video hours 136 45 46
# clips 1.0k 0.3k 0.3k

# queries 11.3k 3.9k 4.0k

Table 7. NLQ dataset statistics across the train/val/test splits.

Split Train Val Test Total

Video hours 194.9 68.5 62.9 326.4
# Video clips 1, 486 521 481 2, 488
# Instances 13.6k 4.3k 4.3k 22.2k

Table 8. MQ dataset statistics across the train/val/test splits.

train/val/test splits.

Consequently, the MQ dataset has 110 categories, spans a total
326.4 hours of videos, 2,488 video clips and 22.2k action instances.
We summarize the statistics across the three splits in Table 8. We
further explore the data through the following aspects. (a) The
distribution of action duration is shown in Fig 26. We can see that
most moments have very short duration. The majority of moments
last less than 1 minute, and 22.4% actions have duration less than
3 seconds. Note that there is also a peak (2.6% instances) at the
largest duration bin, where the actions almost cover the whole video
clip. The average duration each instance is 45.2 seconds. (b) The
distribution of different categories is shown in Fig 18. We notice
that this is a long-tailed distribution, some categories (e.g., ‘use
phone’, ‘converse/interact with someone’) with over 1000 instances
and some categories with less than 100 instances. Each category
has 205 instances on average. (c) The distribution of instance
numbers in a video clip is shown in Fig 27. The majority of video
clips have 1-20 moment instances, whereas very few can have as
many as over 80 instances.
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Figure 20. Distribution over scenarios for visual queries. The dataset contains a long-tail of scenarios. The plot title indicates the number
of scenarios and the total video hours included in the dataset.

Figure 21. Distribution over universities for visual queries. The
dataset contains annotations corresponding to videos from 10 uni-
versities. The plot title indicates the number of universities and the
total video hours included in the dataset.

F.5 Evaluation measures

Next we detail the evaluation metrics for all three query types.

Visual queries We define the following localization metrics for
the 2D localization task with top-1 retrieval.
Temporal AP (tAP) measures how closely the temporal extent of
the prediction matches with the ground-truth response track. It is
calculated as the average-precision of the predicted response track’s
temporal extent, and is based on the ActivityNet mAP metric [61].
We evaluate the tAP at 4 different tIoU thresholds {0.25, 0.50, 0.75,
0.95}, as well as their average value.
Spatio-temporal AP (stAP) measures how closely the spatio-
temporal extent of the prediction matches the ground-truth response
track. It is calculated as the average-precision of the predicted
spatial-tube, and is based on the video-AP metric from [88]. We
evaluate the stAP at 4 different stIoU thresholds {0.25, 0.50, 0.75,
0.95}, as well as their average value.
Success (Succ) measures whether the prediction has any overlap
with the ground truth at all. It is calculated as the percentage of

samples where the predicted response track has atleast 0.05 spatio-
temporal IoU with the ground truth.
Recovery% (rec%) measures how much of the ground-truth re-
sponse track is accurately recovered by the prediction. It is calcu-
lated as the % of frames in the response track where the predicted
bounding box has at least 0.5 IoU with the ground truth. This is
motivated by the tracking robustness metric from the VOT chal-
lenge [121].
Search efficiency (sEff) measures the efficiency of the algorithm
searching for the query object. It is calculated as

sEff = 1− n

N
(5)

where n is the number of video frames previewed by an algorithm
to predict the response track, and N is the total number of frames
in the video before the query was made (i.e., the search window).
An algorithm that accesses every frame in the search window be-
fore localizing the query object gets 0.0 search efficiency. This
“timeliness” metric is designed to encourage research on methods
performing intelligent contextual-search.

We evaluate performance on the 3D VQ localization task using
the root mean square error (RMSE) and the angular error metrics:

RMSE = ∥ts − t̂s∥2 (6)

angular error = acos(
vTQ

∥vQ∥2
.

v̂Q
∥v̂Q∥2

) (7)

where ts and t̂s are the ground-truth and predicted object position
in the scan coordinate system. vQ and v̂Q are the ground-truth
and predicted 3D displacement vector in the query frame Q coor-
dinate system. We also define a success metric leveraging the two
annotations per query:

succ = ∥cm − t̂s∥2 < 6× (∥c1 − c2∥2 + δ) (8)

With c1 and c2 the centroids of the two bounding box annotations,
cm the mid-centroid between c1 and c2 and δ = exp−mdiag , with
mdiag the average diagonal length of the two boxes.
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Distribution of response track lengthsDistribution of query to response 
separation distances

Distribution of response bbox positions

Figure 22. Visual queries bias analysis. We analyze the full VQ dataset for potential biases. Left: The plot shows the distribution of query
to response separation distances in the VQ dataset. While the mode of the distribution is ∼ 30 frames, we can see that separation distances
are fairly spread between 1 to 200 frames. Center: The plot shows the distribution of response track sizes in the VQ dataset. While the
mode of the distribution is ∼ 8 frames, we can see that the response track sizes are well distributed between 1 to 40 frames. Right: The
heatmap shows the normalized frequency of each pixel belonging to a response track bounding box. The bounding boxes near-uniformly
distributed across most of the image.
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Figure 23. Distribution over scenarios for the NLQ annotations, indicating a long tail over scenarios. Note that the scenario labels are
approximate and a single video can contain multiple scenario labels. For this plot, we equally divide the time across all the labelled scenarios.

Natural language queries Evaluation for NLQ is similar to
existing video-language grounding problems. Following prior work
[236], we use recall@k, IoU=m, where we select k = {1, 5} and
m = {0.3, 0.5}. This metric computes the percentage of times at
least one of the top k predicted candidates have an intersection-
over-union (IoU) of at least m. Note that we lean towards lower
threshold values (m) as the average length of the window (∼10s)
is much smaller than that of the video clip (500s), about 2% of the
clip length.

Moments queries Considering that the moment queries task is
related to the tasks of temporal action detection [61, 141, 229, 237]
and video grounding [236], we adapt their respective metrics to
moment queries.
Average Precision (AP) is a commonly adopted metric in tempo-
ral action detection. It measures how closely the temporal extent
of the predictions matches the ground-truth action instances for
each action category [61, 141, 229, 237] in terms of both precision
and recall. The temporal intersection over union (tIoU) between a
prediction and a ground-truth action instance is used to measure
their distance. If the tIoU is higher than a threshold, the prediction

is considered as true positive; otherwise, false positive. In represen-
tative temporal action detection datasets, such as ActivityNet [61],
the mean AP (mAP) over all categories is computed given a tIoU
threshold. Multiple tIoU thresholds are adopted, and the average
mAP over all these tIoU thresholds is computed. For moment
queries, we evaluate mAP at 5 different tIoU thresholds {0.1, 0.2,
0.3, 0.4, 0.5}, as well as their average value.

Recall@kx, tIoU=m, is a metric adapted from the metric recall@k,
tIoU=m, used for NLQ. The metric recall@k, tIoU=m measures
the percentage of the query sentences that have at least one predic-
tion with a tIoU larger than the threshold m in the top-k results.
In our moment queries case, since we might have more than one
instance corresponding to a query moment category, we need to
measure the percentage of all the correctly predicted instances that
have at least one prediction with a tIoU larger than the threshold m
in the top-k results of this instance. Considering that predictions
are usually made based on a category not a specific instance, we
modify the metric to be the following recall@kx, tIoU=m, where
x stands for the number of instances for a query category in one
video. This metric measures the percentage of all the correctly pre-
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Figure 24. Distribution of queries over the corresponding templates
across objects, place, and people categories (Tab.5). See text for
more details.
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Figure 25. Distribution of response window length for NLQ. For
the sake of brevity, we use the last bin to represent all windows
longer than a minute. See text for more details.
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Figure 26. Distribution of moment duration.

dicted instances that have at least one prediction with a tIoU larger
than the threshold m in the top-kx results of the action category.
This metric has a similar idea to the multi-label metric proposed
in [240] when dealing with multiple instances for a query. We
use k = 1, 2, 3 and m = 0.3, 0.5, 0.7 in the metric. Compared to
average precision, this metric only evaluates the recall for the query
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Figure 27. Distribution of instance numbers in one video clip.

categories, and does not penalize for false positive predictions given
a category that has no instances in the video.

F.6 Baselines

We developed baseline models for each task. We designed these
models to address our tasks, using state-of-the-art components
where relevant. They represent a starting point upon which future
work can build.

Visual queries 2D localization baseline

We treat visual queries with 2D localization (VQ2D) as a detection
+ tracking problem (see Figure 28). At a high level, our approach
consists of three steps. First, we perform frame-level detection over
the input video where we detect the presence of the query object in
each frame using an object detection model (Figure 28 top). For
each frame, we get the bounding box that is most similar to the
visual crop and a score indicating its visual similarity. Second, we
consider the sequence of per-frame similarity scores over the entire
video and identify the most recent peak in these scores (Figure 28
bottom-left). Finally, we initialize a tracker at the video-frame
corresponding to the peak detection, and track the query object
on both forward and backward directions to recover the complete
response track (Figure 28 bottom-right).

Step 1: Frame-level detection We propose Siam-RCNN, a
Faster-RCNN [189] based approach to detect the query object in
a given image. See Figure 28 top. Given a video frame at time
t, a pre-trained Region Proposal Network (RPN) [189] with a
Feature Pyramid Network (FPN) [142] backbone is used to gener-
ate bounding box proposals {b1, · · · , bN}. The RoI-Align opera-
tion [94] is then used to extract visual features for each bounding
box {F(b1), · · · ,F(bN )}. We use the same FPN backbone to
extract features for the visual crop v. To detect the presence of the
query object in frame t, each proposal feature F(bi) is compared
with the visual crop feature F(v) using a Siamese head S that
predicts a 0-1 similarity score

si = S(F(bi),F(v)) (9)

The Siamese network projects each proposal / visual-crop feature
to a 1024-D feature vector using a convolutional projection module
P ,

pb = P(F(bi)); pv = P(F(v)) (10)

and predicts a 0 - 1 similarity score using a bilinear operation:

si = σ(pTb Wpv + b) (11)
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Figure 28. Visual queries 2D localization baseline. Our approach consists of three steps. Step 1: We perform frame-level detection for the
entire input video to detect the presence of the query object (specified via the visual crop v). For each frame t, we extract the region proposals
{b1, · · · , bN} using a region proposal network (RPN), and extract features for each proposal {F(b1), · · · ,F(bN )}. Each proposal feature
is compared with the visual crop feature F(v) using a Siamese head S, and the most similar proposal bt is retrieved along with its score
st. This process is repeated for all frames. Step 2: We treat the similarity scores s = {s1, · · · , sq−1} as a temporal signal and perform
temporal detection to obtain the ‘most recent occurrence’ of the query object. We detect the peaks (local maxima) in the signal and recover
the peak p nearest to the query frame. Step 3: Given the detected peak p and its corresponding proposal bp, we initialize two trackers with
bp and run them along the forward and backward directions to recover a contiguous track of the object, i.e., the response track prediction.

where σ is a sigmoid non-linearity. After computing the similarities
to each bounding box proposal, the proposal bt with the highest
similarity score st for frame t can be obtained as follows:

bt = argmax
b∈{b1,··· ,bN}

{s1, · · · , sN} (12)

st = max{s1, · · · , sN} (13)

After repeating the above steps for all the video frames, we can ob-
tain the final per-frame predictions as [(b1, s1), · · · , (bq−1, sq−1)].

Step 2: Temporal detection So far, we used Siam-RCNN to
get the most similar proposals and their similarity scores for every
frame in the video. Next, the goal is to temporally detect the ‘most
recent occurrence‘ of the object in the video (see Figure 28 bottom-
left). This is a challenging problem since our goal is not to identify
the best detection of the object, but instead the most recent one,

even if the similarity is not as high. To tackle this problem, we treat
the per-frame similarity scores s = {s1, · · · , sq−1} as a temporal
signal, and use a signal peak detection approach to identify the
salient peaks (a.k.a. local maxima) in s. To avoid spurious peaks,
we first smooth s using a median filter with a window size of 5.

s̄ = median filter(s) (14)

p1, · · · , pk = find peaks(s̄) (15)

Depending on the video, the algorithm may return multiple peaks
spread throughout the video (see signal peaks in Figure 28 bottom-
right). Since our goal is to detect the most recent occurrence of the
object, we select the peak p that is temporally nearest to the query
frame.
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Step 3: Tracking After temporal detection, we have identified
a peak-frame p in the video which is estimated to have the most
recent occurrence of the object. For this frame p, we can obtain the
highest-scoring bounding box bp from the per-frame detections in
step 1. Note that this only represents one frame where the object
most recently occurred. However, the task objective is to obtain
the response track, i.e., the contiguous set of all frames, starting
from when the object first entered the field-of-view until the object
exits the field-of-view. See Figure 28 bottom-right. To compute the
rest of the response track, we use bp as a starting point, and run a
single-object tracker forward and backward until the tracking fails
(i.e., the object exits the field-of-view).

For both directions, we initialize the apperance model of the
tracker using the proposal bp. For the forward tracking, we run the
tracker starting from frame p+ 1 to q − 1 and obtain the tracked
regions: bf = [b̄p+1, · · · , b̄e]. For the backward tracking, we run
the tracking starting from frame p− 1 to 0 and obtain the tracked
regions: bb = [b̄s, · · · , b̄p−1]. We then concatenate bb, bp, and bf
to obtain the complete response track prediction. We use the KYS
tracker [22], which was shown to achieve state-of-the-art results
for single-object tracking.

VQ2D baseline training setup We now discuss the training
procedure for the VQ2D baseline. Each datapoint for the VQ2D
task (defined on Ego4D videos) consists of the following: video
V , visual crop image v, query frame number q, and response track
boxes r = {rs, rs+1, · · · , re}, where s and e are the start and end
frames of r, and ri is a bounding box defined on frame i of video
V .

As a high-level overview, we initialize and freeze the backbone
F and RPN using weights from an MS-COCO pre-trained Mask-
RCNN model. We use the VQ2D annotations to train the SiamHead
(S). We initialize and freeze the KYS tracker using weights pre-
trained on GOT-10k [99], LaSOT [62], and TrackingNet [162]
datasets.

We next detail the training procedure for the SiamHead (S).
We use a similarity retrieval approach were the model is trained
to predict high visual similarity between the visual crop v and
positives, and low visual similarity between v and negatives. The
loss function for S is a binary cross entropy loss defined over
each (v,Dp, Dn) tuple (see Eqn. 16), where Dp = {pi}|Dp|

i=1 are
positive detections, Dn = {nj}|Dn|

j=1 are negative detections, and
sx,v = S(F(x),F(v)):

LS = − 1

|Dp ∪Dn|

( ∑
p∈Dp

log(sp,v) +
∑

n∈Dn

log(1− sn,v)

)
(16)

Both positives and negatives are defined based on proposals
generated by the RPN. Given a visual crop v, a proposal pi for
i ∈ (s, e) is a positive if the IoU(pi, ri) ≥ 0.5, where ri is the
response track box in frame i. We remove all ri which are too
small, or have significantly different aspect ratios from the largest
box in r since these typically correspond to obstructed views of the
object. A proposal pj is a negative if it satisfies any of the following
two conditions:

1. j ∈ (s, e) and IoU(pj , rj) < 0.5

2. pj is sampled from another video.

We also found it beneficial to use hard-negative mining, where we
initially sample a large number of negatives and then select the
top-K negatives with the highest loss value.

We employ a few different augmentation strategies to artificially
expand the dataset. First, we augment each data sample by re-
placing the visual crop v by a bounding box ri from the response
track. This works because the response track and the visual crop
correspond to the same object. Next, we augment the visual crop
v by applying random rotations between −120◦ to 120◦. This ex-
ploits the fact that objects can have significant viewpoint variations
in egocentric videos (unlike internet photos). Finally, we apply a
random brightness augmentation to the video frames and the visual
crop to simulate differing lighting.

Implementation details We train the SiamHead S using the
Detectron2 library [225]. We use the default configuration file
and make the following changes for our experiments. For each
experiment, we use 8 GPUs, 64 visual crops per batch, and train
for 300, 000 iterations with an initial learning rate of 0.02 followed
by a 0.1× decay after 200, 000 iterations. We extract backbone
features from the “p3” layer of FPN. Based on validation perfor-
mance, we use 6 positives and 64 negatives for each visual crop.
Specifically, we sample 58 negatives per video frame which results
in 58× 64 = 3712 negatives per batch. For each visual crop, we
sample the 64 hardest negatives out of 3712.

In the SiamHead S architecture, the projection module P con-
sists of four residual blocks followed by average pooling, and a
2-layer multi-layer perceptron (MLP) with a hidden size of 1024-D
and ReLU activation.

For signal peak detection, we utilize the find peaks func-
tion from the scipy library12 with the following hyperparameters
selected through validation: distance = 25, width = 3, and promi-
nence = 0.2.

Experimental results We evaluate the performance of multiple
baselines on the VQ2D task in Tab. 9. The first column in the
table shows the detection and tracking methods, and the second
column shows the SiamHead projection architecture P . In addition
to the KYS tracker, we also experiment with a simple particle filter
tracker (denoted ‘PF’) to assess the impact of the tracking quality.
As an ablation of SiamRCNN, we replace the 4 residual blocks
in the SiamHead projection module with a simple 3-layer CNN
which has lower capacity with no residual connections (indicated
by ‘Simple’).

We make several observations. When we use a simple projection
model with a particle filter tracker, we already observe a good vali-
dation performance of 32.4% success, and 0.14 tAP25. These can
be attributed to using a strong proposal generator (RPN pre-trained
on MS-COCO) and a learned siamese comparison model. Upon
replacing the particle filter tracker with a SoTA KYS tracker [22],
while the validation success rate remains similar at 33.0%, we ob-
serve significant gains (absolute) in all other metrics: 2% tAP, 2%
stAP25, and 14.3% recovery. This suggests that a good tracker is
necessary to accurately capture the full response track after localiz-
ing a single frame within it. Finally, upon replacing the ‘Simple’
siamese projection with 4 residual blocks, we observe a significant

12Peak detection: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.signal.find_peaks.html
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gains of 6.8% in success, 5% in tAP25, 4% in stAP25, and 5%
in recovery %. This suggests that using a higher capacity model
for the SiamHead is helpful for improving the per-frame detection
performance for the VQ2D task. We observe similar trends on the
test set. Please see Fig. 29 for qualitative examples of the model’s
predictions.

In all cases from Tab. 9, the search efficiency is 0% since the de-
tectors are used on every frame in the search window. In Fig. 30 we
experiment with two simple techniques for improving the search
efficiency. The first approach uniformly subsamples k% of the
frames in the search window (denoted as ‘SS’). The second ap-
proach searches over only k% of the most recent frames in the
search window, i.e., frames that are nearest to the query (denoted
as ‘N’). We consider 3 values of k in both cases: 10%, 25%, and
50%. Consider the results in Fig. 30. In both strategies, the search
efficiency improves as we reduce k. The performance drops drasti-
cally for the 1st strategy where we subsample the search window,
while it remains relatively stable for the second strategy where we
preview a fraction of frames closest to the query. For example,
we can achieve a search efficiency of 48.0% with only a 6− 16%
relative drop in performance with k = 50% in the 2nd strategy.
However, the performance drops significantly if we reduce k further.
For example, we observe a reduction of 38 − 60% for k = 10%
with the 2nd strategy. This suggests that more intelligent methods
that perform contextual search are needed to improve the search
efficiency for VQ2D while maintaining good performance.

Visual queries 3D localization baseline

Next we describe the baseline for the visual query with 3D localiza-
tion task. Recall the task definition: given a video, a query frame,
and a visual crop of a target object, the goal is to output a 3D
displacement vector from the camera center of the query frame to
the center of the target object in 3D. The 3D position of the target
object is defined at its most recent appearance in the video. Figure
31 shows a sample of the task.

Our baseline strategy has three steps. We first estimate the cam-
era poses of the video. Then we retrieve the most recent instance of
the target object in the video. Lastly, we estimate the depth of the
detected object and retrieve its 3D position from the query frame.

Camera pose estimation The camera poses are estimated us-
ing a keypoint matching strategy along with a Perspective-n-Point
(PnP) resolution approach. At a high level our approach consists of
the following four steps. First we estimate the camera intrinsic pa-
rameters using Structure-from-Motion (SfM). Secondly, we extract
and match keypoints from each frame in the video to keypoints ex-
tracted from the Matterport3D panoramas. Then, using the matched
keypoints we set up and solve a PnP problem for each frame in the
video to estimate the corresponding camera pose. Lastly, we refine
the poses using temporal constraints.

Step 1: Camera intrinsics estimation We start by extracting
a set of contiguous non-blurry frames from the video. In order to
select non-blurry frames we compute the variance of the Laplacian
on each image and select the ones with a value higher than a
100 threshold. We then select the largest contiguous set of non-
blurry images. We cap the number of selected frames to 10 to
limit the computational time of the SfM module. Once we have
selected the images we run the automatic reconstruction module of

COLMAP [196] to estimate the camera instrinsic parameters with
a radial fisheye camera model.

Step 2: Keypoint extraction and matching We use SuperGlue
[195] to extract and match keypoints. We first extract keypoints
from the scan panoramas {k{p,n}, p ∈ P, n ∈ N} where P is the
number of panoramas and N is the number of keypoints. The scan
panoramas are generated using the Matterport SDK.13 We render
RGB and depth images at each scan position and sweep over pitch
values ∈ [−30, 30] with a step size of 5 deg. and yaw values ∈
[−180, 180] with a step size of 15 deg. We generate on average 7K
images per scan. Note that while we are not releasing the panoramas
because of data anonymization concerns, we are providing the
precomputed keypoints. Similarily, we extract keypoints from the
video frames {k{i,m}, i ∈ I,m ∈ M} where I is the number of
images in the video and M is the number of keypoints. Once the
keypoints are extracted we loop through each frame i ∈ I in the
video and match the extracted frame keypoints {k{i,m},m ∈ M}
to all the panoramas keypoints {k{p,n}, p ∈ P, n ∈ N}. We use
the pretained models available14 of SuperPoint [50] for keypoints
and descriptors extraction and SuperGlue [195] for matching.

Step 3: PnP resolution We compute the camera pose for the
video frames having at least 20 matched keypoints. We empiri-
cally find that a threshold of 20 provides a good tradeoff between
the number of overall pose estimates and the quality of the esti-
mations. The positions of the 3D keypoints are computed from a
pinhole camera model of the Matterport camera using the rendered
panorama depth, camera intrinsics, and camera pose. The positions
of the 2D keypoints are directly extracted from the video frames
pixels. We then use the OpenCV library to solve the PnP setup and
estimate the camera pose from the matched pairs of 3D and 2D
points and using the estimated camera intrinsic parameters. Using
this method we can estimate the camera pose of roughly 2% of the
total number of frames in the video. Next we incorporate temporal
constraints to increase this number.

Step 4: Temporal constraints and final pose estimation To
increase the number of estimates we refine the pose estimation
pipeline by incorporating temporal constraints in an iterative pro-
cedure. We start by extracting and matching 2D keypoints from
localized frames to non-localized ones in the video. This step is
similar to the above Step 2; we use the same SuperGlue [195].
Using the matched keypoints and current estimated poses we tri-
angulate new 3D keypoints for the non-localized images. We then
solve a new PnP setup with the new keypoints. We apply this pro-
cedure iteratively until convergence. After refinement we achieve
a performance of 15% of pose estimates of the total number of
frames accross all video clips.

Camera pose estimation quality and sources of error We
qualitatively evaluate the camera pose estimation pipeline by ren-
dering the views in the 3D scans. Recall that the scans and videos
have been recorded at different times and thus the scenes can con-
tain large differences. Figure 32 shows camera poses estimates
where left is the frame from the video, middle is the view from the
scan, and right is the superposition. We see that even with large

13Matterport-SDK: https://matterport.github.io/

showcase-sdk/sdk_intersection_inspector.html
14SuperGlue weights: https://github.com/magicleap/

SuperGluePretrainedNetwork
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Validation set Test set
Detector + Tracker P Succ tAP tAP25 stAP stAP25 rec% Succ tAP tAP25 stAP stAP25 rec%

Siam-RCNN + PF Simple 32.4 0.06 0.14 0.02 0.06 13.2 32.7 0.06 0.14 0.02 0.06 12.9
Siam-RCNN + KYS Simple 33.0 0.08 0.15 0.03 0.08 27.2 33.4 0.09 0.16 0.03 0.08 26.9
Siam-RCNN + KYS Residual 39.8 0.12 0.20 0.04 0.12 32.2 41.6 0.12 0.21 0.05 0.13 34.0

Table 9. Visual queries 2D localization results. We compare the performance of various baselines on the VQ2D validation and test datasets.
Column 1 indicates the detector and tracker. Column 2 indicates the projection architecture used in case of the Siam-RCNN model.

. . . . . .

Query: When did I last see
this object?

Predicted response track

. . . . . .

Query: When did I last see
this object?

Predicted response track

Figure 29. Qualitative examples for visual queries 2D localization. On each row, we show the visual crop of the query object on the right
and the predicted response track in the center (3 uniformly samples images). The model was able to correctly localize the most recent
occurrence of the object and accurately track it throughout the occurrence.
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Figure 30. Search efficiency for visual queries 2D localization.
We evaluate simple techniques for improving the search efficiency,
and plot the corresponding VQ2D performance. The blue data point
is the SiamRCNN performance when we preview the entire search
window. The red data points are the SiamRCNN performance when
we search over k% of the frames uniformly subsampled (SS) from
the search window. The yellow data points are the SiamRCNN
performance when we search over k% of the frames nearest (N) to
the query (without any subsampling). The value of k is indicated
above each data point.

scene differences between the scan and video (e.g., the wheel in
the middle example) the algorithm is capable of producing good
pose estimates.

The remaining unlocalized frames are due to abrupt motion (lost
track) and when the view is too close-up to the scene (not enough

View from the response track

View from the query frame

Figure 31. Visual queries 3D localization task demo. The top view
is the view from the last frame of the response track with the target
object annotated with a 2D red bounding box. The bottom view
is the view from the query frame. The target object is annotated
with a 3D red bounding box at the top right of the figure. The
figure shows the ground-truth (green) and the predicted (red) 3D
displacement vectors.

keypoints matched).

35



Video frame View from the scan Superposition

Figure 32. Samples of camera pose estimation. Left shows the
frame from the egocentric video, middle has the view rendered from
the estimated viewpoint in the scan and right is the superposition of
both. We observe that even with big scene differences between the
video and the scan (e.g., the wheel in the second row), the algorithm
is able to accurately retrieve the camera pose.

Target object retrieval We build our solution on top of the vi-
sual queries 2D localization baseline. The 2D localization baseline
outputs a response track with 2D detections of the target object.
Our baseline combines these 2D detections along with depth esti-
mation and camera pose estimation to retrieve the 3D position of
the object.

Depth estimation We estimate the depth of the most recent
frame of the response track for which we have a pose estimate. We
use the DPT network [185] with pretrained weights on NYU v2
[202]. Figure 33 shows depth estimation results where left is the
frame from the video, middle is the estimated depth, and right is
the depth from the scan rendered at the estimated viewpoint (not
available to the baseline model). Note that due to scene differences
between the video and the scan, the two depths frames will differ
in some region of the image. We then compute the depth value of
the target centroid as the median of a square region centered at the
2D detection.

3D displacement vector reconstruction Given the estimated
depth d of the object centroid c in frame f of the response track
and the estimated camera instrisics K, we construct the 3D vector
displacement v̂f in the current frame f coordinate system using a
pinhole camera model:

v̂f =

xy
z

 = dK−1c = dK−1

uv
1

 (17)

where u, v are the pixel indices of the centroid c in frame f . We
then estimate the object centroid position t̂s in the scan coordinate
system:

t̂s = P s
f v̂f (18)

where P s
f is the camera pose for the frame f . We further retrieve

the displacement vector v̂Q in the query frame Q coordinate system:

Video frame Depth from DPT Depth from the scan

Figure 33. Samples of depth estimation. Left shows the frame
from the egocentric video, middle has the estimated depth from
DPT [185] and right has the depth from the scan rendered at the
estimated viewpoint.

v̂Q = P s
Q

−1t̂s (19)

where P s
Q is the camera pose of the query frame.

Experiments and results We compare the performance of mul-
tiple baselines along with ablation studies. We present the results in
Table 10. Numbers are computed on the validation set (164 queries)
of the VQ3D task. We report the query ratio QwP, for which we
have camera pose estimates for the response track and query frame.
Additionally, we report the success rate Succ∗ which is the success
metric computed only for queries with associated pose estimates.

Overall, we notice a low QwP ratio leading to a low success rate.
These low metrics are due to a small number of camera pose esti-
mates (15% overall). Nonetheless, we observe that the best VQ2D
baseline method combined with the pretrained DPT [185] depth
estimator yields the best performances in terms of L2 and success.
These numbers tell that there are opportunities for enhancement
in designing better camera pose estimators. Additionally, we per-
form ablation studies using the ground-truth response tracks and
different depth estimators (random, from the scan, using DPT).
For the random experiment we uniformly sample a depth value
between 0.1 and 10 meters. From the ablation experiments we note
that rendering the depth from the scan at the estimated viewpoint
increases the performances compared to using DPT (lines 2 and 3).
This suggests that there is also room for improvement in designing
better depth estimators.

Natural language query baselines

Since the natural language queries can be seen as a language-
grounding problem in a video, we adopt two prior methods in
order to implement the baselines for this task.

(a) 2D Temporal Adjacent Networks (2D-TAN) [236]: We
apply 2D-TAN with a sliding window method to implement the
natural language query baseline. The goal of 2D-TAN is to answer
where the semantically corresponding video moment is, given a
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Figure 34. Baseline model architectures: moment queries. Its takes a video sequence and generates detected actions with start/end time,
their categories, and confidence scores. It has two components: graph pyramid network (GPN), and scoring and localization (SoL).
GPN is composed of multi-level encoder and decoder pyramids. The encoder aggregates features in different levels via a stack of graph
networks (GN) (yellow trapezoid area; the decoder restores the temporal resolution and generates multi-level features for detection. SoL
(blue dashed box) contains four modules, the top two predicting action scores and boundaries, the bottom two producing supplementary
scores and adjusting boundaries. Figure is adapted from [237].

RT depth L2 angle Succ∗% Succ% QwP%

ground-truth random 7.93 1.99 0.00 0.00 1.83
ground-truth scan 2.92 1.10 76.47 1.22 1.83
ground-truth DPT 3.33 1.15 76.47 1.22 1.83

Siam-RCNN + PF DPT 6.53 1.64 25.00 0.61 0.61
Siam-RCNN + KYS (sim.) DPT 5.78 0.48 36.36 0.61 0.61
Siam-RCNN + KYS (res.) DPT 5.98 1.60 30.77 1.22 1.83

Table 10. Visual queries 3D localization results. We compare the
performance of various baselines on the val set of the VQ3D task.
Column 1 indicates the VQ2D network used to predict the response
track (RT). The last metric QwP measures the query ratio for which
we have pose estimation for the response track and the query frame.
The L2 metric is expressed in meters and angles are in radians. The
first three rows are ablation studies using the ground-truth response
tracks and with depth estimated randomly, using the scan and via
the DPT [185] network.

language query in an untrimmed video. The language query stems
from one of the 13 template questions. The core idea of 2D-TAN
is to consider adjacent moment candidates as the temporal context
on a two-dimensional temporal map and retrieve the most relevant
moment from the candidates. More concretely, 2D-TAN takes
each moment candidate as one element in the 2D temporal map
such that the adjacent moment candidates on the map can have
much-overlapped content or share the same start or end time slot.
It applies a convolutional neural network on the 2D map to predict
the Intersection over Union of each moment candidate and the
ground-truth moment. Please see [236] for more details.

Since the 2D-TAN enumerates all the possible combinations of
start-end pairs, the O(N2) space complexity of the 2D map leads

to a heavy model, especially when we require a precise moment
boundary. To make 2D-TAN more appropriate to our problem,
we further use a sliding window method on top of 2D-TAN. We
break down the clip into a number of overlapping windows, where
a window presents a small portion of the clip. The windows are
taken as the input of the 2D-TAN model in both training and testing
phases.

During the training of the 2D-TAN model, we use Ego4D’s
provided pre-extracted features for both the video clip and language
query. The clip feature is from a SlowFast [71] network pretrained
on Kinetics 400 dataset, and the language feature is a based on the
BERT model [52]. The window duration is 40s, and stride is 20s
in the sliding window method. Notably, we only use windows that
contain or are next to a ground-truth moment in training, but we use
all the windows in testing. We keep all the other hyper-parameters
in 2D-TAN the same as its default except for tIoU threshold and
learning rate. We decreased the tIoU threshold from 0.5 to 0.3
to enable more positive samples during training and empirically
set the learning rate to 0.001. We train the model for 100 epochs
and report the test set performance on the best checkpoint on the
validation set. 2D-TAN gives top-1 and top-5 recalls of 5.80% and
13.90% at IoU=0.3, respectively. In addition, we also ablate the
model to obtain performance by randomizing the video features
(−visual) and textual features (−text) for NLQ in Tab. 11.

(b) Span-based Localization Network (VSLNet) [235]: Un-
like traditional approaches in video natural language localization
works, VSLNet treats the input untrimmed video as a text passage,
and uses a span-based approach to identify the relevant sections
semantically related to the given natural language query. At its core,
VSLNet first encodes the natural language query and video features
using a common, shared Transformer [215] network. Next, it uses
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Baseline IoU=0.3 (%) IoU=0.5 (%)
r@1 r@5 r@1 r@5

V
al { 2D-TAN [236] 5.04 12.89 2.02 5.88

VSLNet [235] 5.45 10.74 3.12 6.63

Te
st



2D-TAN [236] 5.80 13.90 2.34 5.96
−visual 2.29 6.77 1.32 3.46
−text 3.46 10.13 1.78 4.38

VSLNet [235] 5.47 11.21 2.80 6.57
−visual 1.80 5.44 0.90 2.45
−text 3.05 7.39 1.45 4.12

Table 11. Performance of the NLQ baselines on val and test splits.

the encoded query to then attend to the relevant parts of the video
clip (akin to a text paragraph). The attended sections are further
refined using a query-guided highlighting (QGH) strategy by ex-
tending the selection foreground of the video by a hyperparamter to
capture more visual context. Please refer to [235] for more details
on the motivation and architecture.

For our experiments, we maintain consistency with the other
NLQ baselines and use pre-extracted features for both the video clip
(SlowFast network [70]) and natural language query (BERT [52]).
We use the implementation provided by the authors15 with the fol-
lowing changes: (a) Set the video features size to 2304 dimensions
to accommodate the features extracted from the SlowFast network,
(b) Replace the text encoder to a frozen, pretrained BERT [52]
model, (c) Set the internal dimension of the multimodal network
to 128, and project the pre-trained BERT features from 768 to 128.
We train the model for 200 epochs and pick the model with the best
performance on val split. The corresponding test performance of
this VSLNet model is reported in Tab. 11, along with visual and
textual ablations.

Moments queries baseline

We formulate a moment queries baseline as a temporal action
detection method [141, 229, 237], plus simple post-processing.

The MQ task only expects predictions for the query categories,
whereas the temporal action detection task returns the predictions
for all categories. Therefore, we can first use a temporal action
detection method to predict for all categories, and only output the
results corresponding to the query categories.

To predict all categories, we adopt a recent method VSGN [237],
which was designed for temporal action detection in third-person
videos. We use VSGN without the VSS component. Figure 34
illustrates the architecture. It takes a video V as input, extracts
features for each snippet in the video using a network such as Slow-
Fast [70], and feeds these features into a graph pyramid network.
The graph pyramid network contains a encoder and a decoder,
where the encoder is comprised of multiple levels of graph convo-
lutional networks, and the decoder is comprised of multiple levels
of de-convolutional networks. It is an anchor-based method that
pre-defines temporal segments for each feature level as prediction

15https://github.com/IsaacChanghau/VSLNet

Table 12. Moment queries results on the validation set and the
test set, measured by mAP (%) at different tIoU thresholds.

tIoU threshold 0.1 0.2 0.3 0.4 0.5 Average
Validation set 9.10 7.16 5.76 4.62 3.41 6.03
Test set 8.61 6.52 5.43 4.30 3.57 5.68

reference. It predicts the scores and refines the locations of the
anchors in two stages. In the first stage, it uses a region proposal
network (RPN) from the decoder to predict class labels and regress
boundaries for each anchor; in the second stage, it applies a bound-
ary adjustment module to refine the boundary offsets based on the
updated anchors from the first stage. It also has startness/endness
predictions to provide auxiliary supervision and supplement scores
for each predicted segment. Its output predictions are formulated as
Φ = {ϕm = (tm,s, tm,e, cm, sm)}Mm=1, where m is the number
of predictions, tm,s and tm,e are start time and end time of the mth

prediction respectively, cm is the predicted category, and sm is the
confidence score. For more details, please refer to [237].

Given a query category c, the retrieval results for the moment
queries task are obtained as follows

Φc = {ϕm = (tm,s, tm,e, cm, sm) |cm = c, 1 ≤ m ≤ M)} .
(20)

Implementation details For feature extraction, we use
Ego4D’s provided pre-extracted features using a SlowFast [70]
network pre-trained on Kinects400 [108] at 1.87 features per sec-
ond. The feature dimension is 2304.

Considering that the maximum clip length is 8 minutes, which
has 897 features, we make the input length of our network 928
frames to cover the longest video clip. We have 5 levels in the
graph pyramid network, each with temporal length 232, 116, 58,
29, and 14 respectively. We pre-define two base anchors of sizes
4 and 12 for Level 1 and increase the sizes by 2 for each deeper
layer. We train for 30 epochs with a batch size 32 and learning
rate 0.0001. In inference, we only apply per-category NMS with a
confidence threshold 0.0005.

Experiments and results We show our baseline performance
in terms of mAP in Table 12 and recall @ kx, tIoU=m in Table 13.

We provide further analysis on the average precision results
using DETAD [9]. In Fig 35, we illustrate the proportion of each
error type for the false positive predictions. It shows that both
localization and classification are responsible for the false posi-
tive, improving either can increase the overall performance by a
nontrivial amount. In Fig 36, we demonstrate the performance of
different groups of moment instances based on moment duration
and number of instances belonging to the same category per video
clip. We notice that short moments tend to have low performance
even though they are large in number. When there are 2-3 instances
in one video, they are easiest to detect.

Discussion

Visual queries presents a novel and challenging task for object
localization in egocentric videos. While our proposed baseline
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Table 13. Moment queries results on the validation set and the test set, measured by recall (R) @ kx, tIoU=m (%).

m 0.3 0.5 0.7

k 1 3 5 1 3 5 1 3 5

Validation Set 33.45 51.26 58.43 25.16 39.46 46.18 15.36 22.67 25.81
Test Set 33.56 52.23 59.79 24.25 39.22 46.22 14.83 23.15 26.28
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Figure 35. Moment queries results: false positive analysis. The
error types are determined by the tIoU between ground-truth and
predicted moments, as well as the correctness of the predicted
labels, according to [9]. Background error: tIoU < 1e−5; confu-
sion error: 1e−5 < tIoU < α, label is wrong; wrong label error:
tIoU >= α, label is wrong; localization error: 1e−5 < tIoU < α,
label is correct, where α refers to the tIoU thresholds {0.1, 0.2, 0.3,
0.4, 0.5}. ‘G’ refers to the number of ground-truth instances.

achieves a reasonable success rate of 42.9%, it only achieves a
localization performance of 0.13 tAP and 0.06 stAP. Furthermore,
the best performance is achieved with 0% search efficiency, and
naı̈ve techniques to improve the search efficiency lead to drastic
performance reductions. We hope that this task will spur future
research into accurate and efficient techniques for object search.

Natural language queries is a challenging multimodal task that
has wide applications in helping users search and retrieve relevant
pieces of their episodic memory, thanks to the flexibility of the
queries. The performance of the existing state-of-the-art video
localization models highlights the needle-in-a-haystack nature of
the task, due to shorter response windows of about 10s in a large
video clip of 8 minutes. We hope that the NLQ dataset opens the
door to future research that specializes in identifying and retrieving
a large diversity of language queries in longer egocentric video clips,
moving a step closer to augmenting a user’s episodic memory.

Moment queries in egocentric videos is a challenging task due
to the long-tailed distribution of categories and the large variation
in moment duration. Our baseline achieves a reasonable result
according to the metric recall @kx, tIoU=m, which evaluates the
performance of each query category and does not require correct
classification of all categories. In contrast, its average mAP score
of 5.96% is low when all categories are evaluated. According to
the false positive analysis in Fig 36, errors caused by wrong labels
are significant. A more sophisticated classifier for all candidate
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Figure 36. Moment queries results: sensitivity analysis. Top:
Distribution of instance per action characteristic: length; # in-
stances. Bottom: average mAPN (%) [9] in each characteristic
bucket. The ‘length’ characteristic divides all moment instances 5
buckets based on the moments duration in seconds: XS (0, 10], S
(10, 60], M (60, 180], L (180, 300], and XL (300, inf]. The ‘# in-
stances’ characteristic divides all moment instances into 5 buckets
based on the number of instances belonging to the same category
in one video clip: XS (0, 1], S (1, 3], M (3, 10], L (10, 20], and XL
(20, inf].

moments can be explored in future work. In addition, as shown in
Fig 36, the performance of short moments, which occupy a large
proportion in the dataset, is not as good as that of long moments.
Therefore, improving short moments will significantly improve the
overall performance.
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G. Hands and Objects Benchmark
This section details the Hands and Objects benchmark including

definitions, annotations, baseline models and results.

G.1 Motivation

In a video of a human operating and manipulating an object with
their hands, there may exist an object state change, i.e., the point
where the state of the objects being operated changes, either tem-
porarily or permanently in a way that cannot be easily reversed.
Examples of temporary state change include turning on a ma-
chine, while examples of permanent state changes include physi-
cal changes such as chopping a tomato into pieces and chemical
changes such as mixing water and cement powder together to create
a new composition of cement. Some examples are illustrated in
Figure 37.

The concept of an object state change has been explored only
in a limited manner in the video literature [8, 45, 69] and the char-
acterization of state changes has depended on many brittle vision-
based component technologies, making it difficult to analyze state
changes at scale. Fortunately, in the last decade we have seen
tremendous advances in computer vision algorithms for understand-
ing both objects and hands. As a result, we believe that now it is
time to investigate the idea of characterizing state changes at scale
and in depth.

Why is recognizing the impact of agents on objects and environ-
ments so critical? We believe that understanding, recognizing, and
replicating object state changes are an essential aspect of creating
artificial intelligence (AI) systems. While current AI systems have
the ability to replicate certain types of human actions such as assem-
bling furniture [116] or cutting tomatoes [200], most systems do not
possess a general understanding of how the environment and the
objects can be transformed as a result of interaction. Understanding
the impact of interactions on objects and the environment is an
important aspect of reasoning and can help AI systems perform
more advanced tasks. For example, understanding the impact of
interactions on the environment can help AI systems relate multiple
ways to achieve the same change, discover efficient methods for
achieving goal states, recognize the completion/incompletion of
goals [58, 97], recover from failure, and learn from mistakes.

In egocentric videos specifically, the object state changes of-
fer rich and important information that are related to many other
problems. For example, the object undergoing state change in
an egocentric video can imply human-centric information such as
human activity and intention. Moreover, the state change of an
object shown provides cues about human-specific affordance and
actionable information of an object or tool, which cannot be easily
inferred from static images. Additionally, a joint understanding
of human hands and the objects undergoing state change can ben-
efit applications that require rich human demonstrations, such as
robotic manipulation.

Defining Object State Changes: This benchmark focuses on
identifying and localizing the state change of an object in an ego-
centric video. Specifically, a object state change can be represented
by the three aspects in the video: temporal, spatial, and semantic.

Temporal: An object state change can be represented by three
distinct temporal points in the video. (1) Point-of-no-return: The

(a)

(b)

(c)

Figure 37. Examples of object state change. (a) State change
through construction: attaching to two metal plates results in a
new object. (b) State change through physical change: cutting a
piece of wood results in two smaller pieces of wood. (c) State
change through chemical reaction: combining two objects, water
and cement powder, results in a new object, cement.

point-of-no-return (PNR) is the frame Ipnr in a video that identi-
fies the beginning of an object state change that cannot be easily
reversed. (2) Pre-condition: The pre-condition is defined as some
frame Ipre that marks a moment prior to the state-change in which
the related objects were visible within the field of view of the cam-
era. (3) Post-condition: The post-condition is some frame Ipost at
which the completion of the state change is visible after the point-
of-no-return. These three frames mark the distinct temporal stages
of the object state change: before and after the change, respectively.
This proposal matches the Rubicon Boundaries proposed in [160].

Spatial: An object state change can be represented by the bound-
ing box of the object at the PNR, pre-condition and post-condition,
along with any tools involved in performing the state change. Tools
offer extended capabilities of the actor’s hand, such as using an
electric saw to cut a piece of wood in half. These bounding boxes
represent the spatial dimensions of hands, tools and the objects
undergoing the state change.

Semantic: We represent an object state change through the hu-
man action (verb), the object identity (noun) and the type of state
change applied. The same state change can be performed on dif-
ferent objects using different tools. For example, cutting a piece of
wood with electric saw and cutting a piece of paper with scissors
are different interactions with different objects and different tools
but they both result in the same object state change of being cut.

G.2 Related Work

Object State Changes: Existing approaches for modeling ob-
ject states and/or their changes can be categorized into two research
lines. The first deals with collections of images. A representative
dataset for this purpose is the MIT States dataset [103]. By con-
sidering object states as object attributes (e.g. burnt, sliced), this
line of work studies attribute-object composition, e.g. composition
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with context [158], modeling attributes as operators [164], and an
architecture for compositional reasoning [182].

The second research line deals with video and views an action as
a state transformation over time. One direction is the discovery of
object states and/or manipulating actions, e.g. in egocentric [45,69]
and instructional videos [8]. Fathi et al. [69] explore object state
detection in video using a weakly supervised approach. Another
direction is the modeling of state transitions. Zhou et al. [244]
study temporal transformations of a single object state in time-lapse
videos. Wang et al. [223] propose to model state transformations
in a high-level feature space with Siamese networks. Doughty et
al. [55] leverage natural language and treat adverbs as modifiers for
state transformations. In terms of applications, Chang et al. [30]
show state transformations can be utilized for procedure planning.

Human Hand Action Datasets: Several video datasets have
been proposed for human hand action recognition. The Yale hu-
man grasping dataset [25] focuses on human grasping behavior
and consists of 27.7 hours of annotated videos. The Something-
Something dataset [90] consists of 220,847 short videos annotated
with 174 categories of general hand-object interactions. The Jester
dataset [214] provides 148,092 short videos in 27 hand gesture
types. Wang et al. [220] construct a synthetic video dataset of
human-object interaction through rendering hand and object CAD
models. The recent Human Hands dataset [198] annotates 100K
single frames from web-based videos, focusing on hand interac-
tions and the offset between the hand and the interacting object
during interaction.

Several egocentric video datasets capture daily living activities
by people [43, 130, 136, 180, 201, 210]. In the Activities of Daily
Living Dataset (ADL), subjects wear chest-mounted cameras and
perform unscripted activities at home, with a total of 10 hours
of video from 20 participants; the target task is activity recogni-
tion [180]. In the UT-Egocentric dataset (UT-Ego), subjects wear a
head-mounted camera and perform long unscripted activities inside
and outside of the home, with a total of 17 hours from 4 subjects
(4-5 hours of continuous capture for each person); the target task is
video summarization [130]. The UT Egocentric Engagement (UT
EE) dataset consists of 14 hours of head-mounted camera video
captured in public spaces like museums, malls, and grocery stores,
and is annotated for moments of engagement by the camera wearer
with the environment. In the EGTEA+ dataset, 32 subjects wearing
head-mounted cameras in a single kitchen environment capture
28 hours of video; the task is to recognize 44 meal preparation
activities [136]. The EPIC-KITCHENS dataset consists of 100
hours of kitchen activities recorded in 45 unique environments,
with a total of 89,977 different object interactions across 97 verb
and 330 noun classes; the task is to recognize objects and activities
and anticipate interactions in the next moment of video [43]. The
Charades-Ego dataset consists of 34 hours of video from 71 partici-
pants, with both first- and third-person paired instances labeled for
156 actions [201].

G.3 Benchmark Definitions

We now define the three tasks that comprise the Hands and Objects
benchmark. The three tasks correspond to the three aspects of
object state changes described above, namely, the temporal, spatial
and semantic aspects of a state change.

(1) PNR Temporal Localization. The goal of Point-of-no-
return (PNR) Temporal Localization is to predict Ipnr. One possible
formulation is to view this problem as a per-frame classification
problem, predicting the Point-of-no-return frame within a short
video clip. The performance is evaluated only on the videos that
contain object state change, and is measured by the absolute tem-
poral error of Ipnr prediction in seconds.

The PNR was first discussed by P. Gollwitzer in his well-cited
handbook of behavior [89]. Specifically, the book proposes the Ru-
bicon Model of Action Phases, focusing on hand-object interaction.
Action phases are delimited by three transition points: initiation
of prior motion, PNR, and goal achievement. This was later ex-
perimentally assessed by our previous work [160], where PNR
annotations were acquired for three egocentric datasets, demon-
strating increased accuracy of annotations (see Fig. 10 in [160]) and
improved robustness in training models (see Sec. 5 in [160]). Be-
low, we find PNR closely aligns with the narration timestamps that
we independently collected, suggesting PNR is a natural time point
for human understanding (and thus narration) of the interaction.

(2) State Change Object Detection. We define a State
Change Object as the object that is manipulated by a person and
undergoes a change in its state. The goal of this task is to predict
the 2D bounding boxes of the State Change Object in Point-of-no-
return frame Ipnr given three frames: Pre-condition Ipre, Point-of-no-
return Ipnr, and Post-condition Ipost. We expect that a good solution
to this task would incorporate the visual information before and
after state change to detect the State Change Object. The detection
performance is evaluated on the bounding boxes estimated in the
Point-of-no-return frame Ipnr and measured by Average Precision
(AP).

(3) Object State Change Classification. The task of Object
State Change Classification classifies a short video clip to a state
change type. With N object state change types defined, object
state change classification is essentially an (N + 1)-way classi-
fication problem, where the one additional category is “without
state change.” Object State Change Classification is evaluated by
classification accuracy.

G.4 Data Selection

Next we describe our data selection procedure and annotation
pipeline, and we present the analysis of the data for the object
state change benchmark. We begin by describing our procedure for
selecting the subset of data to annotate for this benchmark.

We start with a large pool of videos annotated with high-level
scenario labels (e.g., gardening, cooking, landscaping, etc.) and
narrations. We assess each scenario on the scale of 0 to 3 based
on how likely it is to contain hand-object interactions (e.g., 0 for
“watching tv”, 3 for “carpentery”, etc.). We then sample data to
annotate following the resulting scenario distribution. Given a
scenario and a target number of hours, we sample clips randomly
in a hierarchical fashion: we first sample a participant, then a
video, and finally a 5 minute clip from the video. If the video is
shorter than 5 min we take the whole video. For each scenario,
we balance the data across universities to maximize geographic
diversity. The resulting scenario and university distributions are

42



shown in Figure 38. In total, our dataset has 120 hours representing
53 scenarios, 7 universities, and 406 participants.

G.5 Data Annotation

We annotate hand-object interactions corresponding to each narra-
tion within the selected 5 minute clips. We use the taxonomy from
Section D.3 for semantic verb and noun labeling. The annotation
pipeline consists of three sequential stages: critical frame labeling,
pre-period labeling, and post-period labeling.

Critical frames. Given a narration, we create an 8 second video
snippet centered at the narration time point and present it to the
annotators. We ask the annotators to first read the narration and
select a corresponding verb from the taxonomy. The annotators can
then play the video back and forth to select three critical frames in
time: PNR, PRE, and POST. We ask the annotators to start with
the PNR frame that identifies the beginning of the state change.
This frame is less ambiguous and helps provide the context for
the interaction. We then ask the annotators to label a frame prior
to the state change (PRE) and a frame after the completion of the
state change (POST). Note that the PRE and POST frames are not
uniquely defined. We let the annotators pick any, as long as the
relevant objects are fully visible within the field of view of the
camera.

Pre period. Next, we label bounding boxes for the hands, tools,
and objects, as well as the category names for the tools and objects.
We do this in two steps. First we label the frames in the pre period,
starting at PNR and going backward to the pre frame. The video
frames are reversed and the annotators can play the video. We
find that it is easier to start from the PNR frame since the hands
and objects are clearly visible. To speed up hand box labeling, we
initialize the hand boxes with a pre-trained object detector [198]
and ask the annotators to correct these.

Post period. Finally, we ask the annotators to label spatial annota-
tions and categories for the post frame. As before, we first present
the annotators with the PNR frame. Note that in this case the PNR
frame is already labeled which helps identify the hands and objects
to label in the post frame.

G.6 Data Analysis

Finally, we present the analysis of our annotations.

Critical frames. In Figure 40 we show the temporal distribution of
critical frames within the 8 second hand-object interaction snippets.
First, we observe that the PNR frame distribution is centered around
the middle of the 8 second snippet. Interestingly, this closely aligns
with the narration point (4s mark). Next, we see that most of the
pre and post frames come shortly before and after the PNR frame,
respectively, highlighting the quick nature of these state changes,
and thus the challenge in this benchmark. We also notice two
additional modes for pre and post frames that come at the start and
the end of the 8s interval, respectively. These correspond to long
repetitive actions that start before or continue past the video snippet
(e.g., knitting).

Hands and objects. Our benchmark contains a large number of
hands and objects annotated with bounding boxes. In total, we have

∼825K bounding boxes, including ∼245K for left hand, ∼260K
for right hand, ∼280K for objects, and ∼40K for tools. In Figure 41
and Figure 42, we show the distributions of box sizes and locations,
respectively. We observe that our data contains hands and objects
at a variety of sizes and locations.

Actions. One of the features of our benchmark is the diversity of
interactions. We focus on low-level atomic actions rather than high-
level actions. We show the distribution of verbs (Figure 39, left)
and nouns (Figure 39, right). We see that we have a large number
of verbs corresponding to common manipulation actions (e.g., put,
take) and a natural long tail. The object distribution follows the
same general trend. We note that our objects are common daily
objects that are not typically present in object detection datasets
(e.g., 442 out of our 478 object categories cover categories beyond
the 80 COCO [143] categories).

G.7 Baselines: Object State Change Classification and
PNR Temporal Localization

We present the implementation of several baseline methods for the
Object State Change Classification and PNR Temporal Localization
tasks. Among the implemented baseline models, in general there
are one or two types of output network heads: a classification head
for the video clip used for state change classification, and/or a
per-frame classification head for temporal localization. One can
choose to train two models separately, or use the same backbone
model but two network output heads and train the joint model with
a multi-task loss function. The following baseline methods includes
both types of model designs:

I3D ResNet-50. We use I3D [29] with ResNet-50 [95] as back-
bone architecture of the model for both the Object State Change
Classification and the PNR Temporal Localization tasks. The
ResNet backbone is followed by two network output heads: a
state change classification head and a PNR temporal localization
head. The state change classification head is produced by global av-
erage pooling on the entire spatiotemporal feature tensor followed
by a classification layer. The PNR temporal localization head is
produced by per-frame average pooling followed by a classification
layer. The overall training loss of the model is the combination
of the loss of two heads which are both cross-entropy loss for
classification.

Boundary Matching Network (BMN). We use BMN [140]
as a baseline for the PNR Temporal Localization task. BMN is a
temporal segment detection method based on confidence prediction
of dense temporal segment proposals. We view the start of the video
as the start of the temporal segment and Point-of-no-return Ipnr as
the end of the temporal segment, so we can convert the problem of
localizing Point-of-no-return Ipnr to the problem of detecting the
temporal segment. In our implementation, BMN uses ResNet as
the backbone model. Furthermore, BMN is only used for the PNR
temporal localization task.

SlowFast + Perceiver. We implement a baseline model whose
architecture consists of SlowFast [70] and Perceiver [105] for both
object state change classification and PNR temporal localization.
SlowFast acts as the video deep feature extractor. The features are
then passed to a Perceiver model. Similar to the previous BMN
model, the SlowFast + Perciever model is only trained for temporal
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(a) Scenarios (b) Universities

Figure 38. Number of hours. We show the distribution of the number of hours across scenarios (left) and universities (right)

Figure 39. Labeled actions. Distribution of verbs (left) and nouns (right) in annotated action instances. Top 45 verbs and nouns are shown
for clarity. See Section D.3 for more details.

Figure 40. Critical frames. Distribution of critical frame times.
Shown relative to the 8s hand-object interaction snippet.

Figure 41. Hand and object sizes. Distribution of bounding box
sizes. Shown in terms of the square root of the box areas.

localization task. The training loss of the model is the cross-entropy
loss for per-frame classification.

Bi-directional LSTM. We implement a Bi-directional LSTM
model [91] for both the object state change classification and PNR
temporal localization. We first pass individual frames to a ResNet

Figure 42. Hand and object locations. Distribution of bounding
box centers. Shown in normalized image coordinates.

Table 14. Number of positive and negative video clips of object
state change in train, validation and test splits.

Split Positive Negative Total
Train 20,041 21,044 41,085
Val 13,628 14,720 28,348
Test 13,561 14,870 28,431

model [95] to extract deep features. The sequence of per-frame
features is then passed to the Bi-directional LSTM as input, with
the output sent to both the per-frame classification head and the
whole-sequence classification head. The overall training loss of the
model is the combination of the loss of two heads which are both
cross-entropy loss for classification.

For the object state change classification tasks, in the current
version we focus on the two-way classification problem of whether
there is a object state change in the egocentric video. In Table 14,
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Table 15. Results of State Change Classification accuracy (%).

Baseline Val Test
Always Positive 48.1 47.7
Bi-directional LSTM [91] 65.3 63.8
I3D ResNet-50 [29] 68.7 67.6

Table 16. Results of Point-of-no-return temporal localization error
(seconds).

Baseline Val Test
Always Center Frame 1.032 1.056
BMN [140] 0.780 0.805
I3D ResNet-50 [29] 0.739 0.755
Bi-directional LSTM [91] 0.790 0.759
SlowFast [70] + Perceiver [105] 0.804 0.828

we illustrate the number of positive video clips that contains an
object state change and the number of negative video clips that do
not contain object state change in the train/val/test splits. In all
three splits, the positive and negative clips are balanced in number.

Besides the above learnable baselines, for object state change
classification, we also present the result of the naive baseline of
always predicting the positive category as the prediction. For the
PNR temporal localization task, we additionally present the result
of the naive baseline of always selecting the center frame of the
trimmed video as the PNR frame, given the possible centre bias of
the data.

The results for object state change classification task are illus-
trated in Table 15. The naive baseline of always positive prediction
yields state change classification accuracy of close to 50%. All
the learnable baselines outperform the naive baseline and achieve
accuracy of more than 60% while Bi-directional LSTM baseline
achieves the best performance. This shows that the learnable base-
lines can learn meaningful information about object state change,
though there is clearly still space for improvement. One challenge
in this task is that there is very large variance in term of the types
of object state changes and objects contained in the videos.

The results for the PNR temporal localization task are illus-
trated in Table 16. The naive baseline of always predicting the
center frame yields a temporal localization error of around 1.1
seconds. Other learnable baselines can achieve better temporal
localization error of around 0.85 seconds or less which shows the
baseline models can learn meaningful information for temporal
localization of object state change. Note that the SlowFast + Per-
ceiver model achieves the best temporal localization performance
of 0.425 seconds on validation set and 0.489 seconds on test set,
which highlights the necessity of using attention-based mechanism
to model the change of object state. One challenge for this task is
that in some actions, e.g., cutting a piece of paper with scissors,
the state change of an object does not necessarily cause significant
change of visual appearance and therefore it is difficult to localize
the PNR.

Table 17. Number of State Change Object and hand bounding
boxes in train, validation and test splits.

Split State Change Object Hand
Train 19,347 33,254
Val 12,912 22,098
Test 13,118 22,576

G.8 Baselines: State Change Object Detection

While we expect that new methods developed for the tasks of state
change object detection will utilize all three input frames (pre, PNR,
post), in this initial stage of the benchmark, we only evaluate single-
frame detection baselines, where only the PNR frame Ipnr is used as
input. We limited our input as many methods for object detection
are primarily designed to work with a single image.

We present the implementation of several baseline methods for
the state change object detection task. In general, the baseline
models for the task can be categorized into two types: (1) directly
detecting the bounding box of the state change object including
Faster-RCNN [190], CenterNet [241], and DETR [27], and (2)
detecting hand bounding boxes first then predict state change object
bounding boxes given the hands such as the 100DOH model [199].
Specifically, the baseline methods are the following:

Faster-RCNN [190] is a two-stage anchor-based 2D object
detector on a single RGB image. In its classification head, the state
change object is the only positive category. We train Faster-RCNN
on our benchmark and use it to directly detect the bounding boxes
of state change objects in PNR frames.

CenterNet [241] is another object detection method on a single
RGB image. It estimates object keypoints to find object center
points and regresses all other object properties, such as size, 3D
location, and orientation. We train CenterNet to directly detect the
bounding boxes of state change objects.

DETR [27] is an object detection model on a single RGB image
based on Transformer [216]. It views object detection as a direct
set prediction problem and uses a transformer encoder-decoder ar-
chitecture to produce a set of object predictions including bounding
box information as well as other information such as category. We
train DETR to directly detect the bounding boxes of state change
objects.

100DOH Model [199] first detects the bounding boxes of the
human hand and objects as well as the relational vectors that links
from each hand bounding box center to an object bounding box
center. The final prediction of the objects are decided as the ob-
ject predictions that satisfies the both the predictions of hand and
relational vectors. We used the 100DOH model pre-trained on
100DOH dataset [199] to first detect hand bounding boxes and then
predict state change object bounding boxes given the hands.

We show the number of state change objects and hand bounding
boxes contained in our dataset in Table 17. The results of single-
frame State Change Object Detection are illustrated in Table 18. All
baselines struggle in detecting the State Change Objects with only
one frame as input as an AP of 8-14%. There are several challenges
in this task. First, the bounding box sizes of state change objects
have large variance. For example, the size of state change objects
can be as large as half of image in the action of “painting the wall”
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Table 18. Results of single-frame State Change Object Detection.
The performance is measured in Average Precision (AP).

Baseline Backbone AP AP50 AP75
Faster-RCNN [190] ResNet-101 [95] 13.4 25.6 12.5
DETR [27] ResNet-50 [95] 15.5 32.8 13.0
CenterNet [241] DLA-34 [233] 6.4 11.7 6.1
100DOH Model [199] ResNet-101 [95] 10.7 20.6 10.1

and as small as a few pixels in the action of “igniting the match.”
Second, when only using one frame as input, the detection models
did not consider the change of object appearance across different
frames. As future work, we hope the researchers will investigate
using models that take multiple frames as input and perhaps develop
frameworks that incorporate tracking or association.

G.9 Discussion

This novel benchmark explores three aspects of objects undergoing
state changes as a result of hand manipulation: the when (i.e. tem-
poral localization of state change), where (i.e., spatial localization
of objects that undergo change) and what (i.e., semantic notion of
action and object transformation). As a first step, we have explored
these independently using readily available localization and clas-
sification methods. However, approaches that aim to tackle this
challenge should focus on jointly understanding the manipulation
with its spatio-temporal impact on objects as these are transformed.
For example, knowing an object is being split should offer a strong
prior to the PNR localisation and detect two or more bounding
boxes after the point-of-no-return. Such methods that tackle the
dependencies between the tasks are yet to be developed. We hope
this benchmark will spur innovative approaches that bridge the gap
between action perception and the impact of actions on objects and
environments.

G.10 Contributions statement

Kris Kitani helped formulate and write the object state change
benchmark, designed the annotations and tasks for the HO bench-
mark. Dima Damen helped with the formulation and writing of
the object state change benchmark, designed the annotations for
the Hands and Objects (HO), and Forecasting benchmarks. Ilija
Radosavovic coordinated HO data annotation, annotation analysis,
and contributed to the definition and writing of the HO bench-
marks. Rohit Girdhar helped coordinate the HO data annotation
and annotation analysis. Abrham Gebreselasie adapted the Slow-
Fast+Perceiver model for PNR temporal localization. Qichen Fu
implemented all of the state change object detection baselines.
Raghava Modhugu implemented the BMN baseline for PNR tem-
poral localization. Kristen Grauman contributed to the formulation
and writing of object state change benchmark. Siddhant Bansal
helped with the processing of HO data, development of HO data
loader for PNR temporal localization and implemented the I3D
ResNet-50 baselines. Xingyu Liu was the lead coordinator and
mentor of the HO benchmark baseline implementations, and also
contributed to the definition and writing of HO benchmarks. Xuhua
Huang developed of the initial SlowFast+Perceiver model. Yifei

Huang implemented the Bi-directional LSTM baseline for the PNR
temporal localization and state change classification.
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H. Audio-Visual Diarization Benchmark
This section details the Audio-Visual Diarization (AVD) bench-

mark task definitions, annotations, baseline models, and results. As
noted in Appendix B, the AVD benchmark uses only video where
informed consent for capturing identities is explicitly collected
from all participants in the scene, including faces and voice.

H.1 Motivation

Egocentric human perception is driven by inferring useful infor-
mation from all the primary senses. While visuals captured by the
eyes are one of the main information channels, sounds as captured
by the ears are equally relevant. In particular, for understanding
humans’ interaction with the environment from the first-person
perspective, detecting, localizing, tracking (both in 3D space and
time) and understanding sounds by combining the necessary acous-
tic information with visual signals becomes even more critical.
Several psychophysical studies have proven that humans are re-
markably good at locating where a sound came from in 3D space
with respect to their head position [156]. Sensitivity of humans
to moving sounds in horizontal and vertical planes is also well
documented [117, 178].

For a long time, the computer vision community has studyied
the problem of precise localization of objects and people, robustly
tracking and segmenting them using images. In this effort, we aim
to bring audio (human speech in particular) into the mix. Truly
audio-visual systems not only enable richer capture and analysis
of the environment (and a user’s interaction with it), but they also
help build technologies for visually or acoustically impaired users
(e.g., hearing aids, augmented reality).

The goal of this benchmark is to help advance the state of the
art in audio-visual understanding from the egocentric viewpoint.
Specifically, from a conversational perspective, the benchmark aims
to understand who is talking when, and about what. From a visual
perspective, we are also interested in where the speaker is located.
Given an egocentric video, the proposed tasks require extracting
the spatial location of the speakers, their voice activity across the
length of the video, and the content of their speech.

Egocentric data presents several unique attributes to this prob-
lem. Firstly, sound sources may be visible within all, some, or none
of the visual frames, depending on their movement within the scene
and the movement of the camera wearer. Secondly, although the
camera wearer is never visible (due the head mounted camera de-
vice) they are clearly audible and in fact often amplified compared
to the other conversation participants due to the closeness to the
microphone that captures the video. Third, natural dynamics in
the scene (camera wearer walking, running, rapid changes in head
movement etc.) add significant blur and distortion to the visual
stream—some such noise is structured and relevant for understand-
ing the context and semantic content in the scene.

H.2 Related Audio Visual Learning Work

There is a recent resurgence of work on audio-visual analysis within
and beyond the computer vision community. These works tackle
various aspects of audio-visual understanding, including source
localization, cross-modal feature learning, audio spatialization, and
audio source separation, as we briefly review next.

On audio-visual detection and tracking, recent works on mul-
timodal learning explore ways to localize sounds in a given video
frame [14,197,212] and infer spatialized sound from video [80,161].
Capturing and processing multi-channel audio is being studied
in audio and microphone array signal processing communities,
specifically from a user’s perspective to understand a given scene
[101, 169]. Building upon these, it is reasonable to expect that
human-centric audio has information content that can directly im-
prove visual object categorization and recognition. Indeed, this is
observed in some recent work where audio disambiguates certain
visually ambiguous actions [110, 226]. For actions and activity, au-
dio events can also be directly used to perform summarization [13].
In particular, capturing ego-driven actions and activity and separat-
ing them from general background actions and activity in the scene
is critical.

Alternatively, visual information has been used to disambiguate
certain audio tasks like speech transcription. Specifically, audio-
visual speech recognition has received a lot of attention in the
last decade with multiple studies suggesting that automatic speech
recognition (ASR) could benefit from visuals of the scene, or other
non-acoustic information [5,104]. As shown in here, it is reasonable
to expect that lip reading from a first person point of view would
also benefit ASR systems.

In addition, audio-visual cross-modal learning may provide
insight and solutions to one of the oldest problems in egocen-
tric human communication ecology, referred to as cocktail party
problem (CPP). The essence of CPP is “How do we recognize
what one person is saying when others are speaking at the same
time?” Human listeners must perceptually integrate the simultane-
ous sounds originating from one person’s voice (e.g., harmonics and
speech formants) and segregate these from the concurrent sounds
of other talkers. In such situations, humans leverage visual infor-
mation such as from lip movements to better understand, while
their auditory system helps with focusing on a particular speaker
characteristic while ignoring other speech/noise. Recent work on
audio-visual diarization [83] and multimodal source separation
from video show that CPP and its variations can benefit from visual
signals [6, 57, 79, 81, 82, 171, 238].

Furthermore, humans are pretty good in understanding the con-
text of a conversation even when words are incomprehensible. They
are able to fill in the missing details using their context knowledge.
This can be extended to sound sources that are non-humans as well.
For a more detailed account of CPP please refer to [17]. Fully
addressing CPP requires not only identifying and separating the
different sound sources in the scene, but also understanding the
auditory attention of the camera wearer—in other words, which
sound source is the user attending to at the moment, or which one
may the user want to attend to in the near future.

H.3 Related Datasets and Benchmarks

EPIC-Kitchens: [42,44] EPIC-Kitchens is among the most widely
known ego-centric dataset with first-person view events and an-
notations. The dataset comprises of multi-faceted, audio-visual,
non-scripted recordings in native environments, i.e. the wearers’
homes, capturing all daily activities in the kitchen over multiple
days. The dataset is 100 hours, 20M frames, 90K actions in 700
variable-length videos, capturing long-term unscripted activities in
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45 environments using head-mounted cameras. Annotations are
collected using a Pause-and-Talk narration interface. The dataset
is widely used in action recognition, action detection, action an-
ticipation, cross-modal retrieval, as well as unsupervised domain
adaptation for action recognition.

VoxCeleb: [40, 165] VoxCeleb 1 and 2 comprise recordings of
more than 6K speakers spanning a wide range of different ethnici-
ties, accents, professions, and ages. The data is non-egocentric and
is annotated for active speaker face bounding boxes, face tracks,
and anonymous person IDs. VoxCeleb 2 in particular is defined
for boosting research in speaker recognition, and it contains over
a million utterances. Videos included in the dataset are shot in
a large number of challenging visual and auditory environments.
These include interviews from red carpets, outdoor stadiums and
quiet indoor studios, speeches given to large audiences, excerpts
from professionally shot multimedia, and even crude videos shot
on hand-held devices. Audio segments present in the dataset are
degraded with background chatter, laughter, overlapping speech
and varying room acoustics.

VoxConverse: [39] VoxConverse is a related audio-visual di-
arization dataset consisting of over 50 hours of multi-speaker clips
of human speech, extracted from YouTube videos. Similar to Vox-
Celeb, this data is also non-egocentric. This dataset was proposed
to boost research in speaker diarization for audio-visual inputs.
A bulk of the data instances are from political debates and news
anchors so as to capture conversational scenarios with overlapping
and interrupting speech.

AVA: [31, 192] The AVA spoken activity datasets are AVA
speech and AVA active speaker. AVA speech is a densely annotated
audio-based speech activity collection of AVA 1.0 third-person
videos, and explicitly labels 3 background noise conditions, re-
sulting in approximately 46, 000 labeled segments spanning 45
hours of data. AVA active speaker associates speaking activity
with a visible face, resulting in 3.65 million frames labeled across
approximately 39, 000 face tracks.

AVDIAR: [84] The closest egocentric dataset for audio-visual
diarization is AVDIAR. It consists of 23 staged sequences, with
each sequence duration ranging from ten seconds to three minutes
(a total of 27 minutes of video). Each sequence comprises of 1-4
speakers some standing and some walking around in the visual
FOV and having a conversation. The capture is done via a head
mounted capture on a dummy head.

EASYCOM: [53] EASYCOM is a recent dataset open sourced
for the purpose of boosting egocentric audio-visual learning re-
search with a focus on multi-channel data and CPP. The dataset
corresponds to 5 hours of conversational content with 3 − 5 par-
ticipants in a closed room setting. The content involves playing
games, ordering food from a menu, and a general discussion on
a prespecified list of topics. During the recording of the conver-
sations, restaurant-like noise was played on loudspeakers in the
room to mimic a real restaurant scene. The EASYCOM capture
device use glasses with 6 mics attached to the frame. Although rich
in terms of multi-channel egocentric acoustic content, the setup is
constrained in terms of realism, the data is not in the wild, and most
importantly the dataset is small.

Existing audio-visual datasets vs. Ego4D: Of these existing
datasets, EPIC-Kitchens, AVDIAR and EASYCOM are egocen-
tric. However, EPIC-Kitchens focuses on solitary activity by the

camera wearer, and neither the video nor annotations accommo-
date audio-visual conversation tasks requiring multiple people. Al-
though EASYCOM contains audio-visual conversation, it is a small
dataset containing partly scripted conversations that are not in-the-
wild. The participants in the sessions also do not move around.
AVDIAR does include some participants who move around, but
the camera wearer is a dummy head and, similar to EASYCOM,
the data is not in-the-wild (sessions all are done in the same en-
vironment/scene). Ego4D accounts for all these aspects. Lastly,
in contrast to VoxCeleb, VoxConverse and AVA, Ego4D offers
first-person video and its conversation videos take place in casual
daily-life environments with multiple speakers.

H.4 Tasks: Definition and Annotations

Here we detail the task definitions, the corresponding annotations,
and the evaluation metrics. We propose a suite of tasks for the
Audio-Visual Diarization (AVD) benchmark. These tasks are ab-
breviated as: Localization & Tracking, Active Speaker Detection,
Diarization and Transcription. These tasks jointly capture who
is talking when, to whom, and about what in a given egocentric
conversational scene. Observe that these tasks are implicitly tied
to each other; each subsequent task is driven in some form by a
previous task (as further clarified in the task descriptions below).16

Task 1: Localization & Tracking: Where is the person
in the visual field of view? This first task in AVD captures
the spatial position of all the probable speakers in the scene, from
the point of view of the camera wearer. The goal of the task is
to compute bounding boxes for them. Unlike classical face de-
tection benchmarks, this task is challenging in the sense that the
dynamics of the camera wearer’s head (coming from natural con-
versations) leads to significant movement in a speaker’s apparent
spatial location.

Annotations: For each speaker present in the 5 min clip a bound-
ing box is provided. Each frame of the video is annotated for the
task. We first utilized a face detection and tracking model to esti-
mate these bounding boxes, and then a team of human annotators
validated and corrected these machine-generated boxes to improve
annotation quality. A bounding box is considered a valid human
annotation if it captures 80% of the speaker’s face; we peform
a quality check steup to ensure this. Sideways looking faces are
also annotated. Note that speakers who are very far from the cam-
era wearer (oftentimes several meters away in the scene) and who
do not come into conversational contact with the wearer are not
annotated.

Evaluation: Recall that the goal of the task is to localize as
well as track the speakers in the scene. Hence the evaluation
metrics proposed account for the accuracy of trajectory of detected
bounding boxes. We follow the standard multiple object tracking
(MOT) metrics to quantify the speaker tracking results. There are
many different MOT metrics, in which we are most interested in
the MOTA in the CLEARMOT metrics [19], and IDF1, IDP, IDR
in the Identity metrics [18]. MOTA, the multiple obtect tracking

16Note that although speech transcription and source localization are
distinct from audio-only speaker diarization— all of which are well defined
research paradigms in mainstream audio, speech and vision community—
we cumulatively refer to all these together under the umbrella of audio-
visual diarization for Ego4D.
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accuracy, is a combined metric of false alarms, false positives and
identity switches. MOTA is based on matching the tracking results
with the ground truth at frame level, while the IDP (ID precision),
IDR (ID Recall) and IDF1 (ID F1 score) are based on the tracking
result to ground truth matching at the trajectory level. ID metrics
give a tracker’s performance on maintaining correct identification
for each target.

Task 2: Active Speaker Detection: Who is speaking?
The next task in AVD is to detect the active speaker in the scene.
This task is in principle similar to active speaker detection—where
the goal is to detect which of the visible people in the scene are
speaking at a given time [192]. It builds on top of the previous
localization and tracking task to recognize each of the speakers
whose face bounding boxes are detected. Hence, this task does not
take into account speakers who are not visible in the camera’s FOV.
Note that active speaker detection is also an important aspect of
speaker diarization (which is the next task in the benchmark).

Annotations: We provide an anonymous speaker label (e.g.,
speaker 1, 2 etc.) for each speaker visible in the clip. The camera
wearer is assigned the label C. This is done by utilizing the face
bounding box tracks annotations and labeling each track one at
a time. Hence, each face track gets assigned one unique label,
and multiple tracks within a single clip may share the same label
(corresponding to the same speaker). However, the labels are clip-
specific, i.e., a speaker who may be present across multiple clips
does not get assigned a shared unique label across the clips. Again,
speakers who are never in the visual FoV are not assigned a label.

Evaluation: We use the object detection mAP to quantify the
active speaker detection result. This is a frame-wise metric. In a
video frame, if the intersection over union (IoU) between a detected
face bounding box and the ground truth face bounding box exceeds
a predefined threshold, i.e. 0.5, we have a positive face detection.
Each detection has an associated class to indicate whether it corre-
sponds to an active speaker. Active speaker detection methods give
a confidence score of the active speaker class for each detected face
bounding box [211].

Camera Wearer’s Voice Activity Detection: Note that the camera
wearer’s face is never visible in the camera’s field of view, and so
they do not have any face tracks associated with them. However,
in many cases, they are the dominant speakers. This is mainly
because they are driving the interactions in many cases, and since
their mouths are the closest to the microphones, their voice is in
general amplified in the audio stream compared to other speakers.
We propose to also consider them as active speakers and detect
their voice. We use the object classification mAP to quantify the
result of the camera wearer’s voice activity detection.

Task 3: Diarization: Who spoke when? This next task fur-
ther expands on the temporal aspect of active speaker detection
(from the previous task). Given the set of speakers and their spatial
localization in the visual field of view, this task aims to capture
the voice activity of the speakers. It is identical to speaker di-
arization, a well studied research problem in the speech and audio
domains [10, 177] and answers the question, “who spoke when”.
While speech from speakers that overlap with each other is one of
the biggest issues to solve in this task, the egocentric perspective
adds more complexity in terms of head motions and other dynam-
ics associated with natural conversations. Note that the outputs of

active speaker detection (the earlier task in the benchmark) also
drive this task.

Annotations: For every active speaker label (where the anno-
tations are from the previous Active Speaker Detection task), a
human annotator marks the start and end time of that person speak-
ing. We account for overlapping speech segments where multiple
speakers talk over each other, but we ignore speech not relevant to
the conversation such as background speech from a TV or speech
further away from the camera wearer. Note that speech segments
from the camera wearer are also annotated. The annotators rely
both on the audio and the visual stream for creating these labels.

Evaluation: Diarization error rate (DER) is the de facto evalu-
ation metric for speaker diarization [11], and it is well studied in
the audio and speech processing community. DER measures the
fraction of total time (in a given clip) that is not attributed correctly
to a speaker or to non-speech. It is defined as follows:

DER (%) = (Emiss + Efa + Espk)× 100, (21)

where Emiss denotes the fraction of time that has been predicted
to be non-speech while that segment is attributed to a speaker
in the reference. Efa denotes the fraction of time that has been
predicted to be associated with a speaker, but is actually labelled as
non-speech in the reference, and Espk denotes the fraction of time
where speech is associated with the wrong speaker. All errors are
computed as a fraction of the total amount of speech.

Task 4: Transcription: What did the speaker say? The
final task of AVD is to transcribe the speech of each speaker, i.e.,
performing ASR. Similar to the diarization task, some of the chal-
lenges associated with the transcription task include overlapping
speech and environmental noise. In addition, the camera wearer’s
head movement results in a significant change of the audio volume
of the speech recorded from others.

Annotations: Since the clips contain multiple speakers with
overlapping speech segments and with different volumes, the final
transcriptions are obtained in multiple passes. In the first pass,
initial human annotations based on voice segments are merged with
automatic annotations for regions with low volume. In a subsequent
pass, human annotators had to correct and assign segments of tran-
scriptions to the corresponding voice activity segments per speaker
while also annotating overlapping speech. Note that annotators
had both the audio and video available for annotation and, besides
spoken words, the occurrence of other artifacts such as unintelli-
gible speech or incomplete words have also been annotated. The
final transcription annotations for a clip consist of a sequence of
segments labeled with begin time, end time, transcript and speaker
ID within the clip. In evaluations, we applied ASR to these seg-
ments individually and computed the performance over all of these
segments. Please note that the time segments associated with the
transcripts are not the same as the ones used in diarization because
we separately annotated the overlapping regions here to reduce
transcription errors and account for speakers talking in low volume.
This allows us to also distinguish voice activity from speech activity.
In addition, the use of time-segmented transcriptions is also slightly
different from standard ASR datasets in speech community which
mainly have text and no timestamps.

Evaluation: We utilize the Word Error Rate (WER), a standard
ASR metric, for evaluating this task [114]. First, the minimum edit

49



or Levenshtein distance is computed between the reference and
hypothesized transcription. WER then measures the ratio of the
number of word substitutions (S), deletions (D) and insertions (I),
i.e. the total number of edits necessary to convert the hypothesized
transcription into the reference relative to the total number of words
(Nw) in the reference:

WER (%) =
S +D + I

Nw
× 100. (22)

H.5 Data Statistics

From across the 3,670 hours of video in Ego4D, approximately
764 hours of data contains conversational content, and are directly
relevant for the AVD and Social benchmarks. Please refer to Sec-
tion I.5 for a complete description of the experimental design and
scenarios used in these sessions. From this set, a randomly chosen
subset of 572 clips (each 5 minutes long) are annotated for this
first version release. Of these 572 clips, 389 clips are marked for
training, 50 clips for validation, and the remainder is the testing set.

Table 19 and Figure 43 summarize statistics about the speaker
content from across these clips. Observe the long tails of mean
and maximum number of speakers in the dataset. We note that
in the first version of the data release, due to the fact that the to-
tal number of clips is relatively small, the test and/or validation
batches may be biased in terms of changes in speakers’ accents,
changes in vocabulary usage (since the participants are from dif-
ferent cultural backgrounds from across the world), and in general
changes in nature of interactiveness between speakers in a scene.
There is marginal distributional shift among the training, testing
and validation splits. This is mainly because of the smaller number
of annotations in this version of AVD for Ego4D. We expect these
distributional shifts to be less significant in future releases and as
more data will be annotated.

Statistic (Avg.) Value
Speakers per clip 4.71
Speakers per frame 0.74
Speaking time in clip 219.81 sec
Speaking time per person in clip 43.29 sec
Camera wearer speaking time 77.64 sec

Table 19. AVD Data Statistics.

H.6 Baseline Modeling Framework

Recall that the 4-part tasks in this benchmark are tied to each other,
in the sense that representations learned from one task may be
relevant for the others. To that end, we propose a baseline learning
framework that addresses each task in a sequential fashion. The
framework includes the following steps:

• We first detect people’s heads and do short term tracking in
the video. The short term tracker follows each detected head
by expanding a set of trajectories based on their positions,
sizes and the appearance of the person. The trajectories may
end when occlusion happens or when the tracked person goes

out of the field of view. New trajectories can also be added to
the trajectory set.

• The short term tracker’s trajectory for each person is often
fragmented into multiple parts. Hence, we then optimize the
grouping of the tracklets in step one so that the trajectories of
each person can be linked together. We formulate the problem
as a constrained combinatorial optimization problem. Integer
programming can be used to solve the problem directly but
it has exponential complexity. For efficiency, we develop a
greedy approach which is much faster and still gives strong
results.

• We then classify each person/head in each video frame as an
active speaker or not. Based on the classification result and
the corresponding detected long-term trajectories, we further
associate the audio/speech to each person in the video. We use
this preliminary list of audio feature embeddings to further
extract and match un-associated audio segments to speaker
labels.

• We then use two methods to detect the camera wearer’s voice
activity. The first method uses high energy audio segment in
the clip (under the assumption that their voice has natural am-
plification compared to the remaining speakers). The second
method is a deep classifier that predicts whether the wearer is
speaking.

• Lastly, we applied ASR to the speech regions based on the
ground truth segmentation and evaluated the WER across
all segments. Evaluating the system by using another seg-
mentation method is challenging especially in the case of
overlapping speech segments. Jointly modeling time seg-
ments and transcriptions will be a challenging problem (as
we discuss in Section H.7).

We describe further details about each of these steps below, and
Tables 20–29 summarize the resulting performance metrics for the
tasks.

Audio Only Models for Speaker Diarization The problem
of speaker diarization from audio has been studied to a consid-
erable extent in the field of speech processing [10, 177]. For the
audio-only baseline system, the VBx diarization approach has been
utilized [128] for having shown superior results on different types
of datasets such as CALLHOME [3] (telephone conversations),
AMI [28] (meetings) and DIHARD II [59] (myriad of domains
ranging from audiobooks to YouTube videos). This method re-
quires speech activity regions and these were obtained using the
ASpIRE model based on a time delay neural network (TDNN)
with statistics pooling, available with the Kaldi speech recognition
toolkit [181]. We refer to this as kVAD (the Kaldi VAD model).
Although this kVAD has been trained on slightly different data
(telephone conversations), and thus does not provide the best possi-
ble results, it has been chosen for the baseline system because of
its general availability.

The speech activity regions are uniformly segmented to ob-
tain shorter segments and speaker embeddings (so-called x-vectors
[206]) are extracted one per subsegment. The x-vectors are ob-
tained with a ResNet101 extractor [96] trained to produce speaker-
discriminative embeddings. The input to the network are log Mel-
filter bank features every 10 ms, and given a segment of speech,
it computes a single 256 dimensional vector that represents the
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Figure 43. AV Diarization data statistics. Mean and maximum number speakers in FOV, and number speakers per clip.

Figure 44. AV Diarization benchmark annotations summary. The four tasks are annotated in a sequential fashion, starting with localization
and tracking of speakers, active speaker detection labels, diarization time stamps, and finally transcriptions. The figure shows the face
detections (highlighted by bounding boxes), speaker detection (shown by the anonymous person IDs 1, 2, etc.), active speaker (highlighted in
green) and voice activity (shown below in green highlighted time segments). Speakers in the visual FOV who are not talking are highlighted
in dotted red boxes. The clips used for AVD (and Social Interaction) have consent from participants to leave their faces unblurred.

whole segment. The information of the whole segment is aggre-
gated with a statistical pooling layer which computes the mean and
standard deviation of activations over the time domain. A linear
transformation is then used to reduce the dimensionality to 256.
The training data consisted of VoxCeleb1 [165], VoxCeleb2 [40]
and CN-CELEB [64] together, totalling 2877 hours of speech from
8178 speakers.

The x-vectors are initially clustered to a few dozens of classes
using agglomerative hierarchical clustering. This initial clustering
is fed as initialization to a Bayesian hidden Markov model which
estimates altogether the number of speakers in the recording as

well as the assignment of x-vectors to the states. Each state in the
model corresponds to one speaker and the probability of observing
a particular x-vector in a particular state can be interpreted as the
corresponding speaker producing the corresponding segment of
speech. The most relevant hyperparameters of the model were fine-
tuned to obtain the best DER performance on the Ego4D validation
set. The VBx implementation published by Brno University of
Technology is publicly available as well as the training recipe
published by Phonexia Research.

Short-term People Tracking The goal here is to track peo-
ple’s faces. However, our method can also be used to track the
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Figure 45. Example annotations showing the face detections (highlighted by bounding boxes), speaker detection (shown by the anonymous
person IDs 1, 2, etc.), active speaker (highlighted in red) and voice activity (shown below in blue highlighted time segments). As illustrated
here, the data for AVD includes people walking around and talking, sitting and playing games etc. The clips used for AVD have consent
from participants to leave their faces unblurred.

whole body of each person. The short-term tracker maintains a set
of trajectories. The trajectories include the attributes such as the
person-ID, the frames tracked, a life counter, the appearance fea-
tures and the positions of the tracked bounding boxes. Throughout,
we use the term “person-ID” to refer to an anonmyous tag for a per-
son in the video (person 1, person 2, etc.); no actual identities are
available in the data, and the benchmark does not aim to perform
any person identification. There are two kinds of trajectories. If a
trajectory’s tracked frames are less than a threshold, e.g. 5, it is in
probation and is not counted as a real trajectory even though we
maintain all the information for them. When a trajectory’s tracked
frames are greater than the threshold, it becomes a real trajectory.
Each trajectory also has a life span. The life of a new trajectory
starts from a fixed value. The life of a trajectory is restored to a
fixed maximum value, such as 10, if the trajectory is matched to a
candidate person head bounding boxes. Otherwise, the trajectory
goes into a maintenance mode and its life decreases by 1 each time
it fails to find a match. If the life of a trajectory goes to 0, it is
removed from the trajectory set.

The key component of the short-term tracker is matching trajec-
tories to the candidate head bounding boxes in each frame. This
can be formulated as the following optimization problem:

min
∑
(i,j)

ci,jxi,j (23)

s.t. xi,j forms a max-matching,

xi,j = 0, if (i, j) ∈ E,

xi,j = 0, 1,

where xi,j is 1 if trajectory i matches candidate head box j and 0
otherwise. E is a set in which the pairs of trajectory and candidate
cannot match each other, examples include cases such as the candi-
date is too far away, the size is too different or the appearance does
not match. ci,j is the cost of matching trajectory i and candidate
head detection j. This cost of matching, ci,j , is computed as a
linear combination of the normalized bounding box distances and
the difference of the appearance features. The normalized bound-
ing box distance is defined as the ratio of the Euclidean distance
between the two corners of the last bounding box in the trajectory
and the detected head bounding box in the image to the size of the
detected bounding box. Each trajectory also maintains a feature
vector to characterize the most recent appearance of the tracked
person. This feature vector is obtained from a feature embedding
network trained on a large person head dataset.

This optimization problem can be solved efficiently using the
Hungarian algorithm or the primal dual algorithm. Due to the
imperfect features, the optimization may have an identity switching
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problem if two targets cross paths. To solve the problem, we enforce
the longer trajectories to have higher priority to match. We use a
two-step matching scheme. We first match all the trajectories that
are longer than a specific threshold chosen empirically. Once done,
we then match the shorter trajectories. This scheme naturally gives
higher priority to longer trajectories, thereby reducing mismatches
among them. This is more robust than a single stage matching
where all trajectories are handled together.

In our implementation, the person detector is a Yolo-V3 de-
tector [187] which detects the head and person bounding box si-
multaneously. The detector is trained on images from the Google
OpenImage dataset [123] and a fisheye image dataset [73]. We use
the detected head bounding boxes for people tracking. The person
head appearance’s feature is extracted using the person embedding
network, which is trained on the VoxCeleb2 dataset using the triplet
loss. The network has the structure of a ResNet-18.

Long-term Tracking by Trajectory Matching The short
term tracker generates fragmented person trajectories. If a person
is occluded or goes out of the field of view and reappears, it will
receive a new ID. The fragmented trajectories are referred to as
tracklets. We need to group the tracklets throughout the whole video
to generate the final trajectories for each person. The grouping
problem can be formulated as follows:

min
∑
m,n

Dm,nym,n (24)

s.t. ym,n = yn,m,∀m,n,

ym,k + yk,n ≤ 1 + ym,n,∀m,n,

ym,n = 0, if m and n overlap in time or Dm,n > g,

ym,n is binary ,

where ym,n = 1 if tracklet m and n can be grouped together
and otherwise ym,n = 0. Dm,n is the appearance distance be-
tween the trackelet m and n and g is a threshold. Here Dm,n =
min{i∈Tm,j∈Tn} ||fi − fj ||2, where Ti is the set of person head
boxes in tracklet i and fi is the corresponding feature embedding.
The constraints require the grouping to be reflective: if tracklet m
and n can be grouped together so can n and m, transitive: if m and
k can be grouped together and so can k and n, then m and n can be
grouped together. Two tracklets cannot be grouped together if they
have time overlap or their distance is greater than a threshold g. The
optimization can be solved using integer programming. However,
this method has exponential complexity. We propose a fast greedy
algorithm to solve the problem.

The greedy algorithm starts by treating each initial tracklet as a
trajectory and progressively groups two trajectories with the closest
D until no trajectories can be grouped together. Since the distance
between two trajectories can be computed by finding the minimum
of all the “element” tracklet pair distances, the merging procedure
is efficient if we pre-compute and cache the element pair distance.
This greedy approach gives strong results while maintaining low
complexity.

The algorithm reduces to the minimum spanning tree method
if there is conflict between each pair of trajectories. However, if
there are time-conflicting tracklets, there is no guarantee the greedy
algorithm gives the globally optimal solution. We illustrate the

Metric Valid Test
MOTA 74.52 71.94
MOTP 79.07 79.17
IDF1 84.92 80.07
IDR 80.40 73.52
IDP 89.97 87.90

Table 20. Localization and tracking baseline metrics on the valida-
tion and the test sets respectively.

method through a simple example: Assume there are trackelets
{T1,T2,T3,T4}, T1 and T2 have time conflict, and T3 and T4 have
time conflict. D(T1,T3) = 10, D(T2,T4) = 1, D(T1,T4) = 3 and
D(T2,T3) = 4. We assume g = 20. Using the proposed greedy
method, the solution P is {{T2,T4},{T1,T3}} whose overall cost
is 11. However, the optimal solution is {{T1,T4},{T2,T3}} whose
overall cost is 7. Even though the greedy method does not guar-
antee the global optimal solution, empirically we observe that the
proposed method give strong results. In fact, if the person embed-
ding is accurate, these corner cases would probably never occur
and the greedy result would approach the globally optimal solution.

Table 20 summarizes the tracking metrics MOTA, MOTP, IDF1,
IDR, and IDP on the validation and test sets.

Active Speaker Detection: We use two approaches for active
speaker detection. One approach is based on mouth region classifi-
cation, and the second method is a transformer based audio-visual
method for active speaker detection [211].
RegionCls: Our first approach is based on the classification of
mouth regions. It first computes the 3D head orientation using
a regression network. In our implementation, the z direction is
into the image; if the head 3D orientation z coordinate on the unit
sphere is greater than 0.3, we assume the face is away from the
camera. If the face is facing away from the camera, we ignore the
image and the active speaker detection result is set to null. For
faces looking at the camera, our method first regresses the facial
key points using the image within the person’s head bounding box.
We use the mouth key points to crop out the mouth image. The
cropped mouth image is then sent to a classification network to
classify whether the speaker is talking or not.

Note that we also explored using multiple images, wherein we
stack a short sequence of cropped mouth images in a time interval
for active speaker classification. Our experiments show the multiple
mouth images input do not significantly improve the result. This is
probably due to the fast movement of the camera and sometimes
difficult angles of the face. This causes inaccurate cropped mouth
regions.
TalkNet: [211] TalkNet is an end-to-end pipeline that takes the
cropped face video and corresponding audio as input, and decides
if the person is speaking in each video frame. It consists of a
feature representation frontend and a speaker detection backend
classifier, as illustrated in Figure 46. The frontend contains an audio
temporal encoder and a video temporal encoder. They encode the
frame-based input audio and video signals into the time sequence
of audio and video embeddings, representing temporal context.
The backend classifier consists of an inter-modality cross-attention
mechanism to dynamically align audio and visual content, and a
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Algorithm 1 Greedy Tracklet Grouping

Initialize sets P={S1,S2, ..., SN}, where Si = {Ti}, Ti is the tracklet i and N is the number of tracklets.
for (m, n), m=1..N and n=1..N do

compute D(m,n)
end for
while True do

for (Sm, Sn), Sm ∈ P and Sn ∈ P , and (Sm, Sn) do not have time conflict do
compute F (Sm, Sn) = minTa∈Sn,Tb∈Sm D(a, b)

end for
(m∗, n∗) = argmin(F (Sm, Sn))
if (m∗, n∗) is empty or F (Sm∗ , Sn∗) > g then break
end if
Sm∗ = Sm∗ ∪ Sn∗ and P.pop(Sn∗ )

end while
P includes the grounded trajectories

self-attention mechanism to observe speaking activities from the
temporal context at the utterance level.

Tables 21, 22, 23 and 24 summarize the resulting performance.
For each of the two proposed baseline models, we report perfor-
mance summaries with pretraining based on AVA and also models
trained using only videos from the Ego4D training dataset. Note
that the video-only approach can be combined with any voice activ-
ity detection to remove false alarms. Here we use such an algorithm
from [203], and we refer to this as sVAD This can greatly improve
the active speaker detection results. The max-filtering has a win-
dow size of 11. TalkNet also has a built-in smoothness filtering to
post-process the raw classification result.

Model mAP@0.5
RegCls w/o smoothing 29.68
RegCls + max-filtering 31.95
RegCls + max-filtering + sVAD 33.72
TalkNet 34.75
TalkNet + sVAD 34.56
Always Speak 24.46

Table 21. Active speaker detection baseline metrics on the test
set with pre-training using AVA. In Always Speak, all the detected
faces are classified as active speakers.

Model mAP@0.5
RegCls w/o smoothing 29.65
RegCls + max-filtering 32.77
RegCls + max-filtering + sVAD 34.35
TalkNet 50.90
TalkNet + sVAD 49.66

Table 22. Active speaker detection baseline metrics on the test set
using training videos in the Ego4D dataset.

Model mAP@0.5
RegCls w/o smoothing 22.09
RegCls + max-filtering 22.88
RegCls + max-filtering + sVAD 25.53
TalkNet 34.36
TalkNet + sVAD 34.65
Always Speak 20.94

Table 23. Active speaker detection baseline metrics on the valida-
tion set with models trained on AVA dataset. In Always Speak, all
the detected faces are classified as active speakers.

Model mAP@0.5
RegCls w/o smoothing 20.33
RegCls + max-filtering 21.93
RegCls + max-filtering + sVAD 24.60
TalkNet 51.04
TalkNet + sVAD 50.58

Table 24. Active speaker detection baseline metrics on the valida-
tion set using training videos in the Ego4D dataset.

Matching Speakers Outside FoV: Based on the tracked
heads and the active speaker detection results, we can associate the
audio to the visible people in the scene. However, this is still not
complete because there are cases in which the speaker is outside of
the visual field of view. To solve this problem, we first create an
audio-signature for each visible person in the video.

We extract one second of audio centered at each video frame
time instant. If the audio corresponds to a speaking head in the im-
age, we compute the audio embedding of the one second audio and
insert the feature into the audio signature library of the person. The
audio embeddings can be obtained from any speech representation
learning methods. We explored several models including a modi-
fied ResNet18 which takes audio spectrogram logarithm magnitude
in one-second windows as the input and trained on the VoxCeleb2
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Figure 46. TalkNet: An audio-visual temporal network for detecting and tracking the active speaker in a video [211]. Figure is from [211].

dataset using triplet loss, and a version of wav2vec 2.0 [15]—a
self-supervised approach to speech representation learning.

We parse the video and find instants when a particular person
is not in the video frame and match the audio embedding to the
person’s audio signature library. We find the minimum distance
of this audio embedding to all the signature audio embeddings in
the library. If the distance is less than a predefined threshold, we
classify the person as speaking and otherwise not. Note that the
audio embedding is used only within the same 5 minute video clip
and never across video clips. Person IDs are always anonymous
tags (person 1, 2, etc.).

We use this method to detect all the background audio of the
people of interest when they are not visible. This method assumes
that the active speaker is perfect. In reality, active speaker gives
noisy results. This would cause other people’s voice feature to be
included in a person’s signature library and affect the final audio
classification result.

Tracking Camera Wearer’s Audio: The camera wearer is a
special participant because their face is invisible in the egocentric
videos. The active speaker detection method thus cannot be used
to associate the wearer with their voice. We use two methods to
detect the camera wearer’s voice.

Method I: The first method uses energy filtering followed by
audio matching. This method does not need ground truth labeling
of the camera wearer’s voice activities. Since the microphone of the
camera is usually closer to the wearer’s mouth than other subjects
in the scene, the amplitude of the wearer’s voice often has higher
energy than other participant’s voices. We use this heuristic to
extract candidates of the wearer’s voice by choosing portions of
audio with energy higher than certain threshold. Since different
recordings have different levels of loudness, we normalize the
audio using the maximum energy and then choose the possible
wearer’s voice using a fixed percentage of the maximum energy.
This threshold percentage is set to be as high as possible to avoid
false alarms. Once the candidate audio is selected, we use the same
audio matching method described in the previous section to find all
the audio that belongs to the camera wearer. This simple method
works reasonably well as summarized in Table 25. The approach
fails when the wearer never talks or talks in a very low voice, and
in general the baseline works better for near range microphones
than long range microphones.

Method II: In the second method, we directly classify the au-
dio at each time instant to two categories: wearer’s voice or not
wearer’s voice. The logarithm magnitude of the spectrogram at
40ms window is the input. The network is a modified ResNet.

The network is trained on the Ego4d AV training dataset using a
standard cross-entropy loss.

We use classification mAP to quantify the wearer audio activity
detection result. We report the average mAP on both the test videos
and validation videos in Table 25.

Model Valid Test
Method I 43.95 50.61
Method II 72.00 74.29
Always Speak 21.30 26.09

Table 25. Camera wearer activity detection baseline metrics (mAP)
on the validation and test sets respectively. Always Speak assigns

that the wearer speaking in each video frame.

Speaker Diarization Tables 26 , 27 and 28 summarize the
speaker diarization DER metrics for the baseline models proposed
in the earlier sections. We report the results with training only
on Ego4d data as well as on with training on existing diarization
datasets. Note that the audio-only DER is aggregated while the
audio-visual DER is averaged. Also note the impact of the VAD on
the diarization performance with the audio-only baseline. It should
be noted that a model more tailored to Ego4D-like data could be
used to obtain better performance. Nevertheless, this aspect still
poses challenges on the AVD benchmark.

Transcription To obtain baseline transcriptions, we used the pre-
trained Gigaspeech model provided in the ESPNet model zoo [1].
This model is trained on the Gigaspeech dataset [34] which contains
10000 hours of speech. Input features to the model are logmel
features augmented using the SpecAugment method [173] and
normalized by global mean-variance normalization. The encoder
of the acoustic model is based on macaron-style conformer [93]
with 12 blocks and 8 attention heads and the decoder is based
on a 6-layer transformer [217] with 8 attention heads. In both
the encoder and decoder, linear layers have 2048 units and the
encoder output is 512 dimensional. The decoder output has 5000
sentencepiece [122] units. The model is trained using a joint CTC
and attention objective [112]. For decoding, no language model is
used. For decoding, we used CTC weight of 0.3 and beam size 20
which we did not fine-tune on the Ego4D dataset. The pre-trained
model obtained from [1] cannot support 5-min videos, hence, we
used oracle segment information from the transcription annotations
to segment the data and we decoded each segment separately. The
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Model trained sVAD DER [%]
on Ego4D

RegionCls no no 84.79
RegionCls no yes 83.88
TalkNet no no 86.68
TalkNet no yes 85.85
RegionCls yes, only no 80.52
RegionCls yes, only yes 80.17
TalkNet yes, only no 73.14
TalkNet yes, only yes 73.32
Always Speak - - >100
Never Talk - - 100

Table 26. Diarization Baseline Metrics showing DER on the test set.
In Always Speak, all the detected people are labeled as ”speaking”
in each video frame. In Never Talk, all the detected people are
labeled as ”not speaking” in each video frame.

Model trained sVAD DER [%]
on Ego4D

RegionCls no no 98.82
RegionCls no yes 90.98
TalkNet no no 99.73
TalkNet no yes 92.14
RegionCls yes, only no 81.66
RegionCls yes, only yes 79.97
TalkNet yes, only no 80.58
TalkNet yes, only yes 79.30
Always Speak - - >100
Never Talk - - 100

Table 27. Diarization baseline metrics showing DER on the val-
idation set. In Always Speak, all the detected people are labeled
as ”speaking” in each video frame. In Never Talk, all the detected
people are labeled as ”not speaking” in each video frame.

Type of VAD Valid Test

kVAD 67.24 65.28
Ref. Activity 36.56 39.99

Table 28. Diarization performance with audio-only models for
validation and test sets using kVAD and reference (ground truth)
voice activity annotations.

final WER is obtained by counting the total number of errors over
the whole validation or test set.

In Table 29, we summarize the WER results depending on the
VAD segmentation method on both validation and test sets. To
compute the final WER, we 1) removed punctuation from both the
reference and the ASR hypothesis, 2) allowed soft-match on con-
tractions such as (I will vs. I’ll) using the English global mapping
file from Kaldi repository [2], and 3) used the NIST sclite tool [72].
As we can see from Table 29, on both the test and validation sets,

the WERs are quite high. This shows that the dataset is challenging
for an off-the-shelf ASR model because of overlapping speech,
noise, different volume levels for different speakers, occasional
foreign word usage, etc.

Speech Segments Valid Test

Ground Truth 64.8 59.2

Table 29. ASR transcription WERs (%) on the validation and test
data using the reference speech segmentation.

H.7 Discussion

Although AV diarization presents a task suite composed of reason-
ably well understood tasks from the vision, speech and audio com-
munities, our baseline results clearly suggest that efficient speaker
localization, tracking, diarization and transcription is a rather com-
plex problem in the egocentric perspective and with in-the-wild
data. This is specifically evident from the performance of the joint
audio and video driven diarization and transcription baselines (with
DER of > 80% and WER of > 60%). Overlapping speech makes
both these tasks particularly difficult to annotate as well as eval-
uate any proposed models. Performing some audio-visual source
separation prior to these tasks may improve the efficacy, neverthe-
less sensitivity to changes and difference in speech amplitudes of
overlapping speakers would still be challenging to address.

Novel cross-modal learning approaches that jointly model audio
and visual modalities while accounting for such attributes (overlap-
ping speakers, interruptions, noise in the wild etc.) are needed to
further improve these performances. The baseline framework we
utilized here also does not account for efficient information sharing
across the four tasks in the benchmark. Specifically, the relation-
ship between robust localization and tracking with multi-speaker
diarization is not studied, and this is also not well understood in the
literature. We expect this to be a challenging problem.

We also observed that subjective attributes in conversations, like
speaker accents, changes in vocabulary usage based on cultural
differences etc., influence both the content of the speech and the
clarity with which it can be captured in human annotations. The
camera wearer’s head motion adds significant blur to speakers’
faces. To account for such aspects we performed quality checks
on human annotations, and we expect novel unsupervised and
self-supervised learning will help further address such subjective
attributes.

In future versions, we expect to increase the scope of the task
suite (i.e., proposing new tasks and annotations), thereby opening
new avenues for both core machine learning in first person per-
spective, and also for robust multi-modal representation learning.
We could also investigate research directions focused on spatial
audio by creating 3D environments coupled with SoundSpaces [32].
This enables new research and tasks in audio-visual sound source
localization, audio-visual direction-of-arrival estimation and related
immersive reality applications. We note that a small fraction of
our dataset does comprise of binaural audio captured using in-ear
microphones and an audio recorder (Tascam, Appendix A).
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I. Social Interaction Benchmark
This section details the Social Interaction benchmark task defi-

nitions, annotations, baseline models, and results. We also provide
details on the video data collection process for multi-person capture
with participants who consented to have their faces unblurred and
conversation recorded (Appendix I.5). As noted in Appendix B,
the social benchmark videos were screened to remove any informa-
tion (e.g. last names or social media accounts) that could directly
identify participants. However, participants’ faces and voices are
present as per our informed consent.

I.1 Formal Task Definition

LAM and TTM are defined as follows: (1) LAM: y = f(I,B);
(2) TTM: y = f(I,A,B) where I = {It}T2

−T1
, A = {At}T2

−T1
,

and B = {Bt}T2
−T1

are time-synchronized past sequences of video,
audio, and bounding boxes, respectively, where T1 and T2 are the
length of the past and future time horizon, respectively, and t = 0
is the center frame. The bounding box indicates the target person
to classify. y is a binary classification label defined by:

y =

{
1 if target looks/talks at camera wearer
0 otherwise.

(25)

The LAM and TTM tasks are defined as a frame-level prediction
y, which stands in contrast to audio analysis tasks where labels are
often assigned at the level of audio frames or segments. A desired
model must be able to make a consolidated decision based on the
video and audio cues over the time course of an utterance. For ex-
ample, if the speaker turns their head to the side momentarily while
speaking to the camera-wearer, then a frame where the speaker is
looking away would have yLAM = 0 while yTTM = 1. Figure 47
gives some frame level visualization of annotations that illustrate
the task definitions.

I.2 Annotation Statistics

The social task annotations, LAM and TTM, build on the same
video clips used in the AV diarization tasks and described in Ap-
pendix H.5. Fig 48 summarizes the statistics of LAM and TTM
annotations across these clips. We compute the percentage of the
frames with LAM or TTM annotations in each clip and show the
histograms in Fig 48 (a) and (b), respectively. In many clips, these
events happen rarely (10 % or lower), and the frames with LAM
annotations are less frequent than TTM cases. We also list the
duration of each LAM or TTM annotation (the duration between
start and end time) in Fig 48 (c) and (d), in order to illustrate the
significant variations in length. The most frequent case is short-
duration LAM or TTM behaviors, lasting 1 or 2 seconds. The data
was organized as follows for baseline model training in Section I.3:
389 clips were held out for training, comprising 32.4 hours in total.
An additional 50 clips (4.2 hours) and 133 clips (11.1 hours) were
held out to form the validation and testing sets, respectively.

I.3 Social Baseline Models and Results

LAM Our baseline model for LAM is a video-based model using
ResNet-18 and Bidirectional LSTM. Our model uses the cropped

(a) Annotation tool

(b) Visualization of annotations.

Figure 47. (Top) The GUI of the annotation tool; (Bottom) Vi-
sualization of example annotations. Note that LAM (denoted by
magenta text) and TTM (denoted by cyan text) may not necessarily
occur together as shown in these examples.

face regions in video as input in order to focus on cues about the
head pose and social attention visible in the face. The architecture
of our baseline is similar to the Gaze360 [111]. As illustrated in
Fig 49(a), we input 7 consecutive frames (T1 = 3 and T2 = 3)
from one face tracklet, and each image is resized to 224×224. Each
frame is then processed by the ResNet-18 backbone independently
to generate 256 dimensional face features. The feature sequence is
encoded by a Bidirectional LSTM, which has two recurrent layers
with dimensionality 256. The output is fed into a classification
head to predict the binary LAM result for the center frame at
the t-th timestamp. The LAM task has a class imbalance issue,
and we use weighted cross-entropy loss. Since the architecture
is similar to Gaze360, we have two options for the initialization:
first, initializing the backbone from a pretrained Gaze360 model;
second, initializing the model randomly and training from scratch
on Ego4D. During training, we sample center frames with a stride
of 3. The network is optimized by Adam with a learning rate of
5× 10−4.

The results are shown in Table 30. Our baseline model achieves
an mAP of 66.07% on the test split when initialized randomly, and
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Figure 48. Social task annotation statistics. (a) Histogram showing
the number of clips vs. the percentage of frames with look-at-me
annotations; (b) Histogram showing the number of clips vs. the
percentage of frames with talk-to-me annotations in each clip; (c)
Histogram showing the duration of look-at-me annotations; (d)
Histogram showing the duration of talk-to-me annotations.

the performance is higher at 78.07% when initialized from Gaze360.
These findings highlight the close relationship between the LAM
task and gaze estimation. The random guess model achieves about
8% accuracy because the negative samples account for 92% of the
test split and the model always predicts looking at me.

TTM The baseline model for TTM digests multi-modal inputs:
each audio segment is paired with an associated face crop. Since
the audio segments vary substantially in duration, we break the
long utterances into short segments whose maximum duration is
limited to 1.5s. If the segment is shorter than 0.15s, we skip it in the
training stage. The associated faces are also resized to 224×224,
and the video encoder is the same as LAM. However, sometimes
the speakers leave the field of view or become invisible due to the
rapid motion. In this case, we pad the face sequences with blank
images. The MFCC feature is extracted every 10ms with a 25ms
window length. The feature is then fed into the audio backbone, a
ResNet-18 designed for audio tasks [38]. Following the encoders,
we concatenate the audio and visual embeddings and pass them to
the final classification head to get the TTM result for the visible
faces associated with the segment. To train the model in parallel,
we first sort the short segments based on the length and group the
segments into a batch if they have the same duration. The batch
size is restricted by the GPU memory; we use a batch size of 400.
The model is also optimized using Adam with a learning rate of
5× 10−4.

Table 31 summarizes the TTM results. TTM is more challenging
than LAM. We can see that our baseline model only increases the
mAP by 9.77% on the test split in comparison to the random guess
model.

(a) LAM

(b) TTM

Figure 49. Baseline model architectures. (a) LAM model uses
a ResNet-18 as a backbone to extract the feature of each frame.
A Bidirectional-LSTM then takes the sequence and encode the
features into one embedding. We pass the embedding to FC layer
that predicts the LAM result. (b) TTM model has two encoders.
The video encoder is the same as LAM. The audio encoder extracts
the MFCC frequency map of the audio segment and the feature is
fed into a ResNet-18 network. The visual and audio embeddings
are concatenated and passed through the FC layer to predict the
target of this utterance.

I.4 Discussion

While the benchmark tasks of detecting when attention and speak-
ing behaviors are directed towards the first-person are closely re-
lated to existing analysis tasks, it is clear from the baseline perfor-
mance that there is substantial room for improvement, with mAP
of 78.07 for LAM and 55.06 for TTM.

The TTM task is particularly challenging because it requires
analysis of the audio content to understand the target audience of an
utterance, as well as the fusion of audio and video cues. The most
complete solution to this problem will require an understanding
of the semantics of the utterance in the context of an evolving
conversational interaction. Future work on this task might involve
more sophisticated language modeling and possibly hierarchical
analysis approaches that allow the integration of cues at multiple
levels, e.g. at the dialog level to understand who is participating in a
conversational exchange, at the utterance level to access semantics,
and at the audio level to exploit prosodic and other cues.

The LAM task presents additional challenges such as the need
to deal with motion blur and fast head movements, and may also
benefit from a more explicit modeling of head movement and the
patterns of gaze behavior that arise in conversational interaction.

I.5 Social Dataset Collection

The Ego4D Social data collection process was designed to achieve:
1) naturalistic interactions, 2) multi-modal capture, and 3) diverse
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val test
Acc mAP Acc mAP

Random Guess 8.57 51.19 7.98 50.96
Baseline (Gaze360) 91.78 79.90 87.97 78.07
Baseline (Random) 86.45 72.11 75.38 66.07

Table 30. Results of LAM. The baseline model was initialized
from Gaze360 [111] (2nd row) and at random (3rd row).

val test
Acc mAP Acc mAP

Random Guess 32.44 53.82 47.41 50.16
Baseline 64.31 56.50 49.75 55.06

Table 31. Results of TTM. The baseline model is initialized ran-
domly.

participants and environments. Participants consisted of friends
and family groups and data was captured in residences and local
neighborhoods, ensuring naturalistic interactions. Capture hard-
ware varied across sites but included wearable cameras, wearable
eye trackers (at Georgia Tech and Indiana University), binaural
recording systems, and smart watches (at Georgia Tech). Protocols
included highly-structured settings, where participants were asked
to play games over a period of a few hours in a residence, and un-
structured settings where participants captured social interactions
in daily life over a period a week or more. Sample social interaction
contexts included playing board and card games, preparing meals,
and going on walks. The bulk of the data collection took place
during the COVID-19 pandemic, and the resulting study protocols
were designed to safeguard participants against additional risk.

The social data consists of data collected at five sites: Atlanta,
Bloomington, Redmond, Twin Cities, and Singapore. In total, 764
hours of video and audio were collected for the social benchmark
task. A detailed summary of the data collection practices at each
site can be found in Appendix A.

I.6 Derived Tasks for Future Social Benchmarks

The core tasks of LAM and TTM define a starting point for analyz-
ing multi-modal egocentric data and inferring social interactions.
We now describe two groups of potential future tasks, attention
tasks and speaking tasks, that could be supported via the existing
annotations in Ego4D Social and the gaze data collected from eye
trackers by Indiana University and Georgia Tech.

Egocentric Attention Prediction (EAP) Prior work [135,
137] has demonstrated the feasibility of predicting where the
camera-wearer is looking (i.e. their egocentric attention) using
only egocentric video captured from a head-worn camera. This
work leveraged the context of hand-eye coordination tasks, which
require gaze to be coordinated with hand movements and objects.
A subset of the Ego4D Social data includes gaze measurements pro-
duced by wearable eye trackers by Indiana University and Georgia
Tech participants (e.g., Pupil Invisible), which will greatly expand
the size of data for hand-eye coordination in the wild.

Social Gaze Prediction (SGP) The LAM task addresses the
special case of social gaze: a person looks at the camera-wearer.
It is possible to generalize the task by predicting the social gaze
target for each of the visible faces in an egocentric video, i.e.,
yp ∈ {0, 1, . . . ,M}, where M is the total number of participants
in a group social interaction, and p ∈ {0, 1, . . . ,M}. p is the index
for social members. The case yp = q means that target p was
looking at participant q. The case yp = 0 captures alternative gaze
targets, including non-social gaze targets (e.g. looking at an object),
looking at people who are not wearing an egocentric camera (with
the result that ground truth annotations are not available), and
looking at unknown targets not captured in any of the egocentric
videos. Let ŷq,p denote the LAM label for target person p visible
in frame of egocentric video Iq captured by participant q. Then the
SGP label is given by yp = argmaxq{ŷq,p}. The Ego4D Social
data includes synchronized videos from multiple social members,
which will allow us to expand the annotation by matching the
person ID with the camera-wearers. Note that since the video
recorders are not genlocked, the identification of corresponding
frames will only be approximate. However, since gaze behaviors
persist over multiple frames we do not believe this will be an issue.

A key issue in defining the task is the determination of the partic-
ipant set. For a 2D version of SGP, termed SCG-2D, the participant
set is defined by participants who are visible in frame t. This is
a social version of the video-based gaze follow task [37], where
the goal is to predict whether each target participant is looking
at any of the other participants who are visible in the frame. A
more challenging 3D version of the task, SCG-3D, uses all of the
participants who are present in the social scene at the time of frame
t. This task requires the ability to predict which participant the
target person p is looking at in the case where that participant is
not visible in frame t. This can in principle be accomplished by
maintaining a birds-eye view layout map of the social scene, that
captures the approximate spatial relationships between the partic-
ipants. Such a layout map could be used in conjunction with an
approach like Gaze360 [111] to solve the SCG-3D task. Note that
this task could potentially benefit from taking recorded binaural
audio as an additional input, as the ability to localize sound sources
could provide additional cues for determining the locations of gaze
targets which are not visible in the video.

Utterance Target Prediction (UTP) The TTM task can be
generalized to the full set of participants in the same way that LAM
can be extended to SGP. The input space is the same as TTM and the
output space is similar to SGP, where yp = q means that participant
p is talking to participant q, and yp = 0 denotes the cases where
the participant is not talking to anyone, or is talking to someone
who is not wearing an egocentric camera (and therefore ground
truth cannot be determined). In contrast to SGP, UTP requires the
identification of all of the target recipients of an utterance. In fact,
our TTM annotation already supports this task, as it differentiates
the case where the utterance is directed to multiple participants
including the camera wearer. This additional label is ignored in the
design of the simpler TTM task.

Transcript-based Variants For all of the previously-defined
social tasks it is possible to define a variant which utilizes a tran-
script of the audio file as an additional input modality. For example,
the TTM-T task is the variant of TTM with the prediction defined
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as yp = f(I,A,T,B), where T the transcript (time-stamped se-
quence of words) obtained from A. This can potentially simplify
the use of dialog cues to identify the intended targets for utterances
and social gaze.
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Ithapu contributed to the social benchmark formulation and data
annotation. Hyun Soo Park led data collection at the Twin Cities
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writing.

Hao Jiang contributed to model development and data annota-
tion. Yunyi Zhu contributed to model implementation and exper-
iments. Eric Zhongcong Xu contributed to the social benchmark
data preparation and the model implementation and experiments,
and contributed to all data collection related tasks for the Singapore
site. Ruijie Tao contributed to data collection for the Singapore
site. Fiona Ryan led the data collection effort for the Atlanta site,
including protocol design, multimodal sensor deployment and syn-
chronization, and de-identification. Miao Liu contributed to data
collection and analysis for the Atlanta site. Audrey Southerland
contributed to the protocol design, IRB authoring and submission,
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J. Forecasting Benchmark
This section details the Forecasting benchmark task definitions,

annotations, baseline models, and results.

J.1 Formal tasks definitions

As noted in the main paper, there are four forecasting tasks: future
locomotion movement prediction, future hand prediction, short-
term object interaction anticipation, and long-term action anticipa-
tion.

Future Locomotion Movements Prediction

This task aims to predict the future locomotion of a user given a
sequence of past images. We formulate the problem as:

X =
[
xt+1 · · · xt+F

]T
= f(xt−T , · · · ,xt−1; I), (26)

where X is the future trajectory, T and F are the past and future
time horizons, respectively, xt is the point on the trajectory at
time t, and I is the egocentric image at time t. With an assumption
that the person walks over a major plane (e.g., ground plane), we
represent the trajectory in a 2D plane, i.e., xt ∈ R2.

The essence of the locomotion task is to design a function f
to predict a set of plausible K future trajectories {X k}k given
the current image. Since there exists a number of plausible future
trajectories with different topology, e.g., trajectories that bifurcate
at an Y-junction, we predict K future trajectories.

Future Hand Prediction

In addition to future locomotion movements prediction, we consider
another challenging task of predicting future hand positions of
key-frames (see visual illustration in Fig. 50). Specifically, we
denote the contact frame17 as xc, pre-condition frame18 as xp, and
the three frames preceding the pre-condition frame by 0.5s, 1s
and 1.5s as xp1 , xp2 , xp3 , respectively. Formally, given an input
egocentric video 1.5s before the pre-condition time step (denoted
as x = {xp3−to−1, ..., xp3−1}, with to referred as observation
time), this task seeks to predict the positions of both hands (hl

i, h
r
i )

in the future key frames, where i ∈ {c, p, p1, p2, p3}.

Short-Term Object Interaction Anticipation

This task aims to predict the next human-object interaction happen-
ing after a given timestamp. Given an input video, the goal is to
anticipate:

• The spatial positions of the active objects, among those which
are in the scene (e.g., bounding boxes around the objects).
We consider the next active object to be the next object which
will be touched by the user (either with their hands or with a
tool) to initiate an interaction;

• The category of each of the detected next active objects (e.g.,
“knife”, “tomato”);

17The contact frame is defined as the first frame in which the user touches
the object, hence the moment in which the object becomes active.

18As defined in Section G, the pre-condition frame marks a moment prior
to the state-change of an object.

• How each active object will be used, i.e., what action will be
performed on the active objects (e.g., “take”, “cut”);

• When the interaction with each object will begin (e.g., “in
1 second”, “in 0.25 seconds”). This is the time to the first
frame in which the user touches the active object (time to
contact). This prediction can be useful in scenarios which
involve human-machine collaboration. For instance, an as-
sistive system could give an alert if a short time to action is
predicted for a potentially dangerous object to touch.

In this task, models are required to make predictions at a specific
timestamp, rather than densely throughout the video. Figure 51
illustrates the set-up. The model is allowed to process the video up
to frame t, at which point it must anticipate the next active objects,
and how they will take part in an interaction in δ seconds, where δ
is unknown. The model can make zero or more predictions. Each
prediction indicates the next active object in terms of noun class (n̂)
and bounding box (b̂), a verb indicating the future action (v̂), as well
as the time to contact (δ̂), which estimates how many seconds in the
future the interaction with the object will begin. Each prediction
also comprises a confidence score (ŝ) used for evaluation.

Specifically, let V be an untrimmed video. We will denote with
Vt the frame of V occurring at time-step t and with V:t the video
segment starting at the beginning of V (timestamp 0) and ending at
timestamp t. Given a timestamp t, denoted as “stopping time”, the
short-term object interaction anticipation task requires that a model
is able to exploit the observed video V:t to predict N tuples (where
N is arbitrary):

{(b̂i, n̂i, v̂i, δ̂i, ŝi)}Ni=1 (27)

where:

• b̂i ∈ R4 is a bounding box indicating the position of the
predicted next active object;

• n̂i ∈ N is a noun indicating the class of the next active object,
where N is the set of possible nouns.

• v̂i ∈ V is a verb indicating the action which will be performed,
where V is the set of possible verbs;

• δ̂i ∈ R+ is the time to contact, a positive number which
estimates how many second into the future the interaction
with the object will begin;

• ŝi ∈ [0, 1] is a confidence score associated to the prediction.
Objects with a large confidence value are deemed to be likely
next-active.

The model is allowed to perform N predictions for each ob-
served example (with N arbitrary) both to account for the presence
of multiple next-active-objects and to handle the multi-modality of
future predictions. Each of the N predictions is intended as a plau-
sible future object interaction. Figure 51 illustrates the proposed
task. Given a video V:t, a method should be able to detect the next
active objects (e.g., two instances of “dough”), predict the action
which will be performed with that object (e.g.,“take”), and the time
to contact (e.g., 0.75s).

Long-Term Action Anticipation

Long-term action anticipation aims to predict further into the future.
Rather than predict the next action at a given timestamp, models
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Figure 50. Example of future hand prediction.

𝑡 𝑡 + 𝛿
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Input video: 𝑉:𝑡
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ො𝑣1 = 𝑡𝑎𝑘𝑒
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𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 𝟏
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𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 𝟐 frame of 
contact

Figure 51. Example of short-term object interaction anticipation.

will be required to predict the sequence of Z future actions which
the camera-wearer is likely to perform. This is important for long-
horizon planning where a sequence of actions is required to be
performed in a specific order to achieve a goal. Critically, these
actions occur over long time horizons, may be of variable length
and do not occur uniformly across time (e.g., an action every 5s).
Thus, the task is defined at a more abstract level — models are
required to predict sequences of action classes (verb and noun),
rather than time to action or to next active objects bounding boxes
in the current frame.

More formally, given an untrimmed video V and a stopping
time t as described above, the long-term action anticipation model
must observe V:t and predict N sets of sequences of Z plausible
future actions:

{{(n̂z,i, v̂z,i)}Zz=1}Ni=1 (28)

where:

• n̂z,i ∈ N is the predicted noun and v̂z,i ∈ V is the predicted
verb of the z-th future action.

• {(n̂z,i, v̂z,i)}Zz=1 represents the sequence of future actions
sorted by the predicted order in which they will appear in the
video.

Like the short-term object interaction anticipation task, the
model is allowed to generate N sets of predictions to account for
the multi-modal nature of future prediction. Figure 52 illustrates
the proposed task.

J.2 Data Selection

Future Locomotion Movements Prediction

Egocentric videos for locomotion and hand-object interaction are
nearly mutually exclusive. Among these videos, we skim through
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ො𝑛1,𝑖 , ො𝑣1,𝑖 , ො𝑛2,𝑖 , ො𝑣2,𝑖 , ො𝑛3,𝑖 , ො𝑣3,𝑖 , ො𝑛4,𝑖 , ො𝑣4,𝑖

𝑡Input video

𝑖𝑡ℎprediction: knead dough → put dough → pack spice → pour spice

Figure 52. Example of long-term action anticipation. After observing a video up to a particular timestep t, a method should be able to
predict the sequence of actions that will likely occur, in the correct order (e.g., first “take dough”, next “put dough” etc.)

each video to manually identify video clips (beginning and end
frames) that satisfy the following selection criteria. (1) Locomotion,
by definition, involves diverse activities associated with walking.
The clip should include substantial translational movement. (2)
Each video clip must be longer than 10 seconds for past trajectory
observation and future prediction. (3) The videos must observe
surrounding scenes. This differs from the videos for hand-object
interaction where the camera is deliberately tilted down to focus
on the hand manipulation. We consider videos from glass-mounted
cameras of which field of view approximately aligns with the first
person. (4) 3D reconstruction and ground plane need to be accurate.
After running structure from motion, we ensure 3D reconstruction
from the videos achieves reasonable quality by checking 2D repro-
jection of the point cloud and ground plane. Given a set of these
video clips, we choose frames for training/testing data for every
second.

Remaining Tasks

For the remaining tasks we first manually ranked the scenarios
based on their applicability to the forecasting tasks. For instance,
scenarios like carpentery were high priority for forecasting whereas
walking in the park was low-priority. We scored all scenarios from
1-3 based on this priority. We impose constraints on the minimum
number of hours and participants to sub-select scenarios that have
sufficient data for training (each participant should have contributed
at least 15 minutes; and there should be at least 20 minutes of videos
for that scenario). Next, we chunk our videos into 5 minute clips,
and use the following algorithm to select clips to be labeled. To
ensure geographical diversity, we distribute the total hours over
universities and randomly select clips from each to fill the hours
allocated to that university. If there are universities that contributed
less, then their hours are distributed across the other universities. To
select the clips given a university and the hours allocated; we would
first sample a participant, then sample a video for that participant,
and sample 1 clip from that video. For certain repetitive scenarios
(like brick making), we reject this clip if we already have selected
at least 2 clips from the same video. We repeat the process until the
required number of hours are selected.

Data Outdoor Indoor Mixed Total
Train 34.1k 0.41k 16.7k 51.3k
Val 7.5k 0.23k 6k 13.9k
Test 7.4k 0.18k 3k 10.6k

Table 32. We split the image data for locomotion prediction based
on scenes that including outdoor, indoor, and mixed.

J.3 Data Annotation

Future Locomotion Movements Prediction

We generate the ground truth of future trajectories using 3D recon-
struction of the camera trajectories. Given a sequence of egocentric
images, we reconstruct the 3D egomotion and scene geometry using
a standard structure from motion pipeline with a few modification
to handle a large number of images. With the 3D scene point cloud,
we estimate the ground plane using RANSAC with the ground
plane normal prior. The 3D reconstructed camera trajectory is pro-
jected onto the ground plane to form the 2D future trajectory as
shown in Figure 53.

Our image dataset includes locomotion in outdoor, in-
door, and mixed scenes. We split the image data into train-
ing/validation/testing sets with approximately 70%/15%/15%, re-
spectively. The ratio across scenes does not exactly match because
the split is performed based on the (anonymous) participant ID.
The summary of the data split can be found in Table 32.

Future Hands Movements Prediction

For the the future hand position and trajectory prediction, the anno-
tation will be performed by labeling bounding boxes around hands
in the frame in which the user touches the active objects as well
as in frames preceding each object interactions. Hands bounding
boxes will be associated to a label useful to distinguish among left
and right hands. Therefore, given an object interaction, we will
annotate key frames preceding the beginning of the interaction.
Specifically, tc and tp denote the time step of contact frame and
pre-condition frame, and tp1 , tp2 , tp3 , denote time steps 0.5s, 1s
and 1.5s before the pre-condition time step. Therefore, for each
interaction there will be 5 key frames labeled with bounding boxes
of hands, including the contact frame. We use the bouding box
center as the ground truth of hands positions.
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Figure 53. (a) We represent the future trajectory of a person using the ground plane. Given the 3D reconstruction of the camera trajectory,
we project it into the estimated ground plane to form the future trajectory. (b) The ground truth future trajectory (blue) and the predicted
trajectories (red and white) are shown in the egocentric image with the ground plane coordinate (magenta grid). We predict top 5 trajectories
where the top prediction is marked in red.

Short-Term Object Interaction Anticipation

Each video V of the dataset is labeled with a set of short term object
interaction anticipation annotations SV = {S(j)

V }j indicating the
occurrence of object interactions in the video. Each annotation

S
(j)
V = (t(j)s , {n(j)

h }h, v(j), {A(j)
h }h, {B(j)

h }h) (29)

includes:

• t
(j)
s : the timestamp indicating the beginning of the interaction

with the active objects. This is the first frame in which the
user touches at least one of the active objects;

• {n(j)
h }h: the set of categories of the h interacted objects;

• v(j): the class of the action involving the active objects;

• {A(j)
h }h: the bounding box annotations for the active ob-

jects. The cardinality of {A(j)
h }h is equal to the cardinality

of {n(j)
h }, i.e., |{A(j)

h }h| = |{n(j)
h }|. The hth set {A(j)

h }h
contains bounding box annotations for the active objects of
category nh at timestamp t

(j)
s ;

• {B(j)
h }h: the bounding box annotations for the next active

objects. The cardinality {B(j)
h }h is equal to the cardinality

of {A(j)
h }h, i.e., |{B(j)

h }h| = |{A(j)
h }h|. The jth set B(j)

h

contains the bounding box annotations of next active objects
of class nh. In particular, B(j)

h contains annotations for the
same object instances annotated in A

(j)
h , tracked in frames

preceding t
(j)
s . Specifically, B(j)

h = {B(j)
l,h |l = 1, ...,m},

where B
(j)
l,h is the set of bounding box annotations of next

active object of class nh annotated at timestamp ts− lα. Here
m indicates the number of frames preceding the beginning
of the interaction in which objects are annotated, whereas α
is the temporal distance between the sampled frames. For
instance, setting α = 0.5s and m = 4, we will label the
frame in which the object is interacted as well as 4 frames
in a 2s segment preceding the interaction. Figure 54 shows
an example of how frames are sampled with the considered
scheme.

𝑡𝑠
(𝑗)

𝑡𝑠
(𝑗)

− 2𝛼𝑡𝑠
(𝑗)

− 4𝛼

future action

𝑡𝑠
(𝑗)

− 𝛼𝑡𝑠
(𝑗)

− 3𝛼

Figure 54. An example of how frames are sampled to be labeled
with next active object annotations. For a given action i, we sample
m frames at regular intervals α. If we set m = 4 and α = 0.5, we
label the frame of contact as well as 4 frames along a segment of
2s preceding the beginning of the action at a framerate of 2fps.

Figure 55 reports a sample clip with the discussed annotations. The
timestamp ts is selected as the first one in which the user touches
the active objects. The frames following this timestamp are not
labeled. Active object bounding boxes are labeled at timestamp ts,
whereas next active object bounding boxes are labeled in frames
preceding ts.

Long-Term Action Anticipation

Each video V is labeled with a set of long-term action annotations
{L(j)

V }j , corresponding to a stopping time until which the video
can be observed, and a sequence of Z future action labels defined
as follows:

L
(j)
V = (t(j), {(n(j)

z , v(j)z )}Zz=1) (30)

where:

• t(j): the timestamp until which the video can be observed
(i.e., V:t(j) ) before making predictions of future actions;

• n
(j)
z : the noun category of the primary interacted object in

the z-th future action;

• v
(j)
z : the verb describing how the objects will be interacted

with in the z-th future action .

For each video, t(j) are selected from the last timestamp of each
annotated object interaction. It is worth noting that once short-term
annotations S

(i)
V are available (see Section J.3) and a value for

Z has been chosen, the long-term annotations L(j)
V can be easily
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Figure 55. Example of annotations for the short-term object interaction anticipation task.
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Figure 56. An example of a long-term annotation L(V:t) for an untrimmed video V at timestamp t can be obtained from short-term
annotations S(i)

V . In the example, Z = 3, hence the long term annotation is obtained by considering the first three actions beginning after
timestamp t.

obtained by sampling the first Z actions annotated in video V
beginning after timestamp t(j). More formally, the future action
labels for L(j)

V are obtained as:

{(n(iz)
0 , v(iz)) |(t(iz)s , {n(iz)

h }h, v(iz), {A(iz)
h }h, {B(iz)

h }h) ∈ SV ∧

t(iz)s ≥ t(j)∧

t(i1)s ≤ . . . ≤ t(iZ)
s ∧

∄S(j)
V ∈ SV |t(j) /∈ {i1, . . . , iZ}, t ≤ t(j)s < t(iZ)

s }Zz=1

where n
(iz)
0 refers to the primary interacted object from the set

of interacted objects {n(iz)
h }h. Figure 56 illustrates an example of

how long-term annotations are obtained form short-term annota-
tions.

Annotation analysis

Dataset statistics As discussed earlier, one of our primary
objectives when selecting the data to annotate was to maximize
the diversity in terms of activities and geographic locations. Our
dataset includes scenarios spanning a wide range of everyday
activities (e.g., gardening, cleaning, fishing, etc.). In addition to
diversity across scenarios, there is also geographic diversity within
scenarios. For example, cooking may look very different in Italy,
India, Saudi Arabia, or Japan. In Figure 38, we show the resulting
scenario and university distributions. Overall, our benchmark
consists of 120 hours of annotated video coming from 53 scenarios,
7 universities, and 406 participants.

Temporal structure of activities Human activity is goal-driven and
structured over time, with certain action sequences being favored
over others. We measure this temporal structure using Normalized
Pointwise Mutual Information (NPMI) [41] over pairs of actions
following prior work [92]. NPMI is a measure of how likely actions

follow each other. In our dataset, typical patterns include “pull grass
→ throw grass (0.87)”, “hold spinach → cut spinach (0.83)”, “turn-
on faucet → turn-off faucet (0.68)”, “take cloth → fold cloth (0.49)”
etc. Several actions also occur in sequence with high NPMI scores
due to the repetitive nature of the activity. For example, “flip page
→ flip page (0.83)” while reading, or “cut carrot → cut carrot
(0.82)” while cooking. Finally, we see common action sequences
involving multiple objects like “fill tire → close valve (0.89)”, or
“lift vacuum-cleaner → clean staircase (0.87)”. This structure is
valuable and can inform long-term action anticipation models.

Dataset split To facilitate future research and comparisons, we
construct training, validation, and test splits containing 40%, 30%,
and 30% of the data, respectively. We note, however, that we do
not release the ground truth annotations for the test set. Following
common practice, evaluation on the test set will be supported
through the public evaluation server and leader board. We assign
data to splits randomly at the level of 5 minute clips. This ensures
that all interactions within a 5 minute clip were labeled by an
annotator and provides enough temporal context for long-term
video tasks, like long-term action anticipation.

J.4 Evaluation measures

Future Locomotion and Hands Movements Prediction

Future Locomotion We measure the accuracy of the prediction
using two metrics. (1) K best mean trajectory error (K-MTE): we
measure K best trajectory error:

K−MTE = argmin
{Xk}Kk=1

1∑
t vt

∑
t

vt∥xt − x̂t∥, (31)

xt ∈ R2 is the predicted location at time t, x̂t is the ground
truth location, and vt is the visibility. The visibility indicates
the availability of the ground truth trajectory, i.e., due to severe
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egocentric videos, the ground truth trajectories may include missing
data. vt = 0 indicates missing data at time t. (2) Probability of
correct trajectory (PCT): we measure the success rate of the correct
trajectory retrieval:

PCTϵ =
1

K
δ

(
1∑
t vt

∑
t

vt∥xt − x̂t∥ < ϵ

)
, (32)

where δ(·) is one if the statement is true and zero otherwise. ϵ is
the trajectory error tolerance, i.e., if the trajectory error is smaller
than the error tolerance, it is considered as a correct trajectory
prediction. PCTϵ measures how many trajectories among K
retrieved trajectories are close to the ground truth trajectory.

Future Hand Movement As for the future hands movements pre-
diction, we only consider the key frame prediction, and therefore
adopt Mean Key Frame Displacement Error Contact (M.Disp.) Key
Frame Displacement Error as evaluation metrics (C.Disp.):

• Mean Key Frame Displacement Error (M.Disp.):

Dm =
1

n

∑
i∈Ht

∥hi − ĥi∥ (33)

Ht refers to the set of visible hand positions of key frames,
and n is the length of set Ht. hi denotes the predicted hand
position in the image coordinate, while ĥi denotes the ground
truth hand positions.

• Contact Key Frame Displacement Error (C.Disp.):

Dc = ∥hc − ĥc∥ (34)

hc refers to the hand positions at Contact frame.

Note that all reports are reported on downsampled video frames
with height of 256 and original aspect ratio.

Short-Term Object Interaction Anticipation

Methods will be evaluated at the timestamps in which next-active
objects have been annotated, i.e.,{

t|t = ts − l · α

∀ts ∈ {t(j)s |∃h : B
(j)

h
̸= ∅}j

∀l ∈ {1, ...,m}
}

(35)

where {t(j)s |∃h : B
(j)

h
̸= ∅}j is the set of all timestamps indicat-

ing the beginning of an interaction, for which at least one next
active object has been annotated, and α and m are defined in
Appendix J.3.

Since detecting next active objects is a major part of the task, we
base our evaluation measures on mean Average Precision (mAP),
as defined in the Pascal VOC challenge [60]. As in standard mAP,
we first match each of the detected next active objects to ground
truth annotations. A predicted and a ground truth bounding boxes
are a possible match if their Intersection Over Union (IOU) value
exceeds 0.5 and if some matching criteria are met. We will define
matching criteria later. Predictions are matched to ground truth

annotations belonging to the same evaluated example in a greedy
fashion, prioritizing predictions with higher confidence scores and
choosing matches corresponding to larger IOU values. A ground
truth annotation can be matched at most with one predicted box.
All matched predictions are counted as true positives, whereas all
unmatched predictions are counted as false positives. Performance
on the whole test set is summarized using the mean of the Average
Precision values obtained for each class.

To account for the multi-modal nature of future predictions
(i.e., more than one next active object can be likely), we “discount”
the number of false positives obtained in a given example by the
number of available ground truth annotations in that example multi-
plied by K − 1, where K is a parameter of the evaluation measure.
Specifically, if an example contains two ground truth annotation,
we ignore the (K − 1) ∗ 2 false positives with the highest scores.
This effectively implements a “Top-K mean Average Precision” cri-
terion which does not penalize methods for predicting up to K − 1
possibly likely next active objects which are not annotated. Given
a generic prediction (b̂i, n̂i, v̂i, δ̂iŝi) and a generic ground truth
annotation (bj , nj , vj , δj), we define the following variants of this
Top-K evaluation measure considering different matching criteria:

• Noun Top-K mAP: prediction i and annotation j are a possible
match if the following conditions are satisfied:

* IOU(b̂i, bj) > 0.5;

* n̂i = nj ;

• Noun + Verb Top-K mAP: prediction i and annotation j are a
possible match if the following conditions are satisfied:

* IOU(b̂i, bj) > 0.5;

* n̂i = nj ;

* v̂i = vj .

• Noun + TTC Top-K mAP: prediction i and annotation j are a
possible match if the following conditions are satisfied:

* IOU(b̂i, bj) > 0.5;

* n̂i = nj ;

* |δ̂i − δj | < Tδ .

• Overall Top-K mAP: prediction i and annotation j are a pos-
sible match if the following conditions are satisfied:

* IOU(b̂i, bj) > 0.5;

* n̂i = nj ;

* v̂i = vj ;

* |δ̂i − δj | < Tδ .

Where Tδ is a tolerance threshold, parameter of the evaluation
measure.

The goal of the different measures is to assess the ability of the
model to predict next object interactions at different levels of gran-
ularity. We use K = 5 and Tδ = 0.25.
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Long-Term Action Anticipation

Methods will be evaluated at the set of timestamps specified by
the end of each annotated object interaction in a video V . Let
L

(j)
V = {(n(j)

z , v
(j)
z )}Zz=1 be the ground truth annotation related

to video V at time-stamp t(j) and let {{(n̂(j)
z,k, v̂

(j)
z,k)}

Z
z=1}Kk=1 be

the K predicted sequences of Z actions. We will consider single
noun/verb/action predictions correct following the definitions dis-
cussed in Section J.4. The K predicted sequences will hence be
evaluated using the edit distance metric as follows.

For a given k, this is obtained by evaluating the edit distance
between a predicted sequence and the ground truth sequence of
future actions. The edit distance

∆E({(n̂(j)
z,k, v̂

(j)
z,k)}

Z
z=1, {(n(j)

z , v(j)z )}Zz=1)

is computed as the Damerau-Levenshtein distance [47, 133] over
sequences of predictions of verbs, nouns and actions. The goal of
this measure is to assess performance in a way which is robust to
some error in the predicted order of future actions. A predicted
verb/noun is considered “correct” if it matches the ground truth
verb label at a specific time-step. The allowed operations to com-
pute the edit distance are insertions, deletions, substitutions and
transpositions of any two predicted actions. Following the “best of
many” criterion, the K predictions are evaluated considering the
smallest edit distance between the ground truth and any of the K
predictions:

∆E({{(n̂(j)
z,k, v̂

(j)
z,k)}

Z
z=1}Kk=1, {(n

(j)
z , v

(j)
z )}Zz=1) =

min
k=1..K

∆E({(n̂(j)
z,k, v̂

(j)
z,k)}

Z
z=1, {(n

(j)
z , v

(j)
z )}Zz=1)

Note that we consider edit distance over simple accuracy based
measures. Treating predictions for each future time-step indepen-
dently and calculating accuracy does not account for the sequential
nature of the prediction task where the order of predictions is im-
portant. We evaluate each metric independently for verbs, nouns
and actions (verb and noun together). We report edit distance at
Z = 20 (ED@20) and use K = 5 in our experiments. We select
Z = 20 as baselines begin to predict actions at random for higher
values of Z.

J.5 Baseline definitions and implementation details

Future Locomotion Movements Prediction

We make use of the method by Park et al. [175] for a baseline
algorithm. The method models the trajectory prediction function in
Equation (26) using KNN classification with CNN image encoding,
i.e.,

{X} = KNN ({ϕ(Ii)}, ϕ(I)) (36)

where KNN(A,B) finds the K nearest neighbor of B given the
set A, and ϕ(I) ∈ Rn is a function that extracts the image feature
of I. We use the AlexNet image feature extractor for ϕ.

Notably, the baseline algorithm leverages a polar coordinate
system to represent the trajectory, i.e., X2D

j =
[
rj θj

]T is a
2D trajectory on the ground plane where ri and θi are the polar co-
ordinates of the trajectory represented in the egocentric coordinate
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R-CNN

Last Frame

Pre-Trained Detector
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feats

𝛿

𝛿

𝛿

𝛿

Verb
(softmax)

time to contact
(softplus)

attach labels

output

Detected
Next Active Objects

feature pooling

Figure 57. Short-Term object interaction anticipation baseline.

system, i.e., distance (radial) and direction (angle) with respect to
the person’s feet location as shown in Figure 53:

X2D
j = cart2polar(rT1Xj , r

T
2Xj) (37)

where r1 and r2 are the two spanning vectors of the ground plane
that are aligned with the rotation matrix Rt. r1 is the facing
direction and r2 is lateral direction. Both are perpendicular to the
ground plane normal n as shown in Figure 53. cart2polar is a
coordinate transform from cartesian to polar coordinates.

Future Hands Movements Prediction

Baseline Description The proposed future hand movement predic-
tion task can be factorized as a regression problem. To address
this task, we adopt a baseline that utilizes the I3D network as the
backbone to extract the spatial-temporal video representations of
the input video sequence, and then use a linear mapping function
as the regressor to predict the future keyframe hand positions. We
adopt the smoother l1 loss as the objective function:

Lh =

{
0.5 ∗ w ∗ (h− ĥ)2/β, if |h− ĥ| < β

w ∗ (|h− ĥ| − 0.5 ∗ β), otherwise
(38)

where h ∈ R20 is a vector that represents the x,y coordinates of
both left and right hands in the aforementioned five future key
frames. If the hand is not observed in the keyframe, we pad 0
into the ĥ, and adopt a binary mask w to prevent the gradients
propagation of these unobserved instances.

Training Details We adopt the I3D model as the backbone network
and a regression header, composed of two linear operations, to
predict the hand positions in the future key frames. For our experi-
ments, we set observation time To as 2s. For training, we applied
several data augmentation techniques, including random flipping,
rotation, cropping and color jittering to avoid overfitting. Our base-
line model was trained with a batch size of 64 for 25 epochs using
a cosine learning rate decay with a initial learning rate of 0.0375.
We set β to 5 in the weighted smoothed L1 loss as introduced in
Eq. 38.

Short-Term Object Interaction Anticipation

Data and annotations used for the experiments We performed
our experiments on a subset of the data and annotations to ob-
tain verb and noun taxonomies consistent with the Short-Term
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Object-Interaction Anticipation task. We started by considering all
annotated actions for which a contact frame has been specified by
the annotators. Note that these constitute about 30% of the whole
set of annotated actions and that the notion of a contact frame is
fundamental to our task. We then gathered all annotated frames
and referenced them to their respective contact frames, computing
the time to action targets. We discarded all those annotations which
comprised a verb or a noun class marked by the annotator as “null”.
We further discarded annotations related to nouns which had been
labeled inconsistently and non-object classes such as “wall” or
“wallpaper”. We similarly removed all annotations related to the
verb “talk” which do not involve interactions with objects.

To avoid having an over-specific noun taxonomy, we clustered
selected noun classes into homogeneous groups. For instance
the nouns “okra”, “apple”, “celery” and “avocado” have all been
grouped under the “vegetable fruit” class. We also grouped verbs
which have similar semantic when anticipated. For instance, the
verbs “take”, “carry”, “lift”, “pull” and “remove” have all been
grouped in the “take” cluster. Note that while these actions may be
visually different, they all have similar effects on objects, which
makes them indistinguishable when anticipated. We further re-
moved all annotations related to nouns appearing less than 50 times
in the test set (we follow the common split defined for this bench-
mark). We choose to retain only nouns appearing at least 50 times
in the test set to allow for a reliable evaluation through the mAP
measure.

The final set of data includes 64, 798 annotated examples in
total with 87 nouns and 74 verbs. Our taxonomy is adapted from
the one presented in Figure 39. Figure 58 and Figure 59 report
the distributions of verb and noun annotations in the selected data.
Among the 64, 798 annotations, 27, 801 are in the training set,
17, 217 are in the validation set, and 19, 780 are in the test set.

Baseline Description Figure 57 illustrates the proposed baseline
for short-term object interaction anticipation. The baseline includes
two main components. A Faster R-CNN object detector [87] is
used to detect next active objects in the last frame of the input
video clip processed at full resolution. A SlowFast 3D CNN [71]
is hence used to predict a verb label and a time to action for
each predicted object. This is done by obtained a fixed-length
representation of each object through ROI pooling [87]. Two
linear layers are hence used to predict a probability distribution
over verbs and a positive quantity for time to contact prediction
respectively. Verb probability distributions are obtained using a
softmax layer, whereas a softplus activation is used for time to
contact prediction to make sure that the prediction is a positive
number. The final output of the model is obtained by attaching
the predicted verb and time to contact to each detected next active
object. The noun label and confidence scores are copied from the
output of the Faster R-CNN component.

Training Details We first train the Faster R-CNN component on
all frames with annotated next active objects. We use the Faster
RCNN detector based on ResNet50 using the “3x” training sched-
ule provided with the Detectron2 library19. After this stage, the
weights of the Faster R-CNN component are not updated anymore.

19https://github.com/facebookresearch/detectron2

We hence train a SlowFast model based on ResNet50. We follow
the configuration provided in the PySlowFast library20 to tackle the
AVA detection task (“SLOWFAST 32x2 R50 SHORT.yaml”). The
SlowFast model takes as input video clips of 32 frames sampled
with a temporal stride of 1 frame. During training, we match each
detected object to the ground truth instance with largest Intersection
Over Union (IOU), provided that it is larger than 0.5. We hence
attach the verb and time to contact labels of the ground truth boxes
to the matched ones. We then train the model applying the follow-
ing loss only to boxes which have been matched to ground truth
instances:

L = Lv + λLttc (39)

where Lv is the cross entropy loss for verb prediction, Lttc is the
smooth L1 loss [87] applied to time to contact prediction, and
we set λ = 10 to control the contributions of the two losses. To
regulate the number of frames processed by the slow branch, we
set α = 8. We train the model on 4 NVIDIA V100 GPUs with a
batch size of 64 for 50 epochs using a cosine learning rate policy
with a base learning rate of 0.001. We validate the model at the end
of each epoch and consider the weights which achieved the best
overall top-5 mAP on the validation.

Long-Term Action Anticipation

Baseline Description The goal of the baseline model is to take as
input a trimmed video of arbitrary length, and predict N different
plausible sequences of future actions. The baseline models thus con-
sist of three components: (1) the encoder backbone for obtaining
clip level features, (2) the aggregation module for combining the
obtained features from different clips, and (3) the decoder network
for decoding the plausible sequences of future actions. For encoder
backbones, we consider state of the art video recognition networks
from both convolutional model, namely, SlowFast [71] and the
newly proposed video transformer models, namely, MViT [63].
For aggregation module, we experiment with simple concatenation
operators that concatenates the obtained clip features from multiple
input clips as well as transformer based self-attention modules. For
the decoder networks we consider the following options:

• No Change: A simple recognition baseline that assumes no future
change in the current action and simply predicts the currently
observed action as a duplicated static future sequence for Z steps.

• MultiHead: This model trains Z independent heads in parallel,
one for each future time step. The final sequence is simply the
conjoined predicted actions of each head.

Finally, to generate N plausible future sequences for con-
structing multimodal baselines, we simply sample the predicted
future action distribution N times. The framework for a particular
instantiation of the MultiHead baseline is illustrated in Figure 60.

Training Details For each video, we sample multiple input clips
to process with our backbone network. A single clip length for
both the backbones, SlowFast and MViT, comprises of 16 frames
sampled 4 frames apart. Each clip is processed independently by the
same encoder weights and combined with the aggregation module.
The aggregated feature is decoded with the decoder module where

20https://github.com/facebookresearch/SlowFast
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Figure 58. Verb distribution in the Short-Term Object-Interaction Anticipation data.
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Figure 59. Noun distribution in the Short-Term Object-Interaction Anticipation data.

Figure 60. Long-Term Action Anticipation baseline. A baseline
model with a SlowFast backbone, and Z = 3 is shown here. Blue
box: clip encoder network. Yellow box: multiple classifier heads,
one for each future action. See Sec. J.5 for more details.

the output behavior changes during training and testing. In training,
the decoder predicts the next action probability distributions for
each future step. We calculate the sum of losses for each prediction

as our total loss:

Llta =

Z∑
z=1

Lv((p
n
z , p

v
z), (nz, vz)) (40)

where Lv is cross entropy loss, p∗z refers to the predicted probability
distribution over verbs and nouns, and (nz, vz) refer to the ground
truth future action labels.

During testing, we sample action class labels (n̂z, v̂z) from the
predicted distribution independently for each future step. We repeat
this sampling procedure N times to generate multiple cancidate
sets of predictions for evaluation described in Section J.4.

We use the taxonomy presented in Figure 39 for our experiments.
We finetune a Kinetics-400 [109] pretrained encoder backbones on
Ego4D action recognition and use this model for all baselines to
extract the clip level features. The aggregation module and decoder
networks are trained from random initialization directly on the
forecasting task. The encoder weights are kept unchanged during
the decoder network training. We set Z = 20 for long horizon
future evaluation and K = 5 as the number of plausible future
sequences predicted by the model. For all baselines, we sample 2
input clips to capture past context unless otherwise specified. We
train the model on 8 NVIDIA V100 GPUs with a batch size of 64

70



Set Metric Mean Median
Val 5-MTE 5.11m 2.53m
Val 3-MTE 6.19m 2.99m
Val 1-MTE 8.81m 4.63m
Test 5-MTE 4.84m 2.69m
Test 3-MTE 5.54m 3.24m
Test 1-MTE 7.66m 4.73m

Table 33. Results of the locomotion prediction task. We report
mean/median for 7-15 second predictions. We use K = 1, 3, 5.

Set ϵ = 1m ϵ = 2m ϵ = 3m ϵ = 4m ϵ = 5m ϵ = 6m
Val 0.14 0.29 0.39 0.46 0.51 0.54
Test 0.16 0.31 0.40 0.47 0.53 0.58

Table 34. Results of the locomotion prediction task. We report
the probability of correct trajectory (PCT) as varying the error
threshold ϵ.

Set Method Left Hand Right Hand
M.Disp.↓ C.Disp.↓ M.Disp.↓ C.Disp.↓

Val I3D+Reg 54.11 57.29 54.73 57.94
Test I3D+Reg 52.98 56.37 53.68 56.17

Table 35. Results of future hand movement prediction task. Note
that the left and right hands movements are evaluated separately. ↓
indicates lower is better

for 30 epochs and a base learning rate of 0.0001.

J.6 Results

Future Locomotion Movements Prediction

We evaluate the KNN based baseline algorithm by measuring mean
trajectory error (K-MTE) and probability of correct trajectory (PCT)
given an error tolerance. The trajectory length ranges from 7 to 15
seconds (70-150 points in a trajectory given 10 FPS). Our baseline
achieves mean error 8.81m for 1−MTE and 0.39 for PCTϵ=3m.
The result is summarized in Table 33 and 34.

Future Hands Movements Prediction

For future hands movements prediction task, we report mean dis-
placement error (M.Disp.) and contact frame displacement error
(C.Disp.) on both validation and test sets in Table 35. Our base-
line model achieves M.Disp. of (52.98/53.68) and C.Disp. of
(56.37/56.17) for left/right hand position prediction on the test set.
It is worth noting that predicting hand positions on contact frame
is more challenging than on other key frames. This is because,
by the definition of contact frame and pre-condition frame, the
anticipation temporal footprint of contact frame is larger than other
key frames. We further provide qualitative results of our baseline
method in Fig. 61. Notably, the model can make reasonable predic-
tions on future hand positions. However, the model is more likely
to fail when there is drastic embodied motions.

Set Method Noun Noun+Verb Noun+TTC Overall
Val FRCNN+Rnd. 17.55 1.56 3.21 0.34
Val FRCNN+SF 17.55 5.19 5.37 2.07
Test FRCNN+Rnd. 20.45 2.22 3.86 0.44
Test FRCNN+SF 20.45 6.78 6.17 2.45

Table 36. Results of the short-term object interaction anticipation
task. See text for discussion.

Short-Term Object Interaction Anticipation

Table 36 reports the results for the short-term object interaction
anticipation task on both the validation and test sets. We com-
pare the proposed baseline based on Faster RCNN and SlowFast
(“FRCNN+SF” in the table) with a simpler baseline which uses
Faster RCNN to detect object and predict their classes, but draws
verb and TTC predictions randomly from the training set distri-
bution (“FRCNN+Rnd.” in the table). Results are reported in
Top-5 mAP% according to the different matching criteria discussed
in Appendix J.4. As can be noted, the proposed baseline outper-
forms random prediction by big margins when verbs and TTCs
are predicted on both the validation and test sets. This suggests
that, despite being simple, the baseline can leverage the observed
video to anticipate future object interactions. Figure 62 reports
some qualitative examples of the baseline. The model is sometimes
able to detect the next active objects and predict suitable verbs and
TTCs, but performance tends to be limited especially in complex
scenarios.

Long-Term Action Anticipation

Table 37 shows our results on both the validation and test sets. The
No Change baseline simply predicts the current action as the next Z
actions, and performs poorly at predicting future actions. Explicitly
training multiple heads improves performance on verbs, nouns and
actions. Changing the backbone architecture from SlowFast to
MViT greatly improves verb forecasting prediction performance,
but deteriorates noun forecasting performance, highlighting the
trade-off between the two despite similar action classification per-
formance on Kinetics. Finally, including larger video context infor-
mation in the form of multiple input clips by using the transformer
based aggregator module results in the best performance.

Figure 63 shows some qualitative results of our method. In
each row, the ground truth future actions are shown along with the
predictions from our model (for 5 time-steps). Correct predictions
are highlighted in green, while valid actions that are incorrectly
ordered (or paritally correct) are highlighted in blue. Note that
though not perfectly aligned, incorrectly ordered sequences are
given partial credit via the edit-distance metric.

J.7 Discussion

Data Annotation

Annotating the videos for forecasting tasks posed a number of
interesting challenges. First, we found the diversity of the data
led to a large and diverse taxonomy, which some annotators found
hard to navigate. Hence, we found a number of annotators used
the ”OTHER” option, which we eventually manually mapped to
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PRE Frame1.5 sec before PRE 1.0 sec before PRE 0.5 sec before PRE Contact Frame

: Ground Truth : Prediction

Figure 61. Qualitative examples of future hands movements prediction using the proposed baseline. The ground truth hands positions are
plotted as green crosses, while the predicted hands positions are plotted as red crosses.

Figure 62. Qualitative examples of short-term object interaction anticipation using the proposed baseline. The numbers in brackets represent
the confidence scores associated to the predictions. The ground truth next-active object is highlighted using a dashed red line, whereas
model predictions are reported in blue solid lines.

the taxonomy where possible. In future annotations, we plan to
ask annotators to always pick the closest taxonomy item even if
writing in a free-form OTHER label, to encourage them to stick to
the taxonomy as much as possible. Second, we noticed annotators
struggled with defining bounding boxes over “stuff” categories. For
example, when labeling “cutting grass”, it was often challenging to
draw a box that covers the full extent of the object of change (i.e.

“grass”). Finally, it was sometimes challenging to define what the
object of change was, when using large tools. For example, if using
a lawn mower to clear grass, does one consider the mower as the
tool and hence the grass as the object of change, or the levers and
buttons inside the mower as the object of change. We chose to rely
on the narrators to define which interaction to label (i.e. pushing
the lever/button vs cutting grass), and asked the annotators to label
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GT: take 
sickle

→ hold 
spinach

cut 
spinach

put 
sickle

take 
rubber band

→ → →

PRED: take 
sickle

→ cut 
spinach

hold  
spinach

cut 
spinach

throw 
sickle

→ → →

ED@5: 0.60

GT: smooth 
wood

→ remove 
sander

smooth 
wood

sand 
wood

remove 
sander

→ → →

PRED: hold 
sander

→ sand 
wood

hold 
sander

sand 
wood

sand 
wood

→ → →

ED@5: 0.80

Figure 63. Long term action anticipation - qualitative results. Actions in green represent correct predictions (correct action, at the correct
position). Actions in blue represent incorrect ordering of valid actions. Our edit-distance metric accounts for both cases.

Val set ED@(Z=20)
Backbone Aggregator Decoder Verb Noun Action
SlowFast Concat No Change 0.766 0.830 0.960
SlowFast Concat MultiHead 0.747 0.808 0.952
MViT Concat MultiHead 0.707 0.901 0.972
SlowFast Transformer MultiHead 0.745 0.779 0.941

Test set ED@(Z=20)
Backbone Aggregator Decoder Verb Noun Action
SlowFast Concat No Change 0.761 0.810 0.959
SlowFast Concat MultiHead 0.743 0.791 0.948
MViT Concat MultiHead 0.697 0.904 0.969
SlowFast Transformer MultiHead 0.739 0.780 0.943

Table 37. Results of the long-term action anticipation task. Lower
is better. See text for discussion.

tools and objects accordingly.

Future Locomotion Movements Prediction

The baseline quantitative results on the locomotion prediction task
imply that the visual cues, e.g., side walk, obstacles, and road,
in egocentric images are highly indicative of future movement.
However, the baseline method that encodes the visual semantics
of an image with a global feature is not detailed enough to model
complex walking movement, e.g., avoiding pedestrians. This opens
an opportunity for challenge participants to incorporate a fine-
grained visual representation.

Future Hands Movements Prediction

Our baseline model for future hands movements prediction suf-
fers from the drastic head movements in egocentric video and the
stochastic nature of future forecasting. We speculate that explic-
itly modeling the head movements and next-active objects may
complement the video representations for predicting future hands
movements.

Short-Term Object Interaction Anticipation

The short-term object interaction anticipation results highlight that
the proposed task is challenging, with the baseline achieving an
overall Top-5 mAP of 2.07% on the validation set and 2.45% on
the test set. The key challenges are likely due to the uncertain
nature of future predictions as well as to the inability of the object
detector to correctly detect next active objects and ignore the oth-
ers. Nevertheless, the proposed baseline, even if simple, allows
to greatly improve over a combination of an object detector and
a random prediction of verbs and time to contact quantities. This
suggests that methods can learn to analyze the input video in order
to make reasonable predictions about the future.

Long-Term Action Anticipation

We discuss several important aspects of the long-term action
forecasting problem through our experiments and ablation studies.
All ablations are run with SlowFast backbone networks, and
models are trained for 30 epochs.

How important is Ego4D action recognition pre-training? Table 38
shows the performance of our models when pretrained only on
Kinetics-400 action recognition (as opposed to further fine-tuning
on Ego4D action recognition). All models benefit greatly from
training on Ego4D data in two ways. First, there is a large
domain gap between Kinetics and Ego4D both in terms of visuals
(third-person vs. egocentric viewpoint) and the diversity of
activities they contain, which pre-training helps account for.
Second, action recognition models benefit from biases in the label
structure of future actions as seen from the performance of the No
Change baseline in Table 37.

How important is past context for transformer based models? Our
transformer aggregation modules aggregate information across a
larger temporal history controlled by the number of input clips
to the model. Table 39 shows the sensitivity of these models to
the amount of past context video that it has access to. Overall,
performance increases as more context information is provided
to the model, however this increase comes at the cost of memory
consumption — 8 is the maximum number of clips that can be fit
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Val Set ED@(Z=20)
Init Backbone Aggregator Verb Noun Action
K400 SlowFast Concat 0.752 0.820 0.958
+Ego4D SlowFast Concat 0.747 0.808 0.952
K400 SlowFast Transformer 0.746 0.809 0.953
+Ego4D SlowFast Transformer 0.745 0.779 0.941

Table 38. Long term anticipation - varying pretraining data. Mul-
tiHead decoder used for all models. Ego4D action recognition
pretraining greatly improves downstream forecasting performance.

Val Set ED@(Z=20)
# clips Backbone Aggregator Verb Noun Action
2 SlowFast Transformer 0.743 0.790 0.946
4 SlowFast Transformer 0.744 0.796 0.947
8 SlowFast Transformer 0.745 0.779 0.941

Table 39. Long term anticipation - varying number of input clips.
MultiHead decoder used for all models. Performance increases
with more input context.
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Figure 64. Performance vs. number of future actions Z. Predicting
further into the future is naturally more difficult. Models begin to
predict close to random actions for very high values of Z.

in GPU memory.

How far into the future can models predict? As mentioned in
Section J.4 we report results for predictions at Z = 20 as baselines
begin to predict actions at random for higher values of Z. Figure 64
shows the plot of edit distance vs. Z for our baseline models. As
expected, it is far easier to anticipate actions that occur immediately
next, which gets more difficult as Z increases, and steadily plateaus.

How to generate multiple candidate predictions? As mentioned in
Section J.4 we evaluate the best of K = 5 predictions to arrive at
our final results. To generate the K predictions, we sample each
classifier head independently, however there are several methods
to improve this including heuristic search algorithms (like beam
search). Ideally, the multi-modal nature of future prediction should
be accounted for in the model design itself. Moreover, decoder
models that take into account the sequential nature during inference
should be considered. These include transformer based decoders

that are popular in recent language models (e.g., BERT, GPT) This
is an important future direction of research.

J.8 Contributions statement

Giovanni Maria Farinella led the Forecasting Benchmark working
on the definition of the proposed tasks, on the collection, and writ-
ing the paper.
Rohit Girdhar co-led the Forecasting Benchmark working on the
definition of the proposed tasks, on the collection, and writing the
paper.
Antonino Furnari contributed to the definition of the proposed
benchmark tasks and in particular to the Short-Term Object Interac-
tion Anticipation task and has been key driver of implementation,
collection, annotation development throughout the project, and
writing the paper.
Ilija Radosavovic worked on the definition of tasks and has been
key driver of implementation, collection, annotation development
throughout the project, and writing the paper.
Tushar Nagarajan contributed to the definition of the proposed
benchmark tasks and in particular to the Long-Term Action Antici-
pation task and has been key driver of implementation, collection,
annotation development throughout the project, and writing the
paper.
Tullie Murrell worked on baseline implementation of the Long-
Term Action Anticipation task.
Karttikeya Mangalam worked on baseline implementation, experi-
ments and writing the Long-Term Action Anticipation task.
Christoph Feichtenhofer oversaw the development of the task, base-
lines and implementation of the Long-Term Action Anticipation
task.
Miao Liu worked on the definition of Future Hands Movement Pre-
diction task and has been key driver of implementation, collection,
annotation development throughout the project, and writing the
paper.
Wenqi Jia worked on baseline implementation of the Future Hands
Movement Prediction task.
Zachary Chavis worked on the Locomotion Forecasting task and
has been key driver of implementation, collection, and annotation
development throughout the project.
Hyun Soo Park worked on the definition of Locomotion Forecasting
tasks, collection, annotation, and writing the paper.
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K. Societal Impact
Our contribution can positively impact video understanding.

It offers the research community a large-scale resource captured
with rigorous privacy and ethics standards (detailed in Appendix A
and B) together with a diversity of subjects, and the benchmarks
will promote reproducible technical advances. More broadly, ego-
centric perception has the potential to positively impact society in
many application domains, including assistive technology, educa-
tion, fitness, entertainment and gaming, eldercare, robotics, and
augmented reality.

Nonetheless, future research in this area must guard against
the potential negative societal impact if technology for egocentric
vision were misused.

First, there are risks surrounding privacy. As we begin to see
a proliferation of wearable cameras in public spaces, producers
of these wearable devices will need to develop and implement
protocols for notice and consent regarding the collection of data in
public spaces, as well as user controls for how such data may be
used, stored, and shared with any third parties. Similarly, models
that may be used to transcribe speech or perform other tasks related
to footage should include robust user controls such as the ability to
remove or obscure personal data or sensitive content.

Note that for all our audio-visual and social benchmarking work,
the data used has full consent from the participants in the video,
i.e., to use their unblurred faces and audio of their conversation.
To date, the research community has lacked any large-scale data
resource with which to study these kinds of problems; Ego4D will
help the community to consider new solutions while leveraging real-
world, diverse data that respects the privacy protocols of different
countries. Furthermore, the Ego4D data is available only for users
who sign a license that enumerates the allowable uses of the data,
which is intended to hinder potential negative applications.

Second, there is a risk that our large-scale collection could
inspire future collection efforts without the same level of care or
attention to the privacy and ethical concerns as were taken in Ego4D.
To mitigate this risk, we have aimed to be comprehensive in our
descriptions of all parts of our procedures, and we will include our
best practices recommendations when publicly disseminating the
results of the project.

Finally, despite our best efforts as discussed in the main paper,
there are still some imbalances in the dataset. For example, the data
from Rwanda is relatively small, and though 74 cities represents a
leap in coverage, they do not capture all possible demographics. We
acknowledge that no matter how far one goes, full global coverage
of daily life activity is elusive. Still, we can mitigate this risk
by continuing to grow global collaborations with researchers and
participants in underrepresented areas.
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