
Figure 1. Additional examples generated from our method. For each description (left), we show two distinct synthetic motions (right).
Key frames are displayed for each sequence. Refer to supplementary video for dynamic animations.

APPENDIX
Abstract

In this supplementary material, we provide more de-
tails on implementations, evaluation metrics, baseline im-
plementation, data annotation and user study, dataset re-
sults, text2length results, text2motion results, out-of-dataset

generation, network architectures and table of notations.

• Implementation Details. Here, we provide details on
practical implementations.

• Evaluation Metrics. We provide the details of extract-
ing motion and text features for the purpose of quan-
titative evaluation, as well as mathematical explana-



Figure 2. (a) Architecture of our text encoder. (b) The pipeline of training text and motion extractors.

tions of three evaluation metrics: FID, Diversity and
Multimodality.

• Baseline Implementation. We provide the details of
implementing comparison baseline methods.

• Data Annotation and User Study. We elaborate the
process of data annotation and user study survey.

• Dataset Results. We showcase several paired text and
motion data in our HumanML3D dataset.

• Text2Length Results. We provide qualitative results of
our text2length module.

• Text2Motion Results. We provide more qualitative re-
sults of our text2motion module.

• Out-of-the-Dataset Generation, Failure Cases and
Limitations. We provide discussions about out-of-the-
dataset generation, failure cases, and limitations of
our method.

• Network Architectures. We provide details of net-
work structure in our method, including motion au-
toencoder, text encoder, prior/posterior network, and
generator.

• Table of Notations. We provide a table enumerat-
ing and explaining all the notations used in our main
content, as well as their practical values.

A. Implementation Details

Our framework is implemented by PyTorch. Dimen-
sions of pose vector for HumanML3D and KIT-ML dataset
are 263 and 251 respectively. The motion snippet codes

cs are 512-dimensional vectors. Word features are 300-
dimensional embedding obtained via GloVe [7]. The bi-
directional GRU of our text encoder is with hidden size of
512. The triplet of generator, posterior and prior networks in
our VAE are 1-layer GRUs with hidden size 1,024. The size
of the noise vector z and the attention vector watt are 128
and 512, respectively. Values of λspr, λsmt, λmot are set
to 0.001, 0.001, and 1, respectively. λKL is set to 0.01 for
HumanML3D, and to 0.005 for KIT-ML dataset. Teacher
forcing rate ptf is 0.4 throughout all experiments. We use
Adam optimizer with learning rate of 2e−4. In text2motion
training, the learning rate of motion decoder D is partic-
ularly set to 2e−5, 10 times smaller than other networks.
Tmax and Tcur are 50 and 8 respectively.

Z-score normalization is applied to both training and
testing data. And we scale the magnitude of features
(ṙa, ṙx, ṙz, ry, cf ) by a value of 5 to amplify their impor-
tance. In addition, to enhance the robustness of our method,
we introduce randomness to training data feed by cutting
off the last 4 frames of each input pose sequence with prob-
ability of coin flipping.

B. Evaluation Metrics

Quantitatively evaluating the performance of a stochastic
generative model has been investigated in pixel generation,
but less touched in motion synthesis. It usually necessitates
extracting abstract features from raw data (e.g., VGG [8]).
Since there is no standard motion feature extractor, we train
a simple framework that engages a motion extractor and text
extractor under a contrastive learning assumption.
Text and Motion Feature Extractor. As shown in
Fig. 2(b), a text extractor maps the raw text into a seman-
tic feature vector s; while pose sequences are firstly trans-
formed into snippet codes by the pre-trained motion en-
coder E, and subsequently into a feature vector m by mo-
tion extractor. Here, we enforce matched text-motion fea-



Figure 3. HumanML3D annotation interface on Amazon Mechanical Turk.

Figure 4. User study interface on Amazon Mechanical Turk.

ture pairs to be as close as possible, and mismatched text-
motion features pairs to be dispersed with a margin of at
least m. This is approached by employing a contrastive
loss [4], which mathematically is:

Ds,m = ‖s−m‖2, (1)

LCta = (1− y)(Ds,m)2 + (y){max(0,m−Ds,m)}2,

where y is a binary label that y = 0 if s and m come from
matched text-motion pairs, and vice versa. m > 0 is a mar-
gin for mismatched pairs and set to 10 in our experiments.

In practice, text extractor adopts the same architecture as
our text encoder (Fig. 2(a)); motion extractor is a bidirec-
tional GRU with hidden unit size of 1,024. Please note that
test data is untouched in this process.

The aforementioned text and motion feature extractor are
then employed in the following evaluation metrics.

• Frechet Inception Distance (FID): Features are ex-
tracted from real motions in test set and generated mo-
tions from corresponding descriptions. Then FID is



Figure 5. Examples in HumanML3D dataset. Two annotation examples in our HumanML3D dataset are shown. Each motion sequence
comes with 3 distinct script descriptions.

calculated between the feature distribution of gener-
ated motions vs. that of the real motions. FID is an
important metric widely used to evaluate the overall
quality of generated motions.

• Diversity: Diversity measures the variance of the gen-
erated motions across all descriptions. From a set of all
generated motions from various descriptions, two sub-
sets of the same size Sd are randomly sampled. Their
respective sets of motion feature vectors {v1, ...,vSd

}
and {v′1, ...,v′Sd

} are extracted. The diversity of this
set of motions is defined as

Diversity = 1
Sd

∑Sd

i=1 ‖vi − v′i‖
Sd = 300 is used in experiments.

• MultiModality: Different from diversity, multimodal-
ity measures how much the generated motions di-
versify within each text description. Given a set
of motions with C descriptions. For c-th descrip-
tion, we randomly sample two subsets with same size
Sm , and then extract two subset of feature vectors
{vc,1, ...,vc,Sm} and {v′c,1, ...,v′c,Sm

}. The multi-
modality of this motion set is formalized as

Multimodality = 1
C×Sm

∑C
c=1

∑Sm

i=1 ‖vc,i − v′c,i‖
Sm = 10 is used in experiments.

C. Baseline Implementation
We re-implement Seq2Seq [6] according to the descrip-

tions in the original literature. For Language2Pose [1] and
Text2Gesture [2], we utilize their released source code, and

make proper modifications to adapt in our scenario for ex-
ample, skeleton structure. These methods requires initial
pose as well as ground truth motion length during inference.
We also train these models with curriculum strategy as de-
scribed in Section 3.3, by gradually increasing the complex-
ity of training examples.

MoCoGAN [9] and Dance2Music [5] are two non-
deterministic methods. Due to the specific discriminator
design, they could only generate motions with fixed length.
We adopt the implementation of MoCoGAN in [3], and the
official implementation of Dance2Music with minor modi-
fications. Specifically, the categorical conditions in MoCo-
GAN and audio signals in Dance2Music are replaced with
text features.

D. Data Annotation and User Study

Fig. 3 presents the interface of annotating our Hu-
manML3D dataset on Amazon Mechanical Turk. Given an
animation, users are encouraged to convey the information
of action type, direction, body parts, velocity, trajectory,
relative position and style in text descriptions. If a motion
is too complicated to be described, we also provide a chan-
nel for users to describe a sub-interval of presented anima-
tion, and give the start- and end- time point. Some exemplar
good and bad descriptions help workers form a clearer pic-
ture. We ask users to avoid over-general descriptions (e.g.
a man walks) and over-specific descriptions (e.g. absolute
distance, angles, positions). Unqualified descriptions are
manually rejected.

Fig. 4 shows the interface of the conducted user study in



Figure 6. Exemplar results of text2length. For each subplot, given one text description (bottom), the estimated probability density of
snippet code length is visualized in histogram. The corresponding real lengths are highlighted in blue. Length of motion is 4 times of the
snippet code length.

Figure 7. Generated results from out-of-the-dataset descriptions. Key frames are displayed. Yellow bound box indicates the parts of
description that generated motions fail to present. Refer to supplementary video for more dynamic animations.

our experiments on Amazon Mechanical Turk. For each de-
scription, motions are generated from different methods and
randomly reordered. Users are asked to rank their prefer-
ence over these 7 animations based on judgement on motion
naturality, multimodal matching degree and motion consis-
tency. Only users with master recognition are included.

E. HumanML3D Dataset Results

Fig. 5 presents two scripted motions in our Hu-
manML3D dataset. Each motion is described by 3 distinct
worker on Amazon Mechanical Turker, thus resulting in di-
versified descriptions.

F. Qualitative Results of Text2Length

In Figure 6, we gives some examples of estimated snip-
pet code length distribution from our text2length provided
with text descriptions. Note the corresponding motion
lengths are 4 times of the presented number. During train-
ing, motions with less than 40 frames (2s) are discarded.
Therefore, here we produce the distribution over discrete
values from 10 to 50. As shown, our method yields proba-
bility densities in which the values with high confidence are
reasonably close to the corresponding ground truth value. In
addition, cyclic motions (e.g., a person waves with their left
hand) have relatively flatter probability density compared
to non-cyclic motions (e.g., Person stumbles and bends to
their right side). During inference, the target sequence
length will be randomly sampled from the estimated prob-



Figure 8. Examples of failure cases. Key frames are displayed. Yellow bound box indicates the parts of description that generated motions
fail to present.

ability density, which further increases variety of generated
results. Refer to supplementary video for generated results
with different duration.

G. Qualitative Results of Text2Motion
Figure 1 demonstrates a gallery of synthetic results from

our approach. Our method is able to handle with complex
descriptions (e.g. a person picks something up with both
hands, moves it to the side, and then places it back down.)
as well as complicated actions such as push up. Please refer
to our supplementary video for more results.

H. Neural Network Architecture
Table 1 illustrates the architecture we used on dataset

HumanML3D. For KIT-ML dataset, the dimension of input
vector may vary according to the dimension of pose vector.

I. Out-of-the-Dataset Generation, Failure
Cases and Limitations

Figure 7 presents two results generated from out-of-the-
dataset descriptions. In other words, the descriptions are
collected independently to our dataset. Our method are able
to demonstrate the overall content in the text descriptions.
Nonetheless, the model may fail in descriptions involving
rare actions (e.g., ’stomp’). In the second pose sequence,

’step back’ is unfaithfully missed after ’stomping foot’.
When further looking into multimodal alignment, our

method sometime fail in finer grained descriptions. We
showcase some failure results from our method in Figure 8.
Actions such as ”scratch” and ”pitching baseball” are too
sophisticated and beyond the capability of our method. We
also find our method less sensitive to fine-grained descrip-
tions regarding to body parts, for example, left/right leg.
There are still space for exploring broader scenarios such
as, text descriptions with overlength, environment interac-
tions.

J. Table of Notations
Table 2 lists all the notations being used in our main

content, as well as their practical values throughout experi-
ments.

K. Code and Dataset
We upload the raw code as well as the command to re-

produce our method and baselines (readme.txt) as another
supplementary file. We will release the pre-trained model,
a neater repository of code and data upon paper acceptance.



Components Architecture

Convolutional
Motion Encoder

(E)

Conv1d(247, 384, kernel size=(4,), stride=(2,), padding=(1,))
Dropout(p=0.2, inplace=True)
LeakyReLU(negative slope=0.2, inplace=True)
Conv1d(384, 512, kernel size=(4,), stride=(2,), padding=(1,))
Dropout(p=0.2, inplace=True)
LeakyReLU(negative slope=0.2, inplace=True)
Linear(in features=512, out features=512, bias=True)

Convolutional
Motion Decoder

(D)

ConvTranspose1d(512, 384, kernel size=(4,), stride=(2,), padding=(1,))
LeakyReLU(negative slope=0.2, inplace=True)
ConvTranspose1d(384, 251, kernel size=(4,), stride=(2,), padding=(1,))
LeakyReLU(negative slope=0.2, inplace=True)
Linear(in features=251, out features=251, bias=True)

Text Encoder
(pos emb): Linear(in features=15, out features=300, bias=True)
(input emb): Linear(in features=300, out features=512, bias=True)
(gru): GRU(512, 512, batch first=True, bidirectional=True)

Prior Network (Fψ)

(z2init): Linear(in features=1024, out features=1024, bias=True)
(embedding): Sequential(

(0): Linear(in features=1024, out features=1024, bias=True)
(1): LayerNorm((1024,), eps=1e-05, elementwise affine=True)
(2): LeakyReLU(negative slope=0.2, inplace=True))

(gru): ModuleList((0): GRUCell(1024, 1024))
(positional encoder): PositionalEncoding()
(mu net): Linear(in features=1024, out features=128, bias=True)
(logvar net): Linear(in features=1024, out features=128, bias=True)

Posterior Network (Fφ)

(z2init): Linear(in features=1024, out features=1024, bias=True)
(embedding): Sequential(

(0): Linear(in features=1536, out features=1024, bias=True)
(1): LayerNorm((1024,), eps=1e-05, elementwise affine=True)
(2): LeakyReLU(negative slope=0.2, inplace=True))

(gru): ModuleList((0): GRUCell(1024, 1024))
(positional encoder): PositionalEncoding()
(mu net): Linear(in features=1024, out features=128, bias=True)
(logvar net): Linear(in features=1024, out features=128, bias=True)

Generator (Fθ)

(z2init): Linear(in features=1024, out features=1024, bias=True)
(embedding): Sequential(

(0): Linear(in features=1152, out features=1024, bias=True)
(1): LayerNorm((1024,), eps=1e-05, elementwise affine=True)
(2): LeakyReLU(negative slope=0.2, inplace=True))

(gru): ModuleList((0): GRUCell(1024, 1024))
(positional encoder): PositionalEncoding()
(output net): Sequential(

(0): Linear(in features=1024, out features=1024, bias=True)
(1): LayerNorm((1024,), eps=1e-05, elementwise affine=True)
(2): LeakyReLU(negative slope=0.2, inplace=True)
(3): Linear(in features=1024, out features=512, bias=True))

Attention layer
(Fatt)

(W q): Linear(in features=1024, out features=512, bias=True)
(W k): Linear(in features=1024, out features=512, bias=False)
(W v): Linear(in features=1024, out features=512, bias=True)
(softmax): Softmax(dim=1)

Table 1. Architecture of our networks on dataset HumanML3D.



Symbol Size Practical Value Meaning

c - - A notation of overall conditions.
cf R4 - Ground contact labels of heel and toe joints.
Cs R512×T - A snippet code sequence with T snippet codes.
cs R512 - A snippet code vector.
ĉs R512 - A reconstructed snippet code
d R1 1024 Dimension of input embedding in positional encoding.
datt R1 512 Number of channels in attentive vector watt.
dh R1 1024 Number of channels in generator hidden unit hθ.
dw R1 1024 Number of channels in word feature w.
hθ R1024 - Hidden unit of generator Fθ.
j R1 22(H), 21(K) Number of joints in pose
jp R3j - Local joints positions.
jv R3j - Local joints velocity.
jr R6j - Local joints rotations.
M R1 - Number of words in a text description.

N (µφ(t), σφ(t)) - - Posterior Gaussian distribution at time t generated by Fφ.
N (µψ(t), σψ(t)) - - Prior Gaussian distribution at time t generated by Fψ .

p
R263(H)
R251(K) - A pose vector.

p̂
R263(H)
R251(K) - A reconstructed pose vector.

P
R263×T ′

(H)
R251×T ′

(K)
- Pose sequence with T ′ poses.

P̂
R263×T ′

(H)
R251×T ′

(K)
- Reconstructed pose sequence with T ′ poses.

ptf R1 0.4 Teacher forcing ratio.
ṙa R1 - Root angular velocity along Y-axis.

ṙx, ṙz R1 - Root linear velocity on XZ-plane
ry R1 - Root height
s R512 - Sentence feature vector extracted by text encoder.
T ′ R1 - Number of poses in a pose sequence.
T R1 - Number of snippet code in a snippet code sequence.
Tcur R1 - Present target sequence generation length in curriculum learning.
Tmax R1 50 Maximum length of snippet code sequences.
w1:M R1024 - Word features extracted by text encoder from a sentence of M words.
watt Rdatt - Local word attention vector.
WK Rdw×datt - Trainable weight in local word attention.
WQ Rdh×datt - Trainable weight in local word attention.
WV Rdw×datt - Trainable weight in local word attention.
X list of M elements - A text description of M words.
x - - A single word.
z R128 - Noise vector sampled from posterior/prior distribution.

λspr R1 0.001 Weight of sparsity constraint in autoencoder during training.
λsmt R1 0.001 Weight of smoothness constraint in autoencoder during training.
λmot R1 1 Weight of motion Reconstruction constraint during training.
λKL R1 0.01(H), 0.05(K) Weight of KL Divergence constraint during training.

D - - Decoder of motion autoencoder.
E - - Encoder of motion autoencoder.
Fθ - - Generator of VAE models.
Fφ - - Posterior network of VAE models.
Fψ - - Prior network of VAE models.
Fatt - - Local word attention function.
PE - - Positional encoding function.

Table 2. Table of Notations. (H) denotes the value in HumanML3D dataset, (K) denotes the value in KIT ML dataset.
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