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1. Riemannian Geometry

We give a brief overview of Riemannian geometry, for
more details please refer to [1]. A Riemannian manifold
(M, g) is a real smooth manifold M with a Riemannian
metric g. The Riemannian metric g is a smoothly varying
inner product which is defined on the tangent space Tx.M
of M. Given x € M and two vectors v,w € T, M, we
can use the Riemannian metric g to compute the inner prod-
uct (v, w)x as g(v,w). The norm of v € T M is de-
fined as ||v[x = /(v,Vv),. A geodesic generalizes the
notion of straight line in the manifold which is defined as a
curve 7 : [0,1] — M of constant speed that is everywhere
locally a distance minimizer. The exponential map and
the inverse exponential map are defined as follows: given
X,y € M,v € Ty M, and a geodesic + of length ||v|| such
that v(0) = x,v(1) = y,7'(0) = v/||v||, the exponen-
tial map Exp, : TxM — M satisfies Exp, (v) = y and
the inverse exponential map Exp. Ly M — Ty M satisfies
Exp, '(y) = v.

2. Hyperbolic Student’s t-Distribution

Recall the way to define the the Student’s t-distribution
which expresses the random variable ¢ as,
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where u is a random variable sampled from a standard
normal distribution and v is a random variable sampled
from a y2-distribution of n degrees of freedom. The y2-
distribution can also be derived from normal distribution.
Let u1, us, ..., 4, be independent standard normal random
variables, then the sum of the squares,
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is a x2-distribution with n degrees of freedom. Thus, the
probability density function of the x?2-distribution can be
derived from the probability density function of the normal
distribution which is,
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Using Equation 1, we can further derive the probability
density function of the Student’s t-distribution,
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where B is the Beta function.

The probability density function of hyperbolic Cauchy
distribution can be derived in a similar way using hyperbolic
normal distribution.
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3. Hyperbolic Cauchy Distribution

Similar to the Student’s t-Distribution, the probability
density function of Cauchy distribution can derived from
the probability density function of the normal distribution.
In particular, let X and Y be independent standard normal
random variables, then Z = XL_H/ is a Cauchy random vari-
able. The probability density function of Cauchy distribu-
tion can be written as,
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The probability density function of hyperbolic Cauchy dis-
tribution can be derived in a similar way using hyperbolic
normal distribution.

The repulsion and attraction forces in CO-SNE depend
on the term p;; — ¢;; in Equation 12 of the main text. p;; is
fixed during training which depends on the distribution of
the high-dimensional datapoints. To create more repulsion
forces between two close low-dimensional embeddings y;
and y;, we aim at increasing the probability that the point
y; would select the point y; as its neighbor (i.e., g;;). By
using a small v in hyperbolic Cauchy distribution, the dis-
tance between y; and y; is scaled up. When the point y; is
fixed, the probability of selecting y; as a neighbor (i.e., g;;)
is scaled up relatively to some point y, which is far away
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Figure 1. The effect of A\; and X2 on the quality of the visualization. We show the visualization results of CO-SNE on a mixture of five
hyperbolic normal distributions in a five-dimensional hyperbolic space. We can observe that A, is responsible for preserving the local
similarity structure and A2 is responsible for preserving the global hierarchical structure. This shows that both the KL-divergence and the
distance loss are important for producing good visualization. CO-SNE is robust to wide choices of A\; and A2. Generally, A\; should be
larger than A since the magnitude of the gradients of the KL-divergence is smaller.

from y;. As aresult, p;; — ¢;; can potentially become neg- 4. The Effect of \; and )\,
ative. This creates additional repulsion forces to push the

. . . Recall the objective function of CO-SNE,
low-dimensional points apart.
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A1 and Ay are used to balance the KL-divergence C and the
distance loss H and can be regarded as the learning rates.



For ablation studies on the effect of A1 and )5, we reuse the
settings in Section 4.1 of the main text.

We consider different settings of A\; and A5 to investigate
the effect of the KL-divergence and the distance loss. The
results are shown in Figure 1. We have several observations
from the results.

1. In the first row, A\; = 0.0. This means that only
the distance loss is presented. We can observe that
the low-dimensional embeddings can only approxi-
mate the magnitude of the high-dimensional datapoints
but not the similarity structure.

2. In the first column, Ao = 0.0. This means that only
the KL-divergence is presented. We can observe that
the low-dimensional embeddings can only preserve the
similarity structure in the high-dimensional datapoints
but not the hierarchical information.

3. In other cases, we can observe that a larger Ay can
better preserve the hierarchical structure in the high-
dimensional datapoints but may distort the similarity
structure. A larger A; may also lead to a bad visualiza-
tion of the similarity structure since the KL-divergence
might diverge. Nevertheless, CO-SNE is robust to
wide choices of A1 and \o. Both the KL-divergence
and the distance loss are important for producing good
visualization.
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