
AutoLoss-GMS: Searching Generalized Margin-based Softmax Loss Function
for Person Re-identification

Supplementary Material

In the supplementary material, unless otherwise speci-
fied, the numbers of the figures and tables are within the
scope of the supplementary material.

A. The primitive operations set

There are a total of 24 primitive operations used, of
which 4 are binary operations, and 20 are unary operations,
as shown in Table 1. In addition to the common “Sig” func-
tion, more S-shaped functions such as “Gd”, “Alf”, “Erf”,
and “Erfc” have also been considered to increase the diver-
sity of the search space. Inspired by CircleLoss, the “De-
tach” operation is added as a self-paced weight.

Table 1. The primitive operations set H.

Operator Expression Arity

Add x+ y 2
Minus x− y 2
Mul x× y 2
Div x/y 2
Neg −x 1
Abs |x| 1
Inv 1/x 1
Log log(x) 1
Exp ex 1
Sig 1/(1 + e−x) 1
Tanh (ex − e−x)/(ex + e−x) 1
Sin sin(x) 1
Cos cos(x) 1
Arcsin arcsin(x) 1
Arccos arccos(x) 1
Square x2 1
Sqrt

√
x 1

Relu [x]+ 1
Softplus log(1 + ex) 1
Gd 2 arctan((ex/2 − e−x/2)/(ex/2 + e−x/2)) 1
Alf x/

√
1 + x2 1

Erf 2√
π

∫ x
0 e−t2dt 1

Erfc 1− 2√
π

∫ x
0 e−t2dt 1

Detach de(x) 1

B. The algorithm of constructing a loss

The Algorithm 1 shows the process of forward construct-
ing a computational graph. The Algorithm 2 shows the pro-
cess of constructing a loss function.

C. The details of the mutations

The in-graph mutation operations are shown as follows:

Algorithm 1: Construct CG
Input: The value set of constant nodes Cons, the number of

constant nodes nc, the maximum number of primitive
operations no and the primitive operations set H

Output: The computational graph G(V, E)
1 The initial nodes list V = [x];
2 The initial edges list E = [];
3 for i = 1; i ⩽ nc; i++ do
4 sample coni from Cons;
5 V .append(coni);

6 while |V| ⩽ no + nc + 1 do
7 Enumerate the possible set {(Opi, Ei)} based on the

G(V, E);
8 if |V| == no + nc + 1 then
9 Op = O;

10 E = [ev→O for v in V if v has no successor];

11 else
12 Sample Op and E from {(Opi, Ei)};

13 V .append(Op);
14 foreach e in E do
15 E .append(e);

16 return G(V, E).

Algorithm 2: Construct LF
Input: The value set of the scale factor Scales, the value set of

constant nodes Cons, the number of constant nodes nc,
the maximum number of primitive operations no and the
primitive operations set H

Output: The Θ = {s,Gt(Vt, Et),Gn(Vn, En)} in LΘ
gms

1 sample s from Scales;
2 Gt(Vt, Et) = Construct CG(Cons, nc, no, H);
3 Gn(Vn, En) = Construct CG(Cons, nc, no, H);
4 return {s,Gt(Vt, Et),Gn(Vn, En)}.

• Insertion. An operation randomly sampled from H is
inserted between a randomly selected non-root node
and its parent. When the selected operation’s arity is 2,
it would randomly select one node from all nodes gen-
erated before the selected non-root node as the other
parent node. This mutation is invalid if the CG has
reached the maximum number of primitive operations
no.

• Deletion. Any intermediate computational node can
be selected and removed. When the removed opera-
tion’s arity is 2, the randomly selected parent node be-
comes the new parent node of the removed node’ all
child nodes.

• Replacement. The randomly selected non-root node

Figure 1. The three in-graph mutation operations. The red parts
represent the changes from the original CG (a).

can be replaced by an operation randomly selected
from H. If the selected non-root node’ arity is smaller
than that of the selected operation, it would randomly
select one node from all nodes generated before the
selected non-root node as the other parent node. Oth-
erwise, the randomly selected parent node from the
parent nodes of the selected non-root node would be
selected as the parent of the selected operation.

Figure 1 shows examples of these in-graph mutation opera-
tions.

The process of mutating the loss to produce the offspring
is shown as Algorithm 3.

D. The details of the properies of the GMS loss
The generalized margin-based softmax loss function

generally meets the following properties:

1. t′(x) ⩾ 0, x ∈ [−1, 1];

2. n′(x) ⩾ 0, x ∈ [−1, 1];

3. n(x)− t(x) ⩾ 0, x ∈ [−1, 1].

Firstly, the gradients of Lgms with respect to cos θy and
cos θi(i ̸= y) can be obtained:{

∂Lgms

∂ cos θy
= −s · t′ (cos θy) ·

(
1− pt,ny

)
∂Lgms

∂ cos θi
= s · n′

(cos θi) ·
(
1− pt,ni

)
, i ̸= y

, (18)

wherept,ny =
exp(s·t(cos θy))

exp(s·t(cos θy))+
∑

k ̸=y exp(s·n(cos θk))

pt,ni = exp(s·n(cos θi))
exp(s·t(cos θy))+

∑
k ̸=y exp(s·n(cos θk)) , i ̸= y

.

(19)
As the training progresses, the overall trend of cos θy is in-
creasing, while the overall trend of cos θi(i ̸= y) is decreas-

Algorithm 3: Produce Offspring
Input: Two parent loss functions Θ(1) and Θ(2), the

cross-graph probability pc, the copy probability pcopy ,
the re-initialization probability pre, the maximum number
of mutations Nm, the parameters ∆c and Nc for Cons,
the parameters ∆s and Ns for Scales, the number of
constant nodes nc, the maximum number of primitive
operations no and the primitive operations set H

Output: The offspring Θ′

1 Θ(rand) = Construct LF(Scales, Cons, nc, no, H);
2 Θ′ = Θ(1);
3 if rand < pc then // Crossover Θ(1) and Θ(2)

4 if rand < 0.5 then
5 Θ′ = {s′,G(2)

t ,G′
n};

6 else
7 Θ′ = {s′,G′

t,G
(2)
n };

8 Update the s′ in Θ′ by Eq.(7);

9 r = rand; // Mutations on G′
t

10 if r < pcopy then // Directly copy the G′
t

11 pass;

12 else if r < pre then // Re-initialize the G′
t with

G(rand)
t

13 Θ′ = {s′,G(rand)
t ,G′

n};

14 else
15 N = randint([1, Nm]); // Mutate on G′

t
16 for n = 1;n ⩽ N ;n++ do
17 Mutate the {coni|nc

i=1} in G′
t by Eq.(8);

18 Mutate G′
t with the randomly choosed operation from

{Insertion,Deletion,Replacement};

19 r = rand; // Mutations on G′
n

20 if r < pcopy then // Directly copy the G′
n

21 pass;

22 else if r < pre then // Re-initialize the G′
n with

G(rand)
n

23 Θ′ = {s′,G′
t,G

(rand)
n };

24 else
25 N = randint([1, Nm]); // Mutate on G′

n
26 for n = 1;n ⩽ N ;n++ do
27 Mutate the {coni|nc

i=1} in G′
n by Eq.(8);

28 Mutate G′
n with the randomly choosed operation from

{Insertion,Deletion,Replacement};

29 r = rand; // Mutations on s′

30 if r < pcopy then // Directly copy the s′

31 pass;

32 else if r < pre then // Re-initialize the s′ with

s(rand)

33 Θ′ = {s(rand),G′
t,G′

n};

34 else
35 N = randint([1, Nm]); // Mutate on s′

36 for n = 1;n ⩽ N ;n++ do
37 Mutate the s′ in Θ′ by Eq.(8);

38 return Θ′ = {s′,G′
t,G′

n}.

ing. Therefore, from the overall trend, the following prop-

Figure 2. Different margin under different settings. The dotted line represents the decision boundary of each class.

erties can be obtained:

∂Lgms

∂ cos θy
⩽ 0,

∂Lgms

∂ cos θi
⩾ 0, i ̸= y,

and pt,ny < 1 and pt,ni < 1, so we can obtain the following
two properties in Lgms:

1. t′(x) ⩾ 0, x ∈ [−1, 1];

2. n′(x) ⩾ 0, x ∈ [−1, 1].

According to the above two properties, the compos-
ite function t(cos θ) and n(cos θ) are generally decreasing
functions with θ ∈ [0, π].

For ease of illustration, we only consider the binary case
(the target class is y, the non-target class is i) in Lgms to
prove the third property. The decision boundary for the tar-
get class y is t(cos θy) − n(cos θi) = 0. When n(cos θ) =
t(cos θ), the decision boundary is equivalent to θy = θi,
which is shown as Figure 2(b). When n(cos θ) < t(cos θ),
the decision boundary is equivalent to θy − θi > 0, which
will cause the positive and negative samples to be indistin-
guishable within a certain area shown in Figure 2(c). When
n(cos θ) > t(cos θ), the decision boundary is equivalent to
θy − θi < 0, which is shown in Figure 2(a). This situation
will form a large margin between the positive and negative
samples, which is conducive to learning more discrimina-
tive features. Therefore, the third property

n(x)− t(x) ⩾ 0, x ∈ [−1, 1]

is a property of GMS loss function.
It is difficult to test whether the continuous function t(x)

and n(x) meet the above properties, so the ft and fn in
Eq.(10) are used to test. We relax the requirements to meet
these properties to make our search space more flexible in
the specific implementation. Specifically, only the τp% in
ft and fn satisfies the above properties. This relaxation en-
ables CircleLoss, which does not strictly satisfy the second
property, to pass the protocol.

E. The algorithm of choosing the promising
loss

The promising-loss chooser algorithm is shown in Algo-
rithm 4.

Algorithm 4: Promising-Loss Chooser
Input: A loss function Θi, the current evaluated set

Eva = {(Θe, pe)|Ee=1}, the predictor P , the size of
evaluated set to start predictor E0, the interval for
updating predictor ∆E, the current candidate population
L, the maximum size of candidate population Np.

Output: The loss function Θo to be evaluated on the proxy task
1 if E < E0 then // Predictor doesn’t work.
2 Θo = Θi;

3 else if E = E0 then // Initialize predictor
4 L.add(Θi);
5 initialize P;
6 update P with Eva;
7 return None.

8 else // Predictor works.
9 L.add(Θi);

10 if (E − E0) mod ∆E = 0 then
11 update P with Eva;

12 if |L| = Np then
13 Lp = [];
14 foreach Θe in L do
15 Lp.append(P(Θe));

16 eo = argmax
e=0,1,··· ,Np−1

Lp [e];

17 Θo = L[eo];
18 L = { };

19 else
20 return None.

21 return Θo.

F. The details of the predictor
The commonly used ResNet50 is selected as our predic-

tor, and it needs to be adjusted according to our problem:
• The original ResNet is for two-dimensional data, but

our data is one-dimensional. So the two-dimensional
operations (Conv2d, BatchNorm2d, Pool2d) in the
original ResNet are replaced with the one-dimensional

operations (Conv1d, BatchNorm1d, Pool1d) to obtain
1D-ResNet.

• The input feature vector fvΘ is reshaped to xΘ ∈
R3×N to have a compact representation of the loss
function. The conversion from fvΘ to xΘ is as fol-
lows: 

xΘ [0, :] = fvΘ [: N]

xΘ [1, :] = fvΘ [N : 2N]

xΘ [2, :] = fvΘ [2N] · 1

• The feature after the last AvgPool1d in 1D-ResNet is
passed through the fully connected layers to get the
final predicted performance.

Our predictor is trained with SGD optimizer, and the
learning rate is fixed as 0.0035. The batch size is set to
16, and the τ in LK is set to 0.01. The λ is set to 1.0, and a
total of 200 epochs is used to train the predictor.

G. The implementation details of the experi-
ments

G.1. Search configurations

Search algorithm. The population is initialized with
K = 20 loss functions and is restricted to the most recent
P = 1000 loss functions. When searching from scratch,
the K = 20 loss functions in the initial population are all
randomly generated as Algorithm 2 shown. When search-
ing from prior knowledge, ten loss functions are randomly
generated, and the other ten loss functions are initialized
with the hand-crafted loss functions (the hyper-parameters
in these functions are set by the grid search results as shown
in Figure 3). The ratio of tournament selection is set as
T = 5% of the current population. The condition for the
search to stop is evaluating 500 models on the proxy task.
Other hyper-parameters used in AutoLoss-GMS are shown
in Table 2.

Proxy task. For every dataset, We use the images corre-
sponding to 80% of the pedestrians in the original training
dataset as the search training dataset, and the rest as the
validation dataset. In order to further improve the search ef-
ficiency, we reduced the image resolution in the proxy task
to half of the actual training task. Other configurations are
consistent with train configurations.

G.2. Train configurations

The loss function with the best performance in the search
process is retrained on the original training dataset.

Data preprocessing. In ResNet50 and OSNet, we resize
each image to 256 × 128. For MGN, we keep it consistent
with the original paper, and the image size of 384 × 128
is used. Then random cropping, random horizontal flipping
and random erasing are used for data augmentation.

Table 2. The hyper-parameters used in AutoLoss-GMS. CG: com-
putational graph. POS: produce the offspring. LRP: loss-rejection
protocol. ECS: equivalence-check strategy. PLC: promising-loss
chooser.

CG

nc 2
no 10
∆s 0.5
Ns 20
∆c 0.05
Nc 20

POS

pc 0.6
pcopy 0.1
pre 0.4
Nm 3

LRP
τp 80
τtoy 0.9
B 64

ECS N 257
Γ 13

PLC
E0 100
∆E 100
Np 10

Data sampling. We adopt PK sampling trategy with
P = 16 and K = 4.

Training. We use the SGD optimizer with a momentum
of 0.9 and weight decay of 5e-4 for training the above three
models. The above models are all trained for 140 epochs in
total, and the warmup learning rate is used. We spend the
first 20 epochs to increase the learning rate linearly from
0.0001 to 0.01, during which the weights of the backbone
are fixed. The learning rate is decayed to 0.001 and 0.0001
at 60th and 100th epochs.

Testing. The test-time flipping is utilized during testing,
and the cosine similarity is utilized as the measurement.

H. The impact of hyper-parameters in hand-
crafted loss functions and AutoLoss-GMS-
A

Since AutoLoss-GMS-A is searched on Market-1501
with ResNet50, we directly report the performance of
AutoLoss-GMS-A on Market-1501, as shown in Fig-
ure 3(a),(b). The hyper-parameters in other hand-crafted
loss functions are obtained by grid search. It can be
seen that the performance of our AutoLoss-GMS-A on the
Market-1501 is significantly better than these hand-crafted
loss functions.

When AutoLoss-GMS-A is directly transferred on the
CUHK03 dataset without any hyper-parameter adjustment,
its performance is still slightly better (see Table 4 in main
text for specific values) than other hand-crafted loss func-
tions after hyper-parameter adjustment, which is shown in
Figure 3(c),(d). To fast adjust hyper-parameters in our

Figure 3. Impact of hyper-parameters in hand-crafted loss functions and the searched AutoLoss-GMS-A. (a) and (b) are the results of
ResNet50 on Market-1501. (c) and (d) are the results of ResNet50 on CUHK03.

Table 3. The searched loss functions. PIP: predefined initial populations. Each loss is searched on a certain dataset using certain model
with PIP or not.

Searched Loss Model Dataset PIP t(x) n(x) log2(s)

AutoLoss-GMS-Zero ResNet50 Market-1501 ✗ (0.22 + e
√
0.22)x+ arcsin(0.22)2 x+ 0.85 5.5

AutoLoss-GMS-A ResNet50 Market-1501 ✓ de(1− x)(x− 0.7) [Gd(x−Sig(0.25))]+ 7.5
AutoLoss-GMS-B ResNet50 CUHK03 ✓ de(1.3− x)(x− 1.0) 0.35x− 0.352 6.0
AutoLoss-GMS-C OSNet Market-1501 ✓ (x− 0.84)(0.95− x) [de(arcsin(x))]+(x− 0.5) + 0.05 7.5
AutoLoss-GMS-D MGN Market-1501 ✓ x+ 0.15 x+ 0.2 4.0

Figure 4. The t(x) and n(x) of the hand-crafted loss functions and the searched loss functions.

searched loss functions, only the s is to be fine-tuned, which
is shown in Figure 3(d). Our fine-tuned AutoLoss-GMS-A
is significantly better than these hand-crafted loss functions
on the CUHK03 dataset, too.

I. The analysis of the searched loss functions
The specific expressions of the searched loss functions

are shown in Table 3, and the t(x) and n(x) of the

hand-crafted loss functions and the searched loss func-
tions are shown in Figure 4. First of all, the t(x) and
n(x) in AutoLoss-GMS-Zero and AutoLoss-GMS-D are
both linear functions. Due to the lack of prior knowledge,
AutoLoss-GMS-Zero will fall into this simple form of a lo-
cal solution. For AutoLoss-GMS-D, because the triplet loss
function is involved in the search process, it is possible that
this simple form can bring good results.

Table 4. The performance of the OSNet(-IBN,-AIN) with AutoLoss-GMS-C under the cross-domain setting.

Method Market-1501→MSMT17 MSMT17→Market-1501
mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

OSNet 3.4 10.3 17.2 21.6 40.1 67.0 80.9 86.0
OSNet+AutoLoss-GMS-C 8.4(↑ 5.0) 24.2(↑ 13.9) 35.6(↑ 18.4) 41.7(↑ 20.1) 47.6(↑ 7.5) 74.6(↑ 7.6) 86.3(↑ 5.4) 90.6(↑ 4.6)

OSNet-IBN 7.7 22.8 33.5 39.0 37.2 66.5 81.5 86.8
OSNet-IBN+AutoLoss-GMS-C 9.7(↑ 2.0) 27.0(↑ 4.2) 39.1(↑ 5.6) 44.8(↑ 5.8) 47.1(↑ 9.9) 73.7(↑ 7.2) 86.3(↑ 4.8) 90.5(↑ 3.7)

OSNet-AIN 8.2 23.5 34.5 40.2 43.3 70.1 84.1 88.6
OSNet-AIN+AutoLoss-GMS-C 10.6(↑ 2.4) 29.5(↑ 6.0) 41.7(↑ 7.2) 47.7(↑ 7.5) 46.4(↑ 3.1) 73.9(↑ 3.8) 86.8(↑ 2.7) 90.4(↑ 1.8)

The forms of AutoLoss-GMS-A, AutoLoss-GMS-B and
AutoLoss-GMS-C are similar to CircleLoss, but there are
still some differences. Specifically, none of the three
searched t(x) and n(x) have the Detach operation simul-
taneously. Although the t(x) of the three searched loss
functions and the t(x) of CircleLoss are similar to quadratic
functions, their n(x)s are far from CircleLoss’s, which are
difficult to be designed by hand.

J. The performance of the searched loss func-
tion under the cross-domain evaluation

In Sec.4.3.3, we have discussed the transferability of the
searched losses across datasets and models under the same-
domain setting, and the results are shown in Table 5 of the
main text. Here we will discuss the direct cross-domain
evaluation, and we present the performance of OSNet(-
IBN,-AIN) with the searched AutoLoss-GMS-C under the
cross-domain setting in Table 4. All results of OSNet,
OSNet-IBN and OSNet-AIN are obtained according to their
published network weights.

In the setting of Market-1501→MSMT17, the
AutoLoss-GMS-C we searched can stably improve
the performance of these three models. And when
MSMT17→Market-1501, OSNet +AutoLoss-GMS-C can
already achieve an mAP of 47.6%, which is better than the
hand-designed OSNet-IBN and the OSNet-AIN that took
much effort to search. Since our AutoLoss-GMS-C was
originally searched on the OSNet model, it may not be the
most suitable for the other two models, so the performance
of these two models under the blessing of AutoLoss-GMS-
C is not as good as OSNet +AutoLoss-GMS-C. Searching
for another loss function in the cross-domain setting for
OSNet-AIN will likely lead to better performance. All
the above experimental results show that searching for
a reasonable loss function can effectively improve the
performance of direct cross-domain evaluation.

If the target domain dataset can be used in the train-
ing process like the current popular cross-domain methods,
SpCL provides a good framework, whose core loss is suit-
able for being searched with our AutoLoss-GMS.

Table 5. The performance on CUB-200-2011 dataset with BN-
Inception network.

Method R@1 R@2 R@4 R@8

MS 65.7 77.0 86.3 91.2
CircleLoss 66.7 77.4 86.2 91.2
CirceLoss(Our Impl.) 65.6 76.1 84.9 91.1
Searched(Ours) 66.4 76.5 85.2 91.1

K. The extension on other task
Our method can be easily extended to other tasks, like

face recognition (FR), fine-grained image retrieval (FGIR)
etc. The loss we searched on ReID can also achieve compet-
itive performance when directly transferred to the FR task
(about 0.3% improvement over ArcFace with ResNet34 on
CFP-FP dataset). For FGIR, all tricks we have proposed
can be applied to searching for the s, t(x), n(x) in pair-wise
form of CircleLoss:

Lcircle−pw = log

1 +

L∑
j=1

exp
(
s · n

(
Sj
n

)) K∑
i=1

exp
(
−s · t

(
Si
p

)) ,

(20)
where K is the number of the within-class scores, and
L is the number of the between-class scores. Based on
the framework of Lcircle−pw, we searched on the CUB-
200-2011 dataset with the recall@1 target. The searched
t(x) = de(1.4 − x)(x − 0.5), n(x) = 0.3 + (0.05 +
x[sin(de(x))]+)2,log2(s) = 6.5.

Table 1 shows our searched loss on the CUB-200-2011
dataset. Our search target is recall@1, so our loss is the best
at R@1 under the same training configuration1. Besides, the
current SOTA ProxyNCA++ is also fully applicable to our
search space in FGIR, and the MS with some appropriate
adjustments is also applicable.

1Reproducing the results of CircleLoss is challenging, and we can only
achieve the best possible performance based on MS’s open source code.

https://arxiv.org/pdf/1910.06827v5.pdf
https://arxiv.org/pdf/1910.06827v5.pdf
https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO
https://arxiv.org/pdf/2006.02713
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Multi-Similarity_Loss_With_General_Pair_Weighting_for_Deep_Metric_Learning_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Sun_Circle_Loss_A_Unified_Perspective_of_Pair_Similarity_Optimization_CVPR_2020_paper.pdf
http://35.167.86.210/paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Sun_Circle_Loss_A_Unified_Perspective_of_Pair_Similarity_Optimization_CVPR_2020_paper.pdf
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
https://arxiv.org/pdf/2004.01113
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Multi-Similarity_Loss_With_General_Pair_Weighting_for_Deep_Metric_Learning_CVPR_2019_paper.pdf
https://github.com/msight-tech/research-ms-loss

	. Introduction
	. Related Works
	. Person Re-identification
	. Loss Function Search

	. Method
	. Search Space
	Preliminary Knowledge
	Loss Function Representation

	. Search Algorithm
	Initialization and Mutation
	Loss-Rejection Protocol
	Equivalence-Check Strategy
	Promising-Loss Chooser

	. Experiments
	. Datasets and Evaluation Metrics
	. Implementation Details
	. Ablation Study
	Analysis of the predictor
	Effectiveness of the components in AutoLoss-GMS
	Transferability of the searched losses

	. Comparison With State-of-the-Art Methods

	. Conclusions
	. The primitive operations set
	. The algorithm of constructing a loss
	. The details of the mutations
	. The details of the properies of the GMS loss
	. The algorithm of choosing the promising loss
	. The details of the predictor
	. The implementation details of the experiments
	. Search configurations
	. Train configurations

	. The impact of hyper-parameters in hand-crafted loss functions and AutoLoss-GMS-A
	. The analysis of the searched loss functions
	. The performance of the searched loss function under the cross-domain evaluation
	. The extension on other task

