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In this supplementary material, we first compare the in-
ference speed of our proposed CMT with other networks.
Then we list the training strategy for transfer learning in
details. We also show more experiment results under differ-
ent settings for object detection and instance segmentation
on COCO benchmark. Finally we compare CMT with Ef-
ficientNetV2 and provide training results of CMT with the
same depth/width/resolution as others.

A. Inference Speed

We evaluate the inference speed (throughput, images
processed per second) of our proposed CMT-S and CMT-
B on ImageNet as shown in Table 2. Noting that while
EfficientNet is searched via NAS method, our CMT has
stronger potential and better speed-accuracy trade-off. The
proposed method also outperforms other transformer-based
networks, demonstrating that combining convolution and
transformer to capture both local and global information can
produce impressive results.

Table 1. Datasets used for vision tasks.

Dataset Train size Test size # Classes

ImageNet [4] 1,281,167 50,000 1000
CIFAR10 [11] 50,000 10,000 10
CIFAR100 [11] 50,000 10,000 100
Stanford Cars [10] 8,144 8,041 196
Flowers [13] 2,040 6,149 102
Oxford-IIIT Pets [14] 3,680 3,669 37

B. Transfer Learning

B.1. Image Classification

Datasets. In addition to ImageNet, we also evaluate the
proposed CMT on five commonly used transfer learning

*Corresponding author. Pytorch [15] implementation is available:
https://github.com/ggjy/CMT.pytorch

datasets, including CIFAR10 [11], CIFAR100 [11], Stand-
ford Cars [10], Flowers [13], and Oxford-IIIT Pets [14].
The details of these datasets are listed in Table 1.

Training details. We describe our training strategy on
the transfer learning datasets here. We build upon Py-
Torch [15], and adopt the same data augmentation strategy
as that of ImageNet. We change the number of output units
in the last classification layer to the number of classes in the
target dataset and initialize the new classification layer ran-
domly. The proposed CMT-S are fine-tuned with the image
resolution of 224×224 on all datasets. For CIFAR10 and
CIFAR100, the model is fine-tuned for 150 epochs with 6e-
5 initial learning rate. For Flowers and Pets, the model is
fine-tuned for 300 epochs with 9e-5 and 6e-5 initial learn-
ing rate, respectively. For Cars, the model is fine-tuned for
500 epochs with 9e-5 initial learning rate. Specifically, our
proposed CMT achieves better result with smaller compu-
tational cost and less training epochs compared to Efficient-
Net [18].

Results. In addition to the CMT-S shown in our main
paper, we present the transfer learning result of CMT-B in
Table 3. We can find that CMT-B outperforms other previ-
ous models with less computational cost.

B.2. Object Detection

In addition to the “1x” setting presented in main paper,
we also evaluate our CMT-S under the “3×” schedule. We
follow the common multi-scale training strategy [6,21], i.e.,
randomly resizing the input image so that its shorter side is
between 640 and 800. The corresponding results are shown
in Table 4.

B.3. Instance Segmentation

Similar to object detection, we show the result of CMT-S
based Mask R-CNN under “3×” schedule in Table 5. The
proposed CMT architecture can surpass other transformer-
based counterparts by a large margin with less FLOPs.
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Table 2. Comparison of the inference speed between different models. Throughput is measured on a single V100 GPU, following [2,12].

Model # FLOPs
Throughput ImageNet

Model # FLOPs
Throughput ImageNet

(image/s) Top-1 Acc. (image/s) Top-1 Acc.

DeiT-S/16 [20] 4.6B 940.4 79.8% DeiT-B/16 [20] 17.6B 292.3 81.8%
RegNetY-4G [16] 4.0B 1156.7 80.0% RegNetY-16G [16] 16.0B 334.7 82.9%
PVT-M [21] 6.7B 528.1 81.2% PVT-L [21] 9.8B 358.8 81.7%
CPVT-S-GAP [3] 4.6B 942.3 81.5% CPVT-B [3] 17.6B 285.5 82.3%
Swin-S [12] 8.7B 436.9 83.0% Swin-B [12] 15.4B 278.1 83.3%
Twins-SVT-B [2] 8.3B 469.0 83.2% Twins-SVT-L [2] 14.8B 288.0 83.7%
EfficientNet-B4 [18] 4.2B 349.4 82.9% EfficientNet-B6 [18] 19.0B 96.9 84.0%
CMT-S (ours) 4.0B 562.5 83.5% CMT-B (ours) 9.3B 285.4 84.5%

Table 3. More transfer learning results of CMT. All results are fine-tuned with the ImageNet pretrained checkpoint. † means the transfer
results are from [9].

Model # Params # FLOPs CIFAR10 CIFAR100 Cars Flowers Pets

ResNet-152† [8] 58.1M 11.3B 97.9% 87.6% 92.0% 97.4% 94.5%
Inception-v4† [17] 41.1M 16.1B 97.9% 87.5% 93.3% 98.5% 93.7%
RegNetY-8GF [16] 39.2M 8.0B - - 94.0% 99.0% -
CeiT-S [24] 24.2M 4.5B 99.0% 90.8% 93.2% 98.2% 94.6%
EfficientNet-B5↑456 [18] 28.0M 9.9B 98.7% 91.1% 93.9% 98.5% 94.9%
CMT-S (ours) 25.1M 4.0B 99.2% 91.7% 94.4% 98.7% 95.2%

ViT-B/16↑384 [5] 85.8M 17.6B 98.1% 87.1% - 89.5% 93.8%
DeiT-B [20] 85.8M 17.6B 99.1% 90.8% 92.1% 98.4% -
CeiT-S↑384 [24] 24.2M 12.9B 99.1% 90.8% 94.1% 98.6% 94.9%
TNT-S↑384 [7] 23.8M 17.3B 98.7% 90.1% - 98.8% 94.7%
TNT-B↑384 [7] 65.6M 36.6B 99.1% 91.1% - 99.0% 95.0%
EfficientNet-B7↑600 [18] 64.0M 37.2B 98.9% 91.7% 94.7% 98.8% 95.4%
CMT-B (ours) 49.1M 9.3B 99.3% 91.9% 94.9% 99.0% 95.5%

Figure 1. Comparison between CMT and EfficientNet-V2 [19].

C. Compare with EffNetV2.

EffNetV2-S / EffNetV2-M obtains 83.9
(22M,8.8B,24ms) / 85.1 (54M,24B,57ms) on ImageNet-
1K. And our CMT-B / CMT-L achieves 84.51

1Inference time is tested on V100 FP16 with batch 16, following
EffNetV2. CMT-L is trained with dp=0.4 and input size of 2882. CMT-L
in main paper is trained with 300 epochs, here we report the newly trained
CMT-L with 350 epochs (the same as EffNetV2).

(45.7M,9.3B,30ms) / 85.1 (74.7M,19.5B,51ms) on
ImageNet-1K, respectively. As shown in Figure 1, CMT
achieves better FLOPs/speed and accuracy trade-off than
EffNetv2 [19].

D. Same depth/width/resolution as others.

The width/depth/resolution heavily affect the perfor-
mance of models. To show the effectiveness of our pro-



Table 4. Object detection results on COCO val2017. All models use RetinaNet as basic framework. “# P” means parameters, “#
F” means FLOPs. FLOPs are calculated on 1280×800 input. “1x” indicates 12 epochs, “3x” indicates 36 epochs, and “MS” indicates
multi-scale training. † means the results are from [2].

Backbone # F # P RetinaNet 1x RetinaNet 3x + MS
mAP AP50 AP75 mAP AP50 AP75

ConT-M [23] 217B 27.0M 37.9 58.1 40.2 23.0 40.6 50.4 - - - - - -
ResNet-101 [8] 315B 56.7M 38.5 57.6 41.0 21.7 42.8 50.4 40.9 60.1 44.0 23.7 45.0 53.8
RelationNet++ [1] 266B 39.0M 39.4 58.2 42.5 - - - - - - - - -
ResNeXt-101-32x4d [22] 319B 56.4M 39.9 59.6 42.7 22.3 44.2 52.5 41.4 61.0 44.3 23.9 45.5 53.7
PVT-S [21] 226B 34.2M 40.4 61.3 43.0 25.0 42.9 55.7 42.2 62.7 45.0 26.2 45.2 57.2
Swin-T† [12] 245B 38.5M 41.5 62.1 44.2 25.1 44.9 55.5 43.9 64.8 47.1 28.4 47.2 57.8
Twins-SVT-S [2] 209B 34.3M 42.3 63.4 45.2 26.0 45.5 56.5 45.6 67.1 48.6 29.8 49.3 60.0
Twins-PCPVT-S [2] 226B 34.4M 43.0 64.1 46.0 27.5 46.3 57.3 45.2 66.5 48.6 30.0 48.8 58.9
CMT-S (ours) 231B 34.6M 44.3 65.5 47.5 27.1 48.3 59.1 46.9 67.1 50.5 30.4 49.8 61.0

Table 5. Instance segmentation results on COCO val2017. All models use Mask R-CNN as basic framework. “# P” means parameters,
“# F” means FLOPs. FLOPs are calculated on 1280×800 input. “1x” indicates 12 epochs, “3x” indicates 36 epochs, and “MS” indicates
multi-scale training. † means the results are from [2].

Backbone # F # P Mask R-CNN 1x Mask R-CNN 3x + MS
APb APb

50 APb
75 APm APm

50 APm
75 APb APb

50 APb
75 APm APm

50 APm
75

ResNet-101 [8] 336B 63.2M 40.0 60.5 44.0 36.1 57.5 38.6 42.8 63.2 47.1 38.5 60.1 41.3
PVT-S [21] 245B 44.1M 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
ConT-M [23] 237B 34.2M 40.5 - - 38.1 - - - - - - - -
ResNeXt-101-32x4d [22] 340B 62.8M 41.9 62.5 45.9 37.5 59.4 40.2 44.0 64.4 48.0 39.2 61.4 41.9
Swin-T† [12] 264B 47.8M 42.2 64.6 46.2 39.1 61.6 42.0 46.0 68.2 50.2 41.6 65.1 44.8
Twins-SVT-S [2] 228B 44.0M 42.7 65.6 46.7 39.6 62.5 42.6 46.8 69.2 51.2 42.6 66.3 45.8
Twins-PCPVT-S [2] 245B 44.3M 42.9 65.8 47.1 40.0 62.7 42.9 46.8 69.3 51.8 42.6 66.3 46.0
CMT-S (ours) 249B 44.5M 44.6 66.8 48.9 40.7 63.9 43.4 48.3 70.4 52.3 43.7 67.7 47.1

posed modules, we also provide training results of CMT
with the same depth/width/resolution as others. We con-
struct two models, namely CMT-PVT-S and CMT-Swin-T,
with the same depth/width/resolution as PVT and Swin for
a fairer comparison. As shown in Table 6, CMT based mod-
els surpass others by a large margin.
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