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1. Organization of the supplementary
1.1. Background and datasets

1. In Section 2, we introduce the background on Gy-
rovector space.

2. In Section 4, we give the detailed statistics of the
datasets.

1.2. Effect of the gradient update

In Section 3, we derive the effect of the gradient update
of the Euclidean parameters on the hyperbolic embeddings.

1.3. Effect of the clipped value

In Section 5, we show the effect of different choices of
r. To conclude, there is a sweet spot in terms of choos-
ing v which is neither too large (causing vanishing gradient
problem) nor too small (not enough capacity). The perfor-
mance of clipped HNNs is also robust to the choice of the
hyperparameter r if it is around the sweet spot.

1.4. Adversarial robustness

In Section 6, we show more results on adversarial ro-
bustness. Clipped HNNs show more robustness to ENNs
and greatly improve the robustness of vanilla HNNZs.

1.5. More on out-of-distribution detection

In Section 7, we show more results on out-of-distribution
(OOD) detection using ENNs, vanilla HNNs and clipped
HNNSs. Clipped HNNs show stronger OOD detection capa-
bility compared with ENNs and greatly improve the OOD
detection capability of vanilla HNNs.

1.6. Using softmax with temperature scaling as a
workaround

In Section 8 we show that using softmax with tempera-
ture scaling as a workaround for addressing the vanishing
gradient problem. When feature dimension is high, softmax
with temperature scaling severely underperforms the pro-
posed feature clipping. The results again confirm the effec-
tiveness of the proposed approach.

1.7. Clipped hyperbolic space is still hyperbolic

In Section 9, we show that clipped hyperbolic space is
still hyperbolic. Using clipped hyperbolic space for learn-
ing word embeddings is better than using the unclipped ver-
sion.

1.8. With norm regularization term

In Section 10, we show the results using norm regular-
ization during training. The proposed feature clipping out-
performs using the norm regularization term.

1.9. More discussions on Lorentz model

In Section 11, we give more discussions on Lorentz
model and why we focus on hyperbolic neural networks
based on Poincaré ball model.



2. Gyrovector space

We give more details on gyrovector space, for a more
systematic treatment, please refer to [6—8].

Gyrovector space provides a way to operate in hyper-
bolic space with vector algebra. Gyrovector space to hy-
perbolic geometry is similar to standard vector space to
Euclidean geometry. The geometric objects in gyrovector
space are called gyroevectors which are equivalent classes
of directed gyrosegments. Similar to the vectors in Eu-
clidean space which are added according to parallelogram
law, gyrovectors are added according to gyroarallelogram
law. Technically, gyrovector spaces are gyrocommutative
gyrogroups of gyrovectors that admit scalar multiplications.

We start from the introduction of gyrogroups which give
rise to gyrovector spaces.

Definition 2.1 (Gyrogroups) A groupoid (G,®) is a gy-
rogroup if it satisfies the follow axioms,

1. There exist one element 0 € G satisfies 0 ® a = a for
alla € G.

2. For each a € G, there exist an element ©a € G which
satisfies Sa ®a =0

3. For every a,b,c € G, there exist a unique element
gryla,blc € G such that @ satisfies the left gyroas-
sociative law a ® (b @ ¢) = (a ® b)Dgry[a, blc.

4. The map gryla,blc: G — G given by ¢ — gry|a, b]c is
an automorphism of the groupoid (G, ®): gyrla,b] €
Aut(G, ®). The automorphism gyr|a,b] of G is called
the gyroautomorphism of G generated by a,b € G.

5. The operation gry: G x G — Aut(G, ®) is called gy-
rator of G. The gyroautomorphism gyr|a, b] generated
by any a,b € G has the left loop property: gyrla,b] =
gyrla @ b, b).

In particular, Mébius complex disk groupoid (ID, ®,r)
is a gyrocommunicative gyrogroup, where D = {z € C :
|z| < 1} and @, is the Mobius addition. The same applies
to the s-ball V¢ which is defined as,

Vs={veV:|v|]|<s} (1)

Gyrocommutative gyrogroups which admit scalar mul-
tiplication & become gyrovector space (G, @, ®). Mobius
gyrogroups (V,@®)s) admit scalar multiplication &y, be-
come Mobius gyrovector space (V, ®as, Qar).

Definition 2.2 (Mobius Scalar Multiplication) Let
(Vs,®nr) be a Mobius gyrogroup, the Mobius scalar
multiplication ® y is defined as,
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wherer € Randv € Vg, v # 0.

Definition 2.3 (Gyrolines) Let a,b be two distinct points
in the gyrovector space (G, @, ®). The gyroline in G which
passes through a, b is the set of points:

L=a® (©adb)xt 3)
where t € R.

It can be proven that gyrolines in a Mdbius gyrovec-
tor space coincide with the geodesics of the Poincaré ball
model of hyperbolic geometry.

With the aid of operations in gyrovector spaces, we can
define important properties of the Poincaré ball model in
closed-form expressions.

Definition 2.4 (Exponential Map and Logarithmic Map)
As shown in [1], the exponential map exps, : TxB} — B2
is defined as,
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expy (V) = x @, (tanh(

), vx € B, v € TxB!
“)

The logarithmic map log;, : B? — TxB” is defined as,
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()
The distance between two points in the Poincaré ball can

be defined as,

log, =

2
NoY

Definition 2.5 (Poincaré Distance between Two Points)

2
dc(Xa Y) = %tanhfl(\/EH@cx De Y||) (0)

3. The Effect of gradient update of Euclidean
parameters on the hyperbolic embedding

We derive the effect of the a single gradient update of
the Euclidean parameters on the hyperbolic embedding. For
the Euclidean sub-network £ : R™ — R". Consider the
first-order Taylor-expansion of the Euclidean network with
a single gradient update,
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Meanwhile, the exponentional map of the Poincaré ball
is,
v

Exph(v) = tanh(vellv]) ®)
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Figure 1. We show the change of the test accuracy as we vary the hyperparameter r. A large r leads to vanishing gradient problem and a

small 7 causes insufficient capacity. Both lead to a drop in test accuracy.

Table 1. The results of out-of-distribution detection on CI-
FARI10 with softmax score. The results of ENNs are shaded
in dark gray. The results of vanilla HNNs are shaded in light
gray. Clipped HNNs achieve higher average performance across
all the datasets and greatly improve the OOD detection capability
of vanilla HNNs.

Table 2. The results of out-of-distribution detection on CI-
FAR100 with softmax score. The results of ENNs are shaded in
dark gray. The results of vanilla HNNs are shaded in light gray.
Clipped HNNs achieve comparable performance to ENNS in terms
of AUPR and higher average performance in terms of PRR95 and
AUROC.

OOD Dataset | FPR95| | AUROCT | AUPR1
4630 +£0.78 | 91.50£0.16 | 98.16 & 0.05
ISUN 98.37 £ 0.20 | 29.72+£0.58 | 74.54 £0.19
4528 +0.65 | 91.61 =0.21 | 98.09 + 0.06
51.09+0.92 | 87.56 037 | 96.76 £ 0.15
Place365 96.10 £ 0.32 | 44.82 £ 0.65 | 80.67 £ 0.34
5477 +0.76 | 86.82+£0.41 | 96.17 £ 0.20
65.04 + 091 | 82.80+0.35 | 94.59 £0.20
Texture 97.62 £ 0.15 | 33.87 £0.40 | 74.52 £0.17
47.12£0.62 | 89.91£0.20 | 97.39 & 0.09
71.66 +0.84 | 86.58 =021 | 97.06 + 0.06
SVHN 91.03£0.53 | 61.33+0.53 | 86.39 £0.27
49.89 £ 1.03 | 91.34 £0.22 | 98.13 & 0.06
2222 +0.78 | 96.05+0.10 | 99.16 + 0.03
LSUN-Crop | 96.18 0.36 | 37.29+0.63 | 75.94 +0.27
23.87 £0.73 | 95.65+0.22 | 98.98 £ 0.07
41.06 £1.07 | 92.67+£0.16 | 98.42 - 0.04
LSUN-Resize | 99.62+0.10 | 22.05+0.32 | 71.88 +0.15
4149+ 124 | 92.97 £ 024 | 98.46 £ 0.07
49.56 89.53 97.36
Mean 96.49 38.18 77.32
43.74 91.38 97.87

OOD Dataset | FPR95 | | AUROCt | AUPRf?
74.07 £0.87 | 82.51£0.39 | 95.83 £0.11
ISUN 80.97 + 0.65 | 69.24 +0.52 | 89.98 +0.22
68.37 £ 0.90 | 81.31+0.43 | 94.96 + 0.20
81.01 = 1.07 | 76.90 +0.45 | 94.02 +£0.15
Place365 82.75 £ 0.66 | 71.97 £0.50 | 92.27 £ 0.22
79.66 + 0.69 | 76.94 +0.28 | 93.91 +0.18
83.67 £ 0.68 | 77.52 4032 | 94.47 £0.10
Texture 7533+ 092 | 75.14 £0.49 | 92.39 £ 0.20
64.91 £ 0.80 | 83.26£0.25 | 95.77 £ 0.08
84.56 +0.78 | 84.32+£0.22 | 96.69 + 0.07
SVHN 62.83£0.70 | 84.29 4+ 023 | 9631 % 0.06
53.11+ 1.04 | 89.53+£0.26 | 97.71 £ 0.07
4346 +0.79 | 93.09+0.23 | 98.58 & 0.05
LSUN-Crop | 56.66 +0.67 | 89.30 +0.17 | 97.71 & 0.04
51.08 £ 1.17 | 87.21+039 | 96.83 £0.13
7150+ 0.73 | 82.12+£0.40 | 95.69 +0.13
LSUN-Resize | 75.50 +0.81 | 73.40 +0.68 | 91.41 +0.28
63.86 + 1.10 | 82.36 +0.42 | 95.16 +0.13
73.05 82.74 95.88
Mean 72.34 77.22 93.35
63.50 83.43 95.72

The gradient of the exponential map can be computed as,

v

Vellvll

. v
VExpg(v) = mv tanh(v/c[|v]) + tanh(Vellv[)V

— 1 = tanh?(Ve|lv]) + tanh(v/ellv]) = —

Vellvl
Let xﬂl be the projected point in hyperbolic space, i.e,

xth, = Expg(E(Wf ) (10)

Again we can apply the first-order Taylor-expansion on
the exponential map,

Xg-l = EXPS(E(Wﬂl))
OB(wF) 0t (D

~ Expg(E(w!) +1( wE TWE
t



Table 4. The results of out-of-distribution detection on CI-
FAR100 with energy score. The results of ENNs are shaded in
dark gray. The results of vanilla HNNs are shaded in light gray.

Table 3. The results of out-of-distribution detection on CI-
FAR10 with energy score. The results of ENNs are shaded in dark
gray. The results of vanilla HNNs are shaded in light gray.

OOD Dataset | FPR95 | | AUROCt | AUPRf? OOD Dataset | FPR95 | | AUROCt | AUPRf?
34.194+0.97 | 93.07 +0.24 | 98.42+0.07 74.49 +0.60 | 82454033 | 95.84 +0.12
ISUN 99.31 £ 0.15 | 28.69 =035 | 74.14 + 0.10 ISUN 81.73 £0.54 | 70.38 £0.28 | 90.76 &+ 0.20
2539 +0.32 | 9548 £0.09 | 99.01 +0.04 68.75 £ 0.93 | 81.33+031 | 94.93 +0.16
4334+ 122 | 88.50 +0.48 | 96.76 +£0.17 81.20 4+ 0.86 | 77.02 +0.34 | 94.13 +0.13
Place365 97.57 £ 037 | 43.96 +0.87 | 80.36 = 0.46 Place365 82.73 4098 | 74.04 +0.55 | 93.20 + 0.24
4517+1.19 | 89.61 £0.28 | 97.20 +0.14 79.51+£0.69 | 77.23+0.37 | 93.97 £0.17
58.51 +0.77 | 82.984+0.20 | 9455+ 0.14 83.19 4+ 031 | 77.74 £ 035 | 94.54 +£0.11
Texture 95.93 +0.29 | 35.02 4041 | 74.87 +0.14 Texture 72774052 | 7738 +£039 | 9338 +0.21
49.70 + 0.94 | 90.66 +0.20 | 97.98 + 0.04 65.03 +0.52 | 83.384+0.29 | 95.85+0.10
49.04 +1.05 | 91.57 £0.13 | 98.12 + 0.05 84.12 +0.59 | 84.41+0.16 | 96.72 + 0.04
SVHN 96.71 + 037 | 59.65 +0.56 | 86.16 = 0.25 SVHN 53.37 £ 0.67 | 86.37 +0.30 | 96.78 £ 0.08
57334+ 1.34 | 88.45+0.20 | 97.44 +0.06 55.44 4+ 1.00 | 89.43 +0.25 | 97.69 + 0.06
948 +0.60 | 98.21+£0.07 | 99.63 & 0.02 4380+ 1.29 | 93.04 +0.22 | 98.56 + 0.05
LSUN-Crop | 98.18 £0.27 | 36.34 £0.63 | 75.64 & 0.26 LSUN-Crop | 87.32£0.36 | 83.09£0.20 | 96.40 = 0.05
24.78 £0.73 | 95.06 +0.15 | 98.92 + 0.05 74.89 £0.73 | 84.98 +0.18 | 96.46 £ 0.08
28.28 £0.66 | 94.31£0.14 | 98.72 + 0.04 71.86 +0.69 | 81.86 +0.27 | 95.60 = 0.09
LSUN-Resize | 99.91 + 0.06 | 21.34 £ 0.48 | 71.60 £ 0.21 LSUN-Resize | 81.81 4+ 0.71 | 72.96 +0.59 | 91.64 - 0.23
22.52 £0.67 | 96.15+0.09 | 99.18 £ 0.02 64.35 £ 0.62 | 82.64 036 | 9527 £0.14
37.14 91.44 97.70 73.11 82.75 95.90
Mean 97.94 37.50 77.13 Mean 76.62 77.37 93.69
37.48 92.57 98.29 67.99 83.17 95.70
D aE(WtE) T oL by J h
enote 7( owE )" 5wr bY Jy &, we have MNIST CIFAR10 CIFAR100 ImageNet
# of Training Examples 60,000 50,000 50,000 1,281,167
# of Test Examples 10,000 10,000 10,000 50,000

xit = Expg (B(wiiy))

~ Exp(E(W() + Jyp)

Table 5. The statistics of the datasets.

c OExpg (E(wy'))
~ Bxp () + (g0 CEt) gy (12
t
o OExpS (E(WE)) 1 accuracy as we vary the hyperparameter r on MNIST, CI-
=%, +(—Fn ) Jwr FAR10 and CIFAR100. We repeat the experiments for each
OE(wi") ¢ . .

choice of r five times and report both average accuracy and
OExp (B(WE) T OB(WE) 5 standard deviation. On the one hand, it can be observed that
Denote ( B?E(wf) )" owP )" by C(E(w;)), a larger r leads to a drop in test accuracy. As we point out,
this is caused by the vanishing gradient problem in training
. . g O hyperbolic neural networks. On the other hand, a small r
X =% + C(E(w;)) IwE (13) can also lead to a drop in test accuracy especially on more

4. Datasets

The statistics of the datasets are shown in Table 5.

5. The effect of hyperparameter r

We conduct ablation studies to show the effect of the
hyperparameter r which is the maximum norm of the Eu-
clidean embedding. In Figure 1 we show the change of test

complex tasks such as CIFAR10 and CIFAR100. The plau-
sible reason is that a small r reduces the capacity of the
embedding space which is detrimental for learning discrim-
inative features.

To conclude, there is a sweet spot in terms of choosing r
which is neither too large (causing vanishing gradient prob-
lem) nor too small (not enough capacity). The performance
of clipped HNNS is also robust to the choice of the hyper-
parameter r if it is around the sweet spot.
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Figure 2. Clipped HNNs show more adversarial robustness compared with ENNs. We show the clean image and the corresponding
adversarial image and the predictions of the network of 10 randomly sampled images. In several cases, clipped HNNs make correct
predictions on the adversarial images while Euclidean neural networks make wrong predictions.

6. More results on adversarial robustness

Although we observe that with adversarial training, hy-
perbolic neural networks achieve similar robust accuracy
to Euclidean neural networks, in a further study, we con-
sider training models using a small ¢ but attacking with a
larger € with FGSM on MNIST. In Table 6 we show the re-
sults of training the networks using ¢ = 0.05 and attacking
with e = 0.1, 0.2 and 0.3. We can observe that for attack-
ing with larger e such as 0.2 and 0.3, clipped HNNs show
more robustness to ENNs. Moreover, clipped HNNs greatly
improve the robustness of vanilla HNNs. The possible ex-
planation is that the proposed feature clipping reduces the
adversarial noises in the forward pass and also improve the
performance of vanilla HNNs. One of the future directions
is to systematically understand and analyze the reason be-
hind the robustness of clipped HNNs. In Figure 2, we show
the clean and adversarial images generated by FGSM with
clipped HNNs and ENNSs respectively. The predictions of
the networks are shown above the image. It can be observed
that clipped HNNs show more adversarial robustness com-
pared with ENNs.

€
M 0.1 02 03

ENNs | 9451+032% | 67.85+£212% | 4218+132%
Vanilla HNNs ‘ 81.08 +4.03 % ‘ 46.57 +£2.09 % ‘ 17.21 £3.27%
‘ 93.34 £ 0.16 % ‘ 7497 £ 1.02 % ‘ 46.27 £ 1.88 %

Clipped HNNs

Table 6. Adversarial training with FGSM (e = 0.05) on MNIST.
For attacking with larger € such as 0.1, 0.2 and 0.3, clipped HNNs
greatly improve the robustness of vanilla HNNs and show more
robustness to ENNs when the attacking with large perturbations (e
=0.2 and € =0.3).

7. More results on out-of-distribution detection
(OOD)

7.1. Results with energy score

In Table 3 and 4 we show the results of using en-
ergy score [3] on CIFAR10 and CIFARI00 for out-of-
distribution detection. We can observe that on CIFARI10,
clipped HNNs achieve comparable performance in terms
of FPR95 and perform much better in terms other AUROC
and AUPR compared with ENNs. On CIFAR100, clipped
HNNs achieve comparable performance in terms of AUPT
and perform much better in terms other FPR95 and AU-
ROC compared with ENNs. The results are consistent with
the case of using softmax score.

7.2. Clipped HNNs greatly improve the OOD detec-
tion capability of vanilla HNNs.

In Table 1 - Table 4, we also show the results of us-
ing vanilla HNNs for out-of-distribution detection. Across
all the datasets and scores, we can see that clipped HNNs
greatly improve the OOD detection capability of vanilla
HNNs. This shows that vanilla HNNs have poor OOD de-
tection ability which can greatly limit their practical appli-
cability.

8. Softmax with temperature scaling

We consider softmax with temperature scaling as an al-
ternative for addressing the vanishing gradient problem in
training hyperbolic neural networks. Softmax with temper-
ature scaling introduces an additional temperature parame-
ter 1" to adjust the logits before applying the softmax func-
tion. Softmax with temperature scaling can be formulated
as,
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Figure 3. We show the change of the test accuracy as we vary the temperature parameter 7. The red horizontal line is the result of the
hyperbolic neural networks with the proposed feature clipping. Softmax with temperature scaling with a carefully tuned temperature can
approach the performance of the proposed feature clipping. However, it is sensitive to the feature dimension and the temperature parameter.
Left: the embedding dimension is 2. Right: the embedding dimension is 64.

oZi/T

Softmax(Z /T); = ——————
i Z;(Zl er/T

for i=1,...K, Z=(Z1,...,7xK)

14)

In hyperbolic neural networks, Z is the output of the
hyperbolic fully-connected layer and K is the number of
classes. If the additional temperature parameter 7" is smaller
than 1, the magnitude (in the Euclidean sense) of the hyper-
bolic embedding will be scaled up which prevents it from
approaching the boundary of the ball.

In Figure 3, we show the performance of training hyper-
bolic neural networks with temperature scaling compared
with the proposed feature clipping. We consider feature di-
mensions of 2 and 64 respectively. Different temperature
parameters are considered and the experiments are repeated
for 10 times with different random seeds. We show both the
average accuracy and the standard deviation. We can ob-
serve that softmax with temperature scaling and a carefully
tuned temperature parameter can approach the performance
of the proposed feature clipping when the feature dimen-
sion is 2. However, the feature dimension is 64, softmax
with temperature scaling severely underperforms the pro-
posed feature clipping. The results again confirm the effec-
tiveness of the proposed approach.

9. A magnitude-clipped hyperbolic space is still
hyperbolic

The metric in the hyperbolic space with the clipping
strategy 1is still drastically different from that in the Eu-
clidean space, even with magnitude clipping. For the first
example, consider two points: a = [0.5, 0.55], b = [0.3, -
0.6], the magnitude of both points is smaller than 0.76. The

hyperbolic distance between the two points is 3.1822 while
the Euclidean distance is 1.1673. This is a two-dimensional
example, with a larger embedding dimension, the difference
will be much more significant. In Figure 4: left, we com-
pare the hyperbolic line segment with Euclidean line seg-
ment given the point a and the point b.

A magnitude-clipped hyperbolic space is still hyper-
bolic, as the hyperbolic geometry still holds: unlike Eu-
clidean triangles, where the angles always add up to 7 ra-
dians (180°, a straight angle), in hyperbolic geometry the
sum of the angles of a hyperbolic triangle is always strictly
less than 7 radians (180°, a straight angle). The difference
is referred to as the defect. For a second example, consider
three points: A =[0.5, 0.55], B =[0.3, -0.6], C =[-0.1, 0.1].
Their magnitude are all smaller than 0.76. For the triangle
ABC, the defect is 58.21° in hyperbolic space and 0° in Eu-
clidean space. This again shows that the clipped hyperbolic
space still well maintains the hyperbolic property. In Figure
4: right, we compare the hyperbolic triangle with Euclidean
triangle given the point A, the point B and the point C.

We apply the proposed clipping strategy to learn word
embedding as in [4]. We perform the reconstruction task
on the transitive closure of the WordNet noun hierarchy.
We compare the embedding quality of the Euclidean space,
the hyperbolic space, clipped hyperbolic space using mean
average precision (mAP). The embedding dimension is 10.
The results are summarized in Table 7.

We have two conclusions here. First, learning word
embeddings with hyperbolic space provides better results
than learning in Euclidean space. Second, using hyperbolic
space with clipping is slightly better than using hyperbolic
space without clipping.
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Method | mAP |
| 0.059 |
Clipped hyperbolic space | 0.860 |

| 0.851 |

Euclidean space

Hyperbolic space

Table 7. Learning with word embeddings with clipped hyperbolic
space outperforms both with Euclidean space and vanilla hyper-
bolic space.

10. Additional regularization to minimize the
norm of the Euclidean embedding during
training

The results of using the regularization term are shown in
Table 8.

‘ Method ‘ On CIFR10 ‘ On CIFAR100 ‘
| vanillaHNN | 8882 | 72.26 |
‘ w/ regularization ‘ 92.71 ‘ 73.34 ‘
| wiclipping | 9476 | 75.88 |

Table 8. The proposed feature clipping outperforms vanilla HNNs
and HNNs with regularization.

We can see that the clipping strategy outperforms the
regularization approach. The reason is that with regular-
ization, the loss function consists of two terms: one is the
cross-entropy loss and the other is the regularization loss.
It is difficult to balance the two terms . During training, if
the cross-entropy loss becomes small, the optimization fo-

cuses on minimizing the embedding norm, however a small
embedding norm is also detrimental to the performance.

11. More discussions on Lorentz model

Lorentz model is another commonly used model for hy-
perbolic space. The Lorentz model of n-dimensional hyper-
bolic space is defined as,

H" = {x e R"" : (x,x) = —1,20 > 0} (15)

where (x,x) . is the Lorentzian scalar product which is de-
fined as,

(X, ¥)c = —zoyo + Y _ Tiyi (16)
i=1

The distance function of Lorentz model is given as,
dy(x,y) = arccosh(—(x,y) ) a7

Lorentz model is used recently to overcome the numer-
ical issues of the distance function in Poincaré ball model
for learning word embeddings [5]. However, it is most
effective only in low dimensions [2]. For image datasets
of ImageNet-scale, hyperbolic neural networks with high-
dimensional embeddings are necessary for enough model
capacity. Moreover, current hyperbolic neural network lay-
ers are only designed for Poinaré ball model. To extend
hyperbolic neural networks layers for Lorentz model can be
an interesting future work.
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