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A. Societal Impact and Ethical Considerations

The diversity of applications that can leverage our sys-

tem merits a broad discussion on both its potential societal

impact and the ethical considerations one should consider

when applying it. As a general purpose tool rather than a

application-targeted solution, Kubric bears the potential for

diverse benefits as well as the risk of harm through negli-

gence or even malicious misuse.

Societal Impact. Synthetic dataset construction presents

system engineers with the opportunity to detect and correct

potentially dangerous failure modes – particularly for those

applications that involve human interaction, e.g., self-driving

cars and robotics – prior to their deployment in the wild and

with real humans. This does not, however, eliminate the

possibility of developing systems that could cause serious

injury to humans; instead, it raises the importance of consid-

ering the possibility of such outcomes. We therefore urge

Kubric users that work towards systems deployed outside

the laboratory, to take active measures towards mitigating

such risks and consider them at the forefront of the design

process. Still, the potential value of leveraging synthetic

dataset construction as a tool to help guard against harmful

outcomes should be further explored.

Ethical Considerations. While Kubric’s dataset genera-

tion relies on human-driven design automation, it sidesteps

the immediate need for human-derived data. This can help

to avoid ethical problems and legal obstacles to research

and can also be a powerful tool for studying and mitigating

undesirable societal biases. Still, any human-in-the-loop

semi-automated processes are susceptible to the biases of

their designers. While a more explicitly-controlled dataset

design methodology allows engineers to postpone compli-

cations surrounding the (important) privacy concerns due

to the treatment of data captured from the real-world, one

can reasonably argue that such a benefit is offset – at least

in part – by biases introduced during the dataset synthesis

process. Indeed, any explicitly-constructed synthetic dataset

will be vulnerable to inheriting the biases of the processes

employed when constructing it – but we argue that it pro-

motes the discussion and (hopefully) the mitigation of biases

at both an earlier stage of the design process and with a

greater degree of controllability. The potential downstream

impacts of distributional differences between the synthetic

and real-world data would then become an important addi-

tional concern, requiring explicit evaluation and potential

mitigation/treatment to safeguard against real world bias.

We also note that, while Kubric, on the one hand, pro-

vides an effective way to create new datasets, helping to

avoid becoming stuck on, and over-fitting to existing data,

it may also, on the other hand, enable the proliferation of

datasets tailored to highlight the advantages of one’s method

of choice. While this is true with all dataset creation, it is

hoped that through experimentation and replication, as with

model architectures, the field will self-select datasets that

are useful, providing fair, balanced assessment of different

models on tasks of common interest.

Environmental considerations. Controllable synthetic

dataset construction helps to promoting a control-based sci-

entific methodology: e.g., where confounding factors can be

explicitly isolated and tested against, and by allowing smaller

problems to be constructed (i.e., where only those behav-

iors one seeks to validate are tested against) before scaling

to larger, more general settings. This strategy can help to

reduce the need for repeatedly training large-scale models

on huge datasets, and thus lower the overall environmental

impact of the research project. However, the ability of to

generate large and controllable synthetic datasets does not

come without its costs; for example, our optical flow dataset

required roughly 3 CPU-years of compute-time. Hence we

urge researchers to be mindful of the costs of both training

and generating datasets, and to avoid generating unnecessar-

ily large datasets. As such, the design of surrogate synthesis

models capable of augmenting synthetic datasets in a more

energy-efficient fashion, e.g., with latent-space dynamical

models, is an important line of future research.

Synopsis. Synthetic data offers the opportunity for re-

searchers and engineers to consider and face the impact

of bias on their systems, to design around detecting danger-

ous failure modes, and all in a privacy-preserving setting.

This certainly does not preclude the presence of such is-

sues in any resulting final system, as the manner and degree

in which these opportunities are leveraged should mandate

an additional level of responsibility during the design and

meta-evaluation of the synthetic datasets.

B. ShapeNet pre-processing

Extensive pre-processing was performed to simplify the

integration of these assets within Kubric. These conver-

sion scripts are available in the shapenet2kubric sub-

directory; the conversion process can be easily reproduced by

the Docker container available therein. This conversion pro-

cess took ≈ 16 hours on a 80 core virtual machine (Google

Cloud VM n2-highcpu-80) and parallelization across

threads executed by Python’s multiprocessing library.



A small set of models failed to convert (e.g., they had missing

textures, erroneous materials, or simply crashed the conver-

sion process) and are listed in the conversion code.

While many of the models within the dataset produce

satisfactory renderings when visualized through OpenGL,

rendering quality is significantly higher when a photorealis-

tic renderer is employed (i.e., Blender Cycles). We collected

the community’s wisdom (i.e., ShapeNet and Blender official

forums) on how to tweaks models to minimize the occur-

rence of visual artifacts. The conversion procedure is auto-

mated via scripted Blender modifiers and involves removing

doubles, disabling auto-smoothing, splitting sharp edges,

and infinitesimally displacing the faces of polygonal meshes

along the primitive’s local normal. For the collision geome-

try, we first converted the assets into watertight meshes with

ManifoldPlus [41], and then resorted to the VAHCD [62]

implementation wrapped within PyBullet [19] to compute

the convex decomposition of a 3D object, whose mass and

inertia tensors were finally estimated by trimesh [22].

C. Further datasets and challenges

C.1. Robust NeRF

Neural Radiance Fields [66] or NeRF, trains a repre-

sentation of a static 3D scene via volume rendering by

minimizing a photometric reconstruction loss of the form

L(θ) = Er∥I(r)− Iθ(r)∥
2

2
, where r are rays corresponding

to pixels of a multi-camera system. The nature of this loss

implies that when the scene is not perfectly static across

views, the recovered representation is corrupted; see Fig-

ure 11 (center). This challenge demonstrates that further

research is still needed to fully address this problem; see Ta-

ble 7. In the “teleport” challenge, while most of the scene

remains rigid, we add impostor non-static object (i.e. the

monkey head) randomly within the scene bounds, while in

the “jitter” challenge the impostor position jitters around a

fixed position. In other words, the two datasets evaluate the

sensitivity of unstructured (teleport) vs. structured (jitter)

outliers in the training process. Figure 10 showcases some of

the training frames for each challenge. As shown in Table 7,

while unstructured outliers are to some degree addressed

by NeRF-L1 (−2.4 dB), structured outliers are significantly

more challenging to overcome.

C.2. Multiview object matting

Salient Object Detection (SOD) aims to segment out

the most salient object in an image from the background.

Classical methods involve active-contour [47, 69] or graph-

cut [20, 104] techniques, but there also exist techniques with

human-in-the-loop [72, 81, 100], and more recently deep

learning variants [30, 73, 74, 105, 117]. With human feed-

back, interactive methods are typically robust, but also costly.

Automatic segmentation, be it with traditional methods or

static teleport jitter

NeRF-L2 43.5 dB 25.5 dB 27.4 dB

NeRF-L1 42.8 dB 40.4 dB 37.1 dB

Table 7. Robust NeRF – Performance in PSNR↑ of classical NeRF-

L2 [66]) and its L1-robust version [113]. Note the performance is

evaluated on test views (i.e. novel view synthesis) and without any

impostors present.
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Figure 10. Robust NeRF (training data) – a dataset that violates

the rigidity assumptions typically assumed by NeRF training work-

loads. Here, we qualitatively visualize the “teleport” and “jitter”

versions of the training dataset.
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Figure 11. Robust NeRF (training outcome) – Visualizing the

rendering of NerF-L2 vs Nerf-L1 for models trained on Teleport

and Jitter training sets. During test the ground truth does not

have dynamic objects. Typical NeRF-L2 models render a shadow

in place of transient objects where as the NeRF-L1 model can

successfully remove the floaters.

deep networks, are less performant. Here we propose a

new mode of operation in SOD, a significantly harder task

(see Figure 12), yet with sufficient information for a hu-

man to solve the problem without ambiguity. We compare

several single view state-of-the-art SOD algorithms on this

dataset, and propose two datasets with increased complex-

ity. Instead of one image, we assume access to multiple
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Figure 12. Salient Object Detection – Images, ground truth mask,

as well as predictions from U2-Net (pretrained and fine-tuned) over

an example scene in the easy and hard datasets.

easy hard

maxFβ MAE Sm maxFβ MAE Sm

Pre-trained

SINet [30] 0.494 0.097 0.597 0.401 0.093 0.568

EGNet [117] 0.652 0.090 0.753 0.462 0.133 0.641

BASNet [74] 0.822 0.034 0.878 0.581 0.086 0.730

CPD [105] 0.811 0.029 0.872 0.594 0.068 0.742

U2-Net [73] 0.825 0.032 0.882 0.594 0.083 0.743

Fine-tuned

CPD [105] 0.958 0.007 0.968 0.901 0.015 0.925

U2-Net [73] 0.975 0.006 0.977 0.909 0.015 0.931

Trained from scratch

CPD [105] 0.957 0.008 0.967 0.906 0.015 0.928

U2-Net [73] 0.967 0.009 0.971 0.890 0.021 0.916

Table 8. Salient Object Detection – Quantitative results as eval-

uated by max F-measure with β2
= 0.3 [1], Mean Absolute Er-

ror [10] and Structure measure [29].

images (taken from different angles) of the same salient

object. With multiple views of the same object, we theo-

rize that automatic SOD would be more robust as the 3D

structure implied from multiple images provides informa-

tion that could help disambiguate boundaries of the target

object. For the easy challenge, scenes only contain one

salient object within the scene, while in the hard challenge

we additionally insert clutter. All target objects are ran-

domly selected from SHAPENETCORE V2 the background

from POLYHAVEN HDRIs [115]. In the case of the hard

challenge, clutter objects are also sampled randomly from

SHAPENETCORE V2. We render 10 images for each scene,

Lambertian Specular

PSNR SSIM PSNR SSIM

LFN [86] 29.71 0.883 26.77 0.816

PixelNeRF [114] 32.11 0.922 29.96 0.885

Table 9. Complex BRDFs – Comparison of novel view synthesis

results for specular vs. diffuse materials.

Input GTPixelNERF

Lambertian Specular

Input GTPixelNERF

Figure 13. Complex BRDFs – Existing approaches struggle to

model ShapeNet shapes rendered with specular materials.

and export images and segmentation masks with Kubric. The

training/test sets contains 1000/200 scenes respectively for

both easy and hard.

To the best of our knowledge, multi-view SOD baselines

do not exist. We therefore evaluate recent SOTA single-view

SOD models as baselines. We first evaluate the pretrained

models on the easy dataset, as summarized in Table 8. Some

pretrained models (e.g. U2-Net) performs decently. Next,

we fine-tune the best performing pretrained models (U2-

Net and CPD) on the easy dataset. Despite U2-Net and

CPD’s strong performance, however, multivew enabled SOD

models should be stronger as the failure cases of single view

SOD models (e.g. see Figure 12) indicate the lack of 3D

understanding is often the culprit. Last but not least, we

train U2-Net and CPD on the easy dataset from scratch

for additional baseline results; see Table 8. We repeat

the experiments on the hard dataset. In the presence of

clutter, the task becomes significantly harder. Clutter is often

mistaken to be the salient object especially when the objects

are in close proximity. Again, the lack of 3D understanding

is an important factor for the relative poor performance of

the models. Models that work with multiple views, we

hypothesize, will significantly improve upon the baselines.

C.3. Complex BRDFs

Consider the core vision problem of reconstructing a

3D scene from few observations [68, 86, 87, 114]. Current

datasets [48, 114] mostly feature Lambertian scenes, i.e.,

scenes that consist of mostly diffuse surfaces, with few spec-

ular highlights. In this case, the only relevant scene parame-

ters are the 3D geometry, as well as the diffuse surface color.

When scene surfaces are highly reflective, the number of

scene properties required for accurate novel view synthesis

grows significantly. Instead of just 3D shape and appear-

ance, the model needs to address 3D geometry, the BRDF



of every surface point, as well as a full characterization of

the light incident onto the scene. To this end, we render

out a highly specular version of the ShapeNet dataset as a

challenge for few-shot novel view synthesis algorithms. We

follow Kato et al. [48] and render objects across 13 classes

from the same 24 views. To each object, we randomly assign

an RGB color. We place three light sources at randomized

positions on the upper hemisphere. In this challenge, we fix

the material properties of each object to the properties of the

specular CLEVR [44], and ray-trace each scene with 12 ray

bounces. We benchmark two recently proposed models on

this dataset: Light Field Networks [86], which parameterizes

a scene via its 360-degree light field, and PixelNeRF [114],

a conditional 3D-structured neural scene representation. In

order for these models to successfully train and perform at

test-time, they need to both model the view-dependent for-

ward model correctly, and correctly infer the position of the

light sources. We find that both models perform substan-

tially worse in Table 9 and specular compared to Lambertian

shapes. In Figure 13, we illustrate how existing approaches

struggle to represent inherent specularities in shapes.

C.4. Single View Reconstruction

Reconstructing an explicit 3D representation of an ob-

ject (e.g. polygonal mesh) exclusively from 2D image su-

pervision is challenging due to the ill-posed nature of the

problem. Given input 2D images and their associated 3D

viewpoint parameters (i.e., comprising the azimuth, distance,

and elevation of the camera looking at the object), current

methods (e.g. SOFTRAS [58]) combine an encoder to first

extract latent features from images followed by a decoder

to extract 3D vertices and face connectivity from the en-

coded feature vectors. Next, a differentiable renderer can

project the 3D faces according to the viewpoint and all while

respecting view-dependent occlusion constraints. To train

such a rasterization-based differentiable rendering model, a

loss function can be formulated from the difference between

this projected (i.e., rendered) output and an image of the sil-

houette of the object against ground-truth viewpoints. One

common loss function is based on a soft IoU loss between

the projected and ground-truth images. Notably, this entire

optimization no longer relies on any direct 3D supervision

on the explicit 3D object parameterization, only viewpoint

labels are needed and these can be readily determined from

sourcing camera responsible for producing the 2D supervi-

sion images.

We train a SOFTRAS [58] model on the entire SHAPENET-

COREV2 dataset instead of the commonly-used subset of

SHAPENET that only has 13-category, that’s typical for pub-

lished work in this area [48, 58, 109]. The full SHAPENET-

COREV2 consists of 55 categories with a total of approx.

51, 300 object models. We leverage Kubric’s ability to au-

tomatically process these object models and project each

into 24 random viewpoints, all while maintaining consistent

meta information (camera pose and object category) that

allows us to train SOFTRAS efficiently. We trained SoftRas

on two experimental setups: “in-distribution”, for which we

follow the training regimen of [58], train on 80% of each

category, and test and report performance on the remaining

20% of each category, and “out-of-distribution” where we

train on all categories except 4 classes that we leave out for

testing. They are train, tower, washer and vessel. Our results

for “in-distribution”, summarized in Figures 14 and 15, illus-

trate that we perform best on pillows and bowls (IoU 0.75

and 0.72), and worst on microphones and earphones (IoU

0.34). For “out-of-distribution” the results on the test classes

are close to those reported in Figure 14, suggesting that Soft-

Ras can generalize to new classes, but its limitations are on

reconstructing images from classes with complex shapes like

headphones. We observe that this processed dataset allows

us to train a SOFTRAS capable of reconstructing a wider

range of objects than in the original work of Liu et al. [58]

but the performance for some classes are poor, which will

hopefully inspire further research into more powerful and

2D-to-3D reconstruction methods.

C.5. Video Based Reconstruction

As discussed in Section C.4, the ill-posed nature of single-

shot 3D reconstruction makes it an extremely challenging

task. To better supervise surface reconstruction, the exten-

sive availability of video data provides an attractive alterna-

tive to images. Multi-frame consistency of video sequences

imposes additional constraints. However, since most 3D

scenes are not static and many interesting real-world objects

are not rigid, it brings up a new challenge for video-based

surface reconstruction methods to be robust to deformations.

LASR [111] presents a pipeline that jointly recovers ob-

ject surface mesh, articulation, and camera parameters from

a monocular video without using category-specific shape

templates. The method first uses off-the-shelf networks to

generate a mask (silhouette) of the main object and optical

flow for each frame. Then, by leveraging SOFTRAS [58],

LASR jointly optimizes the object’s rest shape, articulation,

skinning weights, and camera parameters by minimizing the

difference between the input and re-rendered color image,

silhouette, and optical flow for each frame.

In this challenge, we first leverage Kubric to generate

videos of both rigid (ShapeNet assets) and non-rigid 4 ob-

jects to evaluate the general performance of LASR. As shown

in Figure 16, LASR fits the mesh well with input views but

fails to extrapolate to unseen views. As the optical flow loss

has been demonstrated to be critical and the ground truth flow

can never be obtained from real data, we also evaluate how

much LASR relies on the accuracy of the flow estimation.

4Human rigs imported from https://quaternius.com.



Figure 14. Single View Reconstruction – IoU results of training SoftRas on all ShapeNet categories. Pillows and bowls have the highest

IoU and the model struggle’s most with microphones and earphones.

Skateboard (Success)

Groundtruth

SoftRas

Headphones (Failure)

Groundtruth

SoftRas

Figure 15. Single View Reconstruction – Qualitative results of

SoftRas trained on the full ShapeNetCore V2 dataset of around

51,300 objects.

We separately train LASR using either the estimated optical

flow or the ground truth provided by Kubric and compare the

results of reconstruction; see Table 10. As expected, training

with the ground truth optical flow improves performance, al-

though this improvement is marginal. Another fundamental

limitation of LASR, as with many other mesh-based differen-

tiable renderers, is that it assumes a fixed mesh topology and

thus cannot handle topological changes. In Figure 16, we

show an example where LASR fails to reconstruct a non zero

genus shape (i.e. torus), highlighting the need for additional

research towards more robust approaches.

C.6. Point Tracking

The concept of optical flow can be easily extended to

longer-term tracking, following the approach proposed in

Figure 16. Video Based Reconstruction – Example results of

3D mesh reconstruction using LASR [111]. For each object class,

we challenge LASR with a Kubric-generated 30-frame video con-

sisting of the color image, object silhouette, and optical flow for

each frame. We show the input (training) view of the object in

the first row (GT). Others show the test views of the reconstructed

object rendered from multiple viewing positions. Note that only

the second row (Front) shares the same camera view as the input.

Input airplane car chair walking clapping roll

True flow 0.62 0.22 1.00 3.81 1.30 1.75

Estimated flow 1.52 0.26 1.08 3.19 1.34 1.85

Table 10. Video Based Reconstruction – Mesh reconstruction

error measured by Chamfer Distance for each object with either the

ground truth optical flow provided by Kubric or the estimated flow

as training input.

Tracking Any Point [3]. That is, given a video and a target

point on a surface in the scene (specified in 2D), the goal

is to output the 2D locations where that point appears in

other video frames. This kind of motion inference has many

applications, from 3D surface reconstruction, to inference

of physical properties like center of gravity and elasticity, to

memory of objects across long episodes for an interactive



method AJ < δxavg OA Jac. δ0 Jac. δ1 Jac. δ2 Jac. δ3 Jac. δ4 < δ0 < δ1 < δ2 < δ3 < δ4

Naı̈ve 28.6 44.7 82.1 9.7 16.2 25.8 38.5 52.9 18.2 28.6 42.6 59.0 74.8

Contrastive 49.5 68.7 80.5 17.2 35.5 53.9 67.1 73.6 30.8 55.1 75.0 88.0 94.2

Table 11. Point Tracking – Performance of our contrastive point tracking baseline. Jac. δx is the Jaccard metric measuring both occlusion

estimation and point accuracy, with a threshold of δx; AJ is the Average Jaccard across x between 0 and 4. < δx is the fraction of points

not occluded in the ground truth for which the prediction is less than δx, and < δxavg is the average across x between 0 and 4. Occlusion

Accuracy is denoted with OA. We set δ = 2.

method AJ < δxavg OA Jac. δ0 Jac. δ1 Jac. δ2 Jac. δ3 Jac. δ4 < δ0 < δ1 < δ2 < δ3 < δ4

Naı̈ve 28.6 44.7 82.1 9.7 16.2 25.8 38.5 52.9 18.2 28.6 42.6 59.0 74.8

Contrastive 45.2 63.6 80.2 12.6 28.9 48.8 64.1 71.8 23.7 47.0 69.9 85.1 92.4

Table 12. Point Tracking – Performance for on vertically flipped videos from the evaluation dataset. We see a roughly 4% loss in

performance on the average Jaccard score, suggesting that our method somewhat overfits to the scene layout. However, the performance is

far from collapsing.

agent. Optical flow is insufficient in many of these domains

because it cannot deal with occlusion, and small errors on

frame pairs can lead to drift, resulting in large errors over

time. It is straightforward to obtain long-term tracks from

Kubric by identifying a point on a 3D object, and then pro-

jecting that point throughout the scene. Large-scale training

datasets for this problem are very difficult for humans to an-

notate, so synthetic data can serve a critical role in achieving

good performance.

Given a video, the annotations consist of a set of tra-

jectories, i.e. a set of 2D points (xi,t, yi,t) ∈ R2 where i
indexes the different tracked points, and t indexes time. The

ground truth also includes vi,t ∈ {0, 1}, which indicates

whether a point i is visible in frame t is visible (vi,t = 1) or

not (vi,t = 0). The tracking algorithm receives one visible

point (x∗
i , y

∗
i , t

∗
i ) for each trajectory, and must output an es-

timate (x̂i,t, ŷi,t) for the other frames, as well as a visibility

prediction v̂i,t ∈ {0, 1}.

Metrics. We use three metrics proposed for Tracking Any

Point [3]. The first ignores the output positions and evalu-

ates occlusion estimation alone, via a simple classification

accuracy which gives equal weight to each point on each

frame. The second metric evaluates only tracking accu-

racy. Frames marked as occluded in the ground truth are

ignored. For the rest, we report a PCK-style [2] accuracy

across several different thresholds. That is, for a given thresh-

old α, which is a distance in pixels, we consider a point

correct if
√

(xi,t − x̂i,t)2 + (ŷi,t − yi,t)2 < α. Our final

metric combines both classification accuracy and detection

accuracy, and is inspired by the Jaccard-style metrics from

the object tracking literature [60]. Let TPα be the set of true

positives: that is, all visible ground-truth points (xi,t, yi,t)
for which (x̂i,t, ŷi,t) is predicted as unoccluded, and the spa-

tial prediction is within a distance of α. Let FNα be false

negatives: visible ground truth points which are predicted

to be occluded, or for which the predicted spatial position

is farther than α from the ground truth. Let FPα be false

positives: points (x̂i,t, ŷi,t) which are predicted to be visible,

where the ground truth is farther than distance α or where

the ground truth is marked as occluded. The Jaccard met-

ric is then |TPα|/(|TPα| + |FNα| + |FPα|). In practice,

we compute these metrics across 5 different thresholds of

the form α = δx pixels, for x ∈ {0, 1, 2, 3, 4} and δ = 2.

We compute an average across thresholds to get an overall

metric.

Baselines. We next define a baseline method that can be-

gin to solve the point tracking problem. One of the closest

problems in the literature is segment tracking, using datasets

like DAVIS [70]. Therefore, our baseline is inspired by

VFS [108], a state-of-the-art method for DAVIS. VFS has

two key components: first, a self-supervised training phase

where the aim is to learn a good similarity metric between

points across images, and second, a test-time tracking al-

gorithm based on earlier work [101] which can associate

points in unlabeled frames with the points in labeled frames.

Our model, however, is modified to deal with points rather

than segments, and to leverage the labeled training data we

have available. For pre-training, we adopt a contrastive

approach [39]. We use a standard ResNet-50 [38] as a back-

bone, up to the final convolution, and with stride = 1 for the

final two blocks, which gives us a feature grid Fi (which is

L2-normalized over channel axis) for each frame, at stride 8.

Given a query point, (x∗, y∗, t∗) (note: we drop the i index

for clarity as we consider a single point), we first extract a

feature f∗ for that point, via bilinear interpolation at position

(x∗/8, y∗/8) from the feature grid for frame t∗. We then

compute the following contrastive loss function:

∑

fj∈Fi

γj log

(

exp(f∗
i · fj)/τ

∑

k exp(f
∗
i · fk/τ)

)

(1)



frame 3 frame 7 frame 11 frame 15

Figure 17. Point Tracking – Visualization of points tracked using our contrastive learning algorithm. We show each of 6 tracked points with

a different symbol and color, where the smaller, filled symbol is the prediction, while the larger, unfilled symbol is the ground truth. If the

ground truth is occluded or the point is predicted to be occluded, the corresponding symbol is not shown. We show only frames 3, 7, 11, and

15 out of a full 24-frame sequence for brevity. Note that the query frame is not necessarily at the beginning. The query was in frame 3 for the

cyan circle, the green square, and the red X; frame 7 for the blue star and the magenta plus, and frame 11 for the orange diamond.

where j and k index over the spatio-temporal dimensions of

F . The temperature hyperparameter τ is set to 0.1. γj is the

source of supervision: its value is high if fj is in correspon-

dence with f∗, and it is 0 if they aren’t. Note that if there is

exactly one other point considered to be “in correspondence”

with f∗, then the sum over k has a single term, and we are

left with a standard contrastive loss. However, in our case,

we have multiple potential correspondences, and this loss

encourages all of them to have roughly equally high dot

products.

We compute γj via bilinear interpolation. Say that the

feature fj is on frame t at position x̂, ŷ within the convo-

lutional feature grid, and the ground truth position is at

(xt/8, yt/8) (in the coordinate frame of the feature grid). If

(xt/8, yt/8) lies within the grid cell which has one of its

corners at x̃j , ỹj , then we set γj = (1− |x̃k − xt/8|) ∗ (1−
|ỹk − yt/8|). Otherwise, it is 0. γj is also set to 0 if the

ground truth is marked as occluded for frame t.

At test time, given a query point (x∗, y∗, t∗), we begin

by computing a correspondence to every frame. For a single

frame at time t, this is done via a dot product between f∗

(again extracted via bilinear interpolation) and each feature

in frame t, followed by a softmax S across space, which

gives us a heatmap of likely locations, i.e., Sxy is the proba-

bility that x, y corresponds to (x∗, y∗, t∗). We then compute

S̃ by finding the argmax of S and zeroing out any grid

cells further than 40 pixels away (5 grid units) from it, to

suppress potential multimodal correspondences. Then we

compute the weighted average of the potential locations

[x̂, ŷ] =
∑

x,y[x, y] ∗ S̃xy/
∑

x,y S̃xy .

In order to classify whether the point is occluded, we

use cycle consistency [99, 101]. That is, we extract a new

feature f̂ from point [x̂, ŷ] in frame t, and reverse the pro-

cess, computing a softmax over locations in frame t∗ and

converting it into a point correspondence. If the estimated

point is further than 48 pixels of its starting location, we

consider it occluded.

We evaluate this procedure on MOVi-E at a resolution of

256× 256. For each evaluation video, we sample 256 query

points randomly across all frames. We attempt to sample

an equal number of points from each object as well as the

background, but cap the number of samples per object at a

maximum of 0.2% of the visible pixels. We use standard

data augmentations, including a random crop of the image as

small as 30% of the image area and an aspect ratio between

2:1 and 1:2, and the same color augmentations and pixel

noise that was used for our optical flow experiments.

Results are shown in Table 11. For comparison, we also

include a naı̈ve baseline which assumes no motion and no

occlusion, which is the best that can be done without refer-

ence to the pixels. We see that the contrastive approach is

fairly good at coarse tracking, reducing the error rate on the

largest threshold from 25.2% down to just 5.8%, a reduction

of more than 6 times relative to the naı̈ve baseline. However,

for more precise tracking, the reduction in error is not nearly

as great. On the other hand, accuracy at detecting occlusions

is quite poor for this method; for the threshold we used for

cycle consistency (48), the accuracy is actually worse than

chance. However, points for which the cycle consistency

check failed are actually unlikely to be within any distance

threshold; therefore, we find that removing these points from

the output improves the average Jaccard metric.

Because the network is trained and evaluated on data from

the same distribution, there is a possibility that the algorithm

is memorizing some aspects of the training data, such as

the common trajectories followed by objects. To evaluate

out-of-distribution transfer, we also applied our algorithm to

vertically-flipped videos, and show the results in Table 12.

This harms performance by about 4%, suggesting that the

network is memorizing trajectories to a small extent.

Finally, Figure 17 shows a qualitative example of our

point tracking algorithm on a kubric validation video. We



KLEVR ToyBox5 ToyBox13

2D
DeepLab [15] 97.1% 81.6% 63.1%

NeSF [97] 92.7% 81.9% 56.5%

3D
SparseConvNet [35] 99.7% 93.4% 83.2%

NeSF [97] 97.8% 88.7% 60.1%

Table 13. Scene Semantic Segmentation – We compare mean

intersection-over-union in 2D image segmentation (top) and 3D

point cloud segmentation (bottom) on the three datasets.

KLEVR ToyBox5 ToyBox13

Figure 18. Scene Semantic Segmentation – Example RGB and

segmentation renders from the datasets.

see that for easy points with relatively little motion, like

the blue star or cyan circle, the algorithm is quite accurate,

even when there is relatively little texture. Tracking can also

be good for the points that have reasonably distinctive tex-

ture, like the green square. Occlusions are also sometimes

detected correctly: for the red X, the algorithm correctly de-

termines the occlusion on frame 11, although it prematurely

finds the point again on frame 15. However, there are also

obvious failures: for instance, the algorithm loses the ma-

genta plus, likely because the object has rotated so much that

the appearance has changed substantially. This suggests that

it may be useful to employ global reasoning about the orien-

tation of objects rather than relying on appearance alone. We

also see a very large error for the diamond on frame 7, when

the point is occluded; the algorithm instead places the point

between the occluder objects, possibly because the feature

descriptors are relying too heavily on context. This result

suggests that simultaneously capturing global object motion

while remaining robust to occlusion will be a substantial

challenge in this dataset moving forward.

C.7. Scene Semantic Segmentation

As another use case, we consider the task of compar-

ing 2D and 3D semantic segmentation models. As these

methods operate on fundamentally different substrates, it

is challenging to quantify the effectiveness of one method

versus another. To this end, we construct three synthetic

datasets where 2D image and 3D point cloud are in direct

correspondence: KLEVR, ToyBox5 and ToyBox13. Each of

the ToyBox datasets each consists of 525 scenes. Each scene

contains 4-12 upright ShapeNet objects on a flat surface

with one of 382 randomly chosen HDRI backdrops. The

datasets differ only in the set of ShapeNet objects employed.

In ToyBox5, we use the top 5 most common object cate-

gories; in ToyBox13, the 13 most common object categories.

For each scene, we select 300 camera poses and render 3

images per pose: an RGB map, a segmentation map, and a

depth map. With knowledge of camera parameters, we are

able to construct a camera ray r(t) = o+ td corresponding

to each pixel in the dataset. When combined with depth

and segmentation maps, we obtain a labeled 3D point cloud

where each 3D point corresponds to one camera pixel. We

define a scene’s point cloud to be the union of all 3D points

constructed from all camera poses. The KLEVR dataset is

constructed identically to the ToyBox datasets except with a

fixed, neutral-grey backdrop and 5 platonic object shapes.

Experiments. We demonstrate two representative base-

lines for 2D image and 3D point cloud segmentation:

DeepLab [15] and SparseConvNet [35], respectively. In

addition, we compare these methods with NeSF [97], a

method for dense 2D and 3D scene segmentation from posed

RGB images. We train all methods with semantic super-

vision derived from 9 cameras per scene from 500 scenes

and hold out 4 cameras per scene from the remaining 25

scenes for evaluation. In 2D, we see that NeSF and DeepLab

perform similarly, with DeepLab outperforming NeSF by

0.3% to 6.6% (Table 13). In qualitative results, we find

that DeepLab’s predictions more tightly outline objects at

the expense of multiview consistency. In 3D, we see that

SparseConvNet achieves between 1.9% and 23.1% higher

mean intersection-over-union than NeSF with larger mar-

gins as dataset complexity increases. We attribute this to the

SparseConvNet’s access to ground truth 3D geometry and

supervision in the form of a dense point cloud. This results

in an exceedingly dense and accurate representation of 3D

geometry. NeSF, on the other hand, must infer 3D geometry

and semantics from posed 2D images alone. Further results

and comparison to NeSF are presented in [97].

C.8. Conditional Novel View Synthesis

Neural scene representations such as [66] have led to

state-of-the-art results in novel-view synthesis tasks on real-

world datasets [63], however, a new model must be trained

on each new scene, which does not allow the model to learn

a prior over the dataset. Prior works commonly use the

ShapeNet dataset [14] to evaluate how well a method can

generalize to novel scenes [86, 114]. However, ShapeNet

consists of canonically oriented objects with thousands of

same-class examples for some categories (e.g., airplanes)

rendered with flat shading. We introduce a new large-scale

dataset using Kubric to generate photo-realistic scenes with



PSNR SSIM LPIPS

LFN [86] 14.77 0.328 0.582

PixelNeRF [114] 21.97 0.689 0.332

SRT [82] 23.41 0.697 0.369

Table 14. Conditional Novel View Synthesis – Quantitative evalu-

ation for novel view synthesis.

Input Images [86] [114] [82] Target

Figure 19. Conditional Novel View Synthesis – The scenes are

very difficult as they contain a large number of objects in ran-

dom poses, contain realistic backgrounds, and are rendered with

ray-tracing. LFN fails to capture these datasets in a global la-

tent, severely under-fitting. PixelNeRF shows better quality ren-

ders, which however degrade for out-of-training distribution target

views(e.g., bottom row).

groups of ShapeNet objects. Each of the 1M scenes use

one of 382 randomly chosen background maps. We render

ten 128 × 128 random views for each scene and use five

as conditioning views, and the other five as target views.

The task is to reconstruct the target views given the condi-

tioning views. We compare the following recent methods:

PixelNeRF [114], which projects points into the condition-

ing views to interpolate encoded image features, LFN [86],

which condenses the scene into a single latent code, and de-

codes it into an implicit scene representation using a hyper-

network that produces the weights of the scene-specific MLP,

and SRT [82], which learns a scalable set-latent scene rep-

resentation through a transformer encoder-decoder architec-

ture. Fig. 19 compares these methods on our new challenge.

While all methods above produce fairly high-quality results

on ShapeNet (see [82]), they scale vastly differently to our

photorealistic, complex dataset: while PixelNeRF has ap-

parent difficulties with views that are far away from the

conditioning views, LFN does not scale at all to this com-

plexity, and SRT’s reconstructions suffer from blurriness.

Further details on this challenge and the dataset release are

presented in [82].


