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A. Detailed Derivations

A.1. Derivations of Loss Function

We give the derivations to obtain our loss function as:

L(θ, ψ) = Eq[
K∑
k=1

− log
pθ(yk−1|yk, f)
q(yk|yk−1)

]

= −Eq[
K∑
k=2

log
pθ(yk−1|yk, f)
q(yk|yk−1)

+ log
pθ(y0|y1, f)

q(y1|y0)
]

= −Eq[
K∑
k=2

log pθ(yk−1|yk, f)
q(yk−1|y0)

q(yk−1|yk,y0)q(yk|y0)

+ log
pθ(y0|y1, f)

q(y1|y0)
]

= −Eq[
K∑
k=2

log
pθ(yk−1|yk, f)
q(yk−1|yk,y0)

+

K∑
k=2

log
q(yk−1|y0)

q(yk|y0)

+ log
pθ(y0|y1, f)

q(y1|y0)
]

= Eq[
K∑
k=2

− log
pθ(yk−1|yk, f)
q(yk−1|yk,y0)

− log pθ(y0|y1, f) + log q(yK |y0)].
(1)

We ignore the last term because it has no learnable parame-
ters and get the loss function as:

L(θ, ψ) = Eq[
K∑
k=2

DKL(q(yk−1|yk,y0)‖pθ(yk−1|yk, f))

− log pθ(y0|y1, f)].
(2)

A.2. Derivations of Reparameterization

As shown in the loss function, we should match the
reverse transition pθ(yk−1|yk, f) and the ground-truth
q(yk−1|yk,y0), both of which are in Gaussian. We can
convert the KL divergence of two Gaussian distributions as
the difference of the means. We calculate the mean of pos-

terior in a closed form:

µ̃k(yk,y0) =

√
ᾱk−1βk
1− ᾱk

y0 +

√
αk(1− ᾱk−1)

1− ᾱk
yk,

(3)
where αk = 1− βk and ᾱk =

∏k
s=1 αs. By the reparame-

terization, we formulate the yk as a function of y0 and ε:

yk(y0, ε) =
√
ᾱky0 +

√
1− ᾱtε, (4)

where ε ∼ N (0, I) is a random variable, and we have

y0 =
1√
ᾱk

(yk(y0, ε)−
√

1− ᾱkε). (5)

Then we reformulate µ̃k(yk,y0):

µ̃k(yk(y0, ε), ε) = (

√
ᾱk−1βk√

ᾱk(1− ᾱk)
+

√
αk(1− ᾱk−1)

1− ᾱk
)yk(y0, ε)

+

√
1− ᾱk

√
ᾱk−1βk√

ᾱk(1− ᾱk)
ε

=

√
ᾱk−1βk +

√
ᾱk
√
αk(1− ᾱk−1)√

ᾱk(1− ᾱk)
yk(y0, ε)

− βk√
αk
√

1− ᾱk
ε

=

√
ᾱk−1(βk + αk(1− ᾱk−1))√

ᾱk(1− ᾱk)
yk(y0, ε)

− βk√
αk
√

1− ᾱk
ε

=
1
√
αk

yk(y0, ε)−
βk√

αk
√

1− ᾱk
ε

=
1
√
αk

(yk(y0, ε)−
βk√

1− ᾱk
ε).

(6)
Therefore, the DKL can be formulated as:

DKL=Ey0,ε

[
λ‖µ̃k(yk(y0, ε), ε)−µθ(yk, k, f)‖2

]
=Ey0,ε

[
λ
∥∥ 1
√
αk

(yk(y0, ε)−
βk√

1− ᾱk
ε)−µθ(yk, k, f)

∥∥2
]
,

(7)
Then we show why the last term − log pθ(y0|y1, f) is

tractable with the same formulation form of DKL at k = 1.
The term − log pθ(y0|y1, f) means that the outputs of pre-
diction model should follow the distribution of real data.
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Algorithm 1 Pseudocode for MID Training Procedure
1: repeat
2: Sample trajectory (x,y) ∼ qdata

3: x : Observed Trajectory
4: y : Future Trajectory
5: y0 = y
6: k ∼ Uniform({1, . . . ,K})
7: ε ∼ N (0, I)
8: Take gradient descent step on

∇(θ,ψ)

∥∥ε− ε(θ,ψ)(
√
ᾱky0 +

√
1− ᾱkε, k,x)

∥∥2

9: until converged

Algorithm 2 Pseudocode for MID Sampling Procedure

1: Input: Observed Trajectory x
2: Output: Predicted Trajectory y
3: Sample yK ∼ N (0, I)
4: for k = K, . . . , 1 do
5: z ∼ N (0, I) if k > 1, else z = 0

6: yk−1 = 1√
αk

(
yk − βk√

1−ᾱk
ε(θ,ψ)(yk, k,x)

)
+
√
βkz

7: end for
8: y = y0

9: return y

Considering the reverse transition pθ(y0|y1, f) is Gaussian,
we also revert this loss as the difference between the mean
of Gaussian transition µθ(yk, k, f) and the ground truth y0

as E
[
λ‖y0 − µθ(y1, 1, f)‖2

]
. Moreover, for the DKL un-

der k = 1, we have

µ̃1(y1(y0, ε), ε) =
1
√
α1

(y1(y0, ε)−
β1√

1− ᾱ1
ε)

=
1√
ᾱ1

(y1(y0, ε)−
√

1− ᾱ1ε).

(8)

With (5), we get µ̃1(y1(y0, ε), ε) = y0, which demon-
strates the of losses with both k = 1 and k ≥ 2 are in
the same form.

As shown in (6) and (7), the loss function expects the
model to predict 1√

αk
(yk(y0, ε)− βk√

1−ᾱk
ε) given the inputs

yk(y0, ε) and f . Since the yk(y0, ε) is the input, we only
need a network to predict ε as εθ(yk(y0, ε), k, f). Thus, the
final loss function is formulated as:

L(θ, ψ) = Eε,y0,k‖ε− ε(θ,ψ)(yk, k,x)‖, (9)

where ψ denotes we further consider the encoder network
in the loss function. Once the network ε(θ,ψ)(yk, k,x) is
trained, we can use this network to obtain the mean of Gaus-
sian transition.

µθ(yk, k, f) =
1
√
αk

(yk(y0, ε)−
βk√

1− ᾱk
ε(θ,ψ)(yk, k,x)).

(10)

Table 1. Ablation studies on sampling number on SDD.

Sampling ADE FDE
20 7.61 14.30
40 6.84 12.00

20×20 5.42 9.47

Furthermore, the trajectory in next step is predicted as:

yk−1 =
1
√
αk

(yk(y0, ε)−
βk√

1− ᾱk
ε(θ,ψ)(yk, k,x)) +

√
βkz,

(11)
where z ∼ N (0, I).

B. Implementation Details
In this section, we introduce the implementation details

of our method, including the hyper-parameters for training,
the network architecture, the algorithms of training and in-
ference, and the attached code.

Diffusion Process and Hyper-parameters: We set the
lower bound of variance scheduler β1 to 0.0001 and upper
bound βK to 0.05, and βk is uniformly sampled between
the bounds. For the main Transformer network in diffu-
sion model εθ, we devise three Transformer Encoder lay-
ers where each has the dimension of 512, feedforward di-
mension of 1024 and 4 attention heads. For the encoder
Fψ , we utilize the default configuration provided by Tra-
jectron++ [2].

Upsample-Downsample Layers: We employ a MLP-
based sub-network to upsample the raw trajectory from 2d
to 512d, and downsample the output of the Transformer
such that 512d-256d-2d as the final output of the network.
Each sub-network, denoted by M and parameterized by φ,
contains three MLP layers which we can formulate as:

Mφ(h, k, f) = (W1h+b1)�σ(W2c+b2)+(W3c+b3).
(12)

c is the concatenation of step number embedding and state
embedding such that c = [k, sin(k), cos(k), f ] and h de-
notes the input trajectory feature of the sub-network. W1,
W2, W3 and b1, b2, b3 are the trainable parameters of the
MLP layers. σ corresponds to a sigmoid function.

Reproducibility: For better understanding and repro-
duction, we provide Algorithm 1 and Algorithm 2 show-
ing the training and inference procedure of our MID frame-
work. Furthermore, the code can be found in https:
//github.com/gutianpei/MID.

C. Additional Experiments
We also respectively report the ADE (left) and FDE

(right) curves of min 3/min 5 metrics within reverse dif-
fusion steps from 0 to 100 in Figure 1. We can observe
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Figure 1. Trade-off between min 3/min 5 and diversity.

reducing the diversity also leads to better predictions with
fewer samples, which demonstrates that diversity and deter-
minacy are still contradictory with few samples.

Additionally, we found that the sampling trick is very
effective to improve model performance. Sampling tricks
usually add the number of sampling and do the post-
processing (clustering in YNet [1] and choosing best in Ex-
pert [3]). As shown in Table 1, the performance is improved
significantly when we add the number of sampling like Ex-
pert. However, we don’t encourage to use more samplings
since more samplings indicate more computation cost.
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