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1. Additional Results

1.1. Qualitative Evaluation on iPhone Images

We apply our approach trained on ScanNet+Scan2CAD
to images taken with an iPhone 11 (rear camera) of vari-
ous office environments. As shown in Figure 1, our method
achieves high-quality alignment results in complex scenes.

1.2. Unconstrained Retrieval

Following previous research [2, 3, 13], we retrieve CAD
models from a given scene pool in our main results. In
Figure 2, we consider unconstrained retrieval where CAD
models can be retrieved from the whole database of CAD
models that appear in the training data. Note that the CAD
models that only appear in the validation set are omitted.

In the unconstrained setting, the number of unique CAD
models from benchmark categories is ≈ 2300. Similar to
the standard approach, we pre-compute CAD embeddings
prior to inference. Using per-category nearest-neighbor
lookup from this large set, our method operates at 59 mil-
liseconds per image at inference (≈ 17 frames per second).
This is a 2-frame performance drop compared to the ≈ 19

frames per second achieved with constrained CAD model
pools. Even when retrieving from the large set of more
than 2000 CAD models, our method still achieves interac-
tive frame rates and has the potential for real-time applica-
tions.

2. Further Implementation Details

2.1. Depth Estimation Head

To predict depth for an input image, we use the multi-
scale future fusion (MFF) module from [9]. We adopt MFF
to use FPN [12] features instead of ResNet [8] features di-
rectly, and omit the up-convolutional part for computational
efficiency. Moreover, we use a pixel-shuffle [17] layer for
a learnable, parametric up-sampling as opposed to the com-
monly used bilinear interpolation performed only in post-
processing [9, 11].

Figure 3 diagrams our depth prediction head, and its sub-
components are given in Figure 4.

To optimize depth estimation, we use the reverse Huber

Figure 1. Sample Alignments from Smartphone Images. We take photos of a real work environment from an Iphone 11 rear camera.
Our method achieves high quality alignments to complex scenes with multiple objects.



Figure 2. Unconstrained Retrieval. We show results from ScanNet validation set [5], where the candidate retrieval pool covers the full
training set. Our method shows promising generalization capability in this challenging setup.

Figure 3. Overview of Depth Prediction. Adopted from [11],
up-projection (Upproj) layers up-samples of to a given spatial res-
olution. The resulting multi-scale features are combined via con-
catenation and used in depth estimation and alignment pipeline.

(berHu loss) [11], whose definition is

berHu(x) =

{
|x| |x| ≤ c,
x2+c2

2c |x| > c,
(1)

where c is set adaptively to 1
5 th of the loss values in a grid.

This loss allows low-error predictions to get more accurate
by down-weighting the outliers during training.

2.2. Retrieval Network

We show the retrieval part of our architecture in Figure 5,
which is inspired by the joint scan-CAD embedding of [4].

Figure 4. Depth head modules. Convolutions are described
with their filter width, filter height, and output channels, respec-
tively. Pixel shuffle layers up-sample spatial dimension by 4x4
(16 channels). The bilinear interpolation in Upproj layer adap-
tively rescales the input features to quarter of the image, 90x120
in out case, resolution irrespective of the input size. We use 32-
channel feature maps at each up-projection following [9].

2.3. Data Preparation

We render Scan2CAD alignment labels [2] over ScanNet
images [5] using a simple rasterization pipeline [1]. Before
rendering, alignment labels are projected to the image cam-
era coordinate systems, using the inverse of the camera pose



Figure 5. NOC-based Retrieval of CADs to Images. We use our predicted NOCs to enable 3D-based joint embedding of real-world
observations and CAD models, by interpreting the NOCs as a voxelization in the canonical space. Conv and UpConv represent convolution
and transpose convolution layers, with comma-separated values represent filter size, output channels, and stride, respectively. Each Conv
and UpConv layer are followed by a ReLU activation. ResBlocks represent ResNet basic blocks [8] that use 3D convolutions. The result
of the encoder and input for the decoder is a 256-dimensional embedding vector.

provided by the ScanNet [5].
Following Mask2CAD [10], we filter out objects whose

centers are outside the image frame. Furthermore, no Scan-
Net labels except for Scan2CAD alignments, camera poses
and camera intrinsics are involved in the rendering pipeline.
Thus, the rendering and supervision of our method is con-
sistent with and directly comparable to the previous work
[10, 13].

In the dense frame sampling experiment, we extracted
images from ScanNet raw sensor stream and perform the
same data processing.

2.4. Total3D Training Details

We re-train the pose estimation component of Total3D
[14] on our data for comparison. Since the method relies on
pre-computed object detections, we first train a ResNet50
Faster-rcnn [12, 18] initialized from ImageNet and COCO
pretraining. Then, we match the pre-computed detections
with our labels based on bounding box IOUs. Also using the
pre-computed detections, we extract the relevant geometry
features for the pose estimation pipeline [14].

Since the rotation component of total3d depends on the
room layout that we do not have, we simply use the ground-
truth rotation.

We use an SGD optimizer similar to our main training.
We train for the total of 60k iterations, decaying learning
rate at 40k, based on our tuning of the model.

2.5. Used Open-Source Libraries

We utilize various open source libraries for our model
trainings and data pre-processing. Our model is imple-
mented using PyTorch, Detectron2, and Pytorch3D [15, 16,
18], without declaring any custom low-level kernels outside
of these libraries. We make our geometry visualizations us-
ing Open3D [19] and CAD voxelizations using Trimesh [6].

For the baseline methods without learned retrieval, we per-
formed single sided Chamfer Distance lookup over point
clouds sampled using the farthest points sampling imple-
mentation from PyTorch Cluster [7].
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