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In this supplementary file, we provide the following materials:

• Detailed network structure of the refined alignment module (referring to Section 3.3 in the main paper);
• Detailed network structure of the fusion module (referring to Section 3.4 in the main paper);
• Statistics of pixel shifts of REDS4 dataset (referring to Section 4.2 in the main paper);
• Ablation study on the impact of the two-stage alignment framework (referring to Section 3.1 in the main paper);
• Ablation study on the impact of the proposed DPBM (referring to Section 3.2 in the main paper);
• Ablation study on the impact of the interpolation loss (referring to Section 3.5 in the main paper);
• More visual comparisons of different methods on the Videezy4K dataset (referring to Section 4.2 in the main paper);
• More visual comparisons and user study of different methods on real-world burst images (referring to Section 4.2 in

the main paper).

1. More Details of the Network Structure
The architecture of the refined alignment module and the fusion module are shown in Fig. 2. For the fusion model, we

utilize the gate recurrent unit (GRU) to aggregate the forward/backward temporal information (Equ. 4 in the main paper).
Here, we use ht = fgru(Ft, ht−1) as an example to show the detailed GRU computing process:

zt = σ(wz([wzhht−1, wzfFt])),

rt = σ(wr([wrhht−1, wrfFt])),

h̃t = tanh(rt ⊙ whhht−1 + whfFt),

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t, (1)

where σ is the activation function (e.g., sigmoid), ⊙ is the Hadamard product of matrix, and [·] is the concatenation operation.
wz , wr, wzh, wzf , wrh, wrf , whh and whf are the weight matrices of the corresponding convolution layers.

2. Statistics of pixel shifts of REDS4 dataset
We compute the pixel shift between adjacent frames on REDS4 by the RAFT method [4], and plot the statistics in Fig. 2.

We see that even for the 720p REDS4 images, the shifts can be very large (> 20). As shown in the right figure, the shift can
be more than 70 pixels but our method can still handle it.

3. Ablation Studies
Two-stage Alignment vs. One-stage Deep Alignment. One interesting question is whether a single-stage but deeper feature
alignment module can obtain comparable performance to our two-stage alignment method. To answer this question, we train
a variant of ours(w/ RA) (the model which uses only the refined module) with a deeper alignment module, denoted as ours(w/
DRA). In the coarse alignment module, we set the search radius as 24 (in HR feature domain) and perform the alignment
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(b) Fusion module
Figure 1. Architecture of the refined alignment module and the fusion module.

(a) Shift statistics

∆p1 ≈ 65

∆p2 ≈ 60

∆p3 ≈ 76

(b) An example

Figure 2. (a) The histogram of shifts on the 720p REDS4 dataset. (b) An example of shift between frames in REDS4 dataset.

Table 1. Comparison of different variants of our method on a clip with small motion (Clip 000) and a clip with large motion (Clip 020) in
the REDS4 dataset, and the average results on the whole REDS4.

Clip 000 Clip 020 Avg
ours(w/ RA) 32.57/0.9190 32.69/0.9002 33.90/0.9077
ours(w/ DRA) 32.50/0.9183 33.16/0.9073 34.08/0.9092
ours(w/o Lip) 32.73/0.9140 34.07/0.9182 34.33/0.9128
ours(full) 32.75/0.9174 34.17/0.9233 34.43/0.9178

on the 1/4 scale. Therefore, we add 16 Conv layers in the offset estimation part of the refined alignment module in ours(w/
DRA) to ensure that it has a comparable receptive field to our two-stage model. The results are shown in Table 1.

We can see that, for sequence with large shift (Clip 020), ours(w/ DRA) can improve the JDD-B results over ours(w/
RA) by ∼ 0.47dB, but it is still lags behind our full model by ∼1.01dB. Compared with one-stage deep alignment, our two-
stage coarse-to-fine method divides the difficult large shift alignment problem into two relatively simple sub-problems, thus
reduces the learning space and complexity.

DPBM vs. BM. We further evaluate the models using normal block matching (BM) and the proposed differentiable progres-
sive block matching (DPBM) in the coarse alignment module with different search regions. The results on a clip in REDS4
are shown in Fig. 3. One can see that with the increase of search region, the performance of both models increases. However,
with BM the performance reaches the peak when the search region reaches 64, while with DPBM, the performance reaches
the peak when the search region is 48. This implies that DPBM can save much the computational cost. In our experiments,
we set the search region as 48 for the REDS4 dataset and 128 for the Videezy4K dataset since the side length of 4K video is
about three times that of 720p video.
Impact of Lip. To validate the effectiveness of our proposed Lip, we compare the models with/without Lip. The results
are shown in Table 1. The model trained with Lip (ours) achieves better PSNR/SSIM results than ours(w/o Lip). A visual
comparison is shown in Fig. 4. We see that the model with Lip achieves better structure preservation. Lip can encourage the
network to use more information from other frames to reconstruct the reference frame and avoid over-smoothing much the
restoration results.
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Figure 3. JDD performance of Clip 020 in REDS4 by using BM and DPBM in the coarse alignment.

(a) Noisy image (b) Without Lip (c) With Lip

Figure 4. Effect of Lip. The interpolation loss encourages the network to utilize more temporal information, which can improve the
restoration performance on fine details.

4. More Visual Comparison Results and User Study
In this section, we provide more visual comparison results on images in the Videezy4K dataset and the real-world burst

images in SCBurst [2]. Since there is no ground-truth in SCBurst, we further conduct a user study to evaluate the visual
quality of our method.

More visual results on Videezy4K. More visual comparisons on Videezy4K are presented in Fig. 5 ∼ Fig. 8. In Fig. 5, we
can see that the structure of the building can be well restored by using our method. Fig. 6 shows an example of 4K portrait
photography. Due to the high resolution, even a small movement in the foreground can cause a large displacement between
frames. One can see that our method can recover more details. In Fig. 7, one can see that our method can obtain better
performance on moving objects, i.e. car. Fig. 8 shows the visual comparison in a small text region. Our method can restore
the text more clearly, which is easier to identify.

More visual results on real-world data and user study. In Figs. 9, 10 and 11, we show more visual comparison results
on images in the SCBurst dataset [2], which cover moving objects, texture regions and texts. One can see that our method
produces cleaner results with more fine textures.

To more comprehensively evaluate the performance of our method, we arranged a user study. We randomly cropped 120
image patches from the 16 image sequences in the SCBurst dataset, and invited 18 participants to give preference on the
denoising results of different methods on the 120 patches. For images with small level noise, we randomly cropped patches
in regions containing high frequency structures. For images with severe noise, the patches were randomly cropped from both
high frequency areas and flat regions. The scenes of the 120 image patches are shown in Fig. 12.

The participants were asked to select the best, the second best and the third best results among the seven competing JDD-B
methods, i.e., KPN [3]+DMN [1], EDVR [5]+DMN [1], RviDeNet [6]+DMN [1], EDVR* [5], RviDeNet* [6], GCP-Net [2].
The 18 participants performed this user study using multiple monitors, e.g., LG Ultra HD 4K display, Lecoo 4K display,
Redmi 1A 1080p display, retina QHD display of Macbook Pro and LCD HD+ screen of Thinkpad X1 Carbon. The denoising
results of competing methods were displayed on the screen simultaneously in random order. The interface of the user study
is shown in Fig. 13. In Fig. 14, we show the statistics of the user study. In terms of the top-2 best results, one can see that our
method achieves the similar number of votes to GCP-Net, both of which obtain >50% votes. However, our method obtains
more votes than GCP-Net in terms of the top-1 results, i.e., 36.1% vs. 27.9%. The user study reiterates the effectiveness of
our method on JDD-B.



(a) Noise image (b) Noise patch (c) EDVR* [5] (d) RviDeNet* [6]

(e) GCP-Net [2] (f) Ours (g) GT

Figure 5. JDD results by different methods on Videezy4K dataset.

(a) Noise image (b) Noise patch (c) EDVR* [5] (d) RviDeNet* [6]

(e) GCP-Net [2] (f) Ours (g) GT

Figure 6. JDD results by different methods on Videezy4K dataset.

(a) Noise image (b) Noise patch (c) EDVR* [5] (d) RviDeNet* [6]

(e) GCP-Net [2] (f) Ours (g) GT

Figure 7. JDD results by different methods on Videezy4K dataset.



(a) Noise image (b) Noise patch (c) EDVR* [5] (d) RviDeNet* [6]

(e) GCP-Net [2] (f) Ours (g) GT

Figure 8. JDD results by different methods on Videezy4K dataset.

(a) Noisy image (b) KPN [3]+DMN [1] (c) EDVR [5]+DMN [1] (d) RviDeNet [6]+DMN [1]

(e) EDVR* [5] (f) RviDeNet* [6] (g) GCP-Net [2] (h) Ours

Figure 9. JDD-B results on real-world burst images by different methods.

(a) Noisy image (b) KPN [3]+DMN [1] (c) EDVR [5]+DMN [1] (d) RviDeNet [6]+DMN [1]

(e) EDVR* [5] (f) RviDeNet* [6] (g) GCP-Net [2] (h) Ours

Figure 10. JDD-B results on real-world burst images by different methods.



(a) Noisy image (b) KPN [3]+DMN [1] (c) EDVR [5]+DMN [1] (d) RviDeNet [6]+DMN [1]

(e) EDVR* [5] (f) RviDeNet* [6] (g) GCP-Net [2] (h) Ours

Figure 11. JDD-B results on real-world burst images by different methods.

Figure 12. The 120 patches used in the user study.



Figure 13. The interface designed for the user study.
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Figure 14. User study results.
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