HCSC: Hierarchical Contrastive Selective Coding
Supplementary Material

1. More Implementation Details

Linear classification. For performance comparison, we
follow the learning configuration of PCL [12] to train the
linear classifier with an SGD optimizer (weight decay: 0;
momentum: 0.9; batch size: 256) for 100 epochs. The
learning rate is initialized as 5.0 and decayed by a factor
of 0.1 at the 60th and 80th epoch.

KNN evaluation. We follow NPID [18] to design a
KNN classifier which predicts the label of each sample by
aggregating the labels of its nearest neighbors. Specifi-
cally, given a test image x, we first extract its embedding
z using the pre-trained encoder. This embedding vector is
compared against the embeddings of all other images in the
dataset, and a cosine similarity score s.os(z, z;) is computed
for each image pair. According to these similarity scores,
we select the top K nearest neighbors of the test image, de-
noted as Nk (). On such basis, we compute the unnormal-
ized likelihood p.(x) that the test image belongs to class ¢
via a weighted voting:

pe(z) = Yy

z; ENK ()

1(y; = ¢) exp (Scos(2, 2i) /TN ), (1)

where 1(y; = c¢) is an indicator function judging whether
the sample z; belongs to class ¢, and the temperature param-
eter g is set as 0.07 following NPID. Based on these
likelihoods, the KNN classifier predicts the category of x
as y = argmax,.cc pe(z). As in NPID, the final result of
KNN evaluation is reported as the highest classification ac-
curacy over K € {10, 20, 100, 200}.

Semi-supervised learning. In this experiment, we fol-
low NPID [18] to fine-tune the image encoder and linear
classifier with an SGD optimizer (weight decay: 0; momen-
tum: 0.9; batch size: 256) for 70 epochs. The learning rate
is initialized as 0.005 and decayed by a factor of 0.1 at the
30th and 60th epoch.

Transfer learning. This experiment involves two types
of transfer learning tasks, i.e. object classification and ob-
ject detection. We strictly follow the fine-tuning paradigms
of MoCo [7] on these two types of tasks.

For object classification, our model is evaluated on PAS-
CAL VOC [6] and Places205 [20] datasets. We follow the

standard dataset splits of VOC07 and Places205 to perform
training and testing. On both datasets, following SWAV [2],
we keep the pre-trained encoder fixed and learn a linear
layer for classification. On PASCAL VOC, the linear classi-
fier is trained for 100 epochs by an SGD optimizer (weight
decay: 0; momentum: 0.9; batch size: 16), and the ini-
tial learning rate of 0.05 is adjusted by a cosine annealing
scheduler [14]. On Places205, we train the linear classifier
with an SGD optimizer (weight decay: 0; momentum: 0.9;
batch size: 256) for 100 epochs, and the initial learning rate
of 3.0 is adjusted by a cosine annealing scheduler.

For object detection, we evaluate our model on PAS-
CAL VOC [6] and COCO [13] datasets. On PASCAL VOC,
the training and validation splits of VOCO07+12 is used for
training, and the test split of VOCO7 is used for evalua-
tion. Faster-RCNN-C4 [15] serves as the object detector.
We initialize its ResNet-50 backbone with the weights pre-
trained by our HCSC approach, and the whole detection
model is fine-tuned for 24,000 iterations by an SGD opti-
mizer (weight decay: 1 X 10~*; momentum: 0.9; batch
size: 16). The initial learning rate of 0.02 is warmed up for
100 iterations and decayed by a factor of 0.1 at the 18,000th
and 22,000th iteration. On COCO, the detection model is
trained on the train2017 subset for 180,000 iterations, and it
is then evaluated on the val2017 subset. An identical SGD
optimizer as in PASCAL VOC experiment is employed, and
the initial learning rate of 0.02 is warmed up for 100 itera-
tions and decayed by a factor of 0.1 at the 120,000th and
160,000th iteration.

Clustering evaluation. Following PCL [12], the clus-
tering evaluation with 25,000 and 1,000 clusters are respec-
tively performed. For the experiment using 25,000 clusters,
we train an HCSC model with three prototype hierarchies
25000-10000-1000, and the bottom hierarchy with 25,000
prototypes are used for evaluation. For the experiment us-
ing 1,000 clusters, an HCSC model with three prototype hi-
erarchies 3000-2000-1000 is trained, and we utilize the top
hierarchy with 1,000 prototypes for evaluation.

2. More Results of Linear Classification

We notice that the fine-tuning configuration vary across
previous works when performing linear classification on



Table 1. Performance comparison on linear classi cation under Table 2. Performance comparison on zero-shot classi cation. This

different learning con gurations. experiment transfers the encoder learned on ImageNet to CUB.
Method Cong Initiallr  Scheduler  Topl-Acc Method KNN-Top1-Acc
PCLv2[12] PCL[12] 5.0 step(0.1,[60,80)) 67.6 MoCo [/]f 195
HCSC PCL[12] 5.0 step(0.1,[60,80]) 69.2 MoCo v2 [4]t 23.1
AdCo [9] AdCo[9] 10.0 cosine 68.6 SImCLR [3]t 23.9
HCSC AdCo[9] 10.0 cosine 68.9 PIC [1]t 18.2
MoCo v2 [4] MoCov2 [4] 30.0 step(0.1,[60,80]) 67.5 PCL v2 [12]t 223
HCSC MoCov2[4] 30.0 step(0.1,[60,80]) 67.3 AdCo [9]t 229
HCSC 26.9
SWAV* [2]F 26.2
ImageNet [5]. Therefore, in Tab. 1, we further evaluate our AdCo* [9]f 30.6
HCSC model under the con gurations from three different HCSC* 315

works, i.e. PCL [12], AdCo [9] and MoCo v2 [4]. Under  *wjith multi-crop augmentation.
the learning con gurations of PCL and AdCo, the perfor- T Evaluated by us with of cially released model weights.
mance difference of HCSC is merely 0.3%, and it outper-
forms these two approaches on their respective con gura-
tions. These results verify the robustness of our method
when varying the initial learning rate between 5.0 and 10.0 Method Epochs Batch size Top1-Acc KNN-Topl-Acc
and changing between a step scheduler decaying twice and\P!D [1¢] 200 256 58.5 46.8
a cosine annealing scheduler. On the con guration of MoCo L0ocalAgg [21] 200 128 58.8 -
v2, HCSC suffers an obvious performance decrease andM.Oco[ ] 200 256 60.8 45.01

. . : SIMCLR [3] 200 256 61.9 57.4%
performs worse than MoCo v2. This negative result illus-

Table 3. Performance of models under different training epochs.
The results are reported on linear and KNN evaluation.

traltes that too_high i.nitial learning rate, I_ike 30.0 in MoCo gﬂggc\’,\zlz[[ } é%% 25512 %77'_56 55'_8T
v2's con guration, will hamper the effectiveness of HCSC  pg| v 117] 200 256 67.6 58.1t
during downstream ne-tuning. PIC[1] 200 512 67.6 54.7t
MoCHi [11] 200 512 67.6 57.5%
3. Zero-Shot Classi cation on CUB DetCo [19] 200 256 68.6 58.91
AdCo [9] 200 256 68.6 57.2%
In this section, we study a more dif cult transfer learn- HCSC 200 256 69.2 60.7
ing problem,i.e. directly transferring the encoder learned SWAV*[7] 200 256 727 62.41
on ImageNet [5] to a ne-grained classi cation dataset, AdCo* [%] 200 256 73.2 66.31
Caltech-UCSD-Birds (CUB) [17], without learning a task- HCSC 200 256 733 66.6
speci ¢ classi er. Therefore, this problem can be regarded D€ePCluster-v2[2] 400 4096 702 62.41
. o SelLa-v2 [2] 400 4096 67.2 57.9t
as across-domain zero-shot classi cationproblem, and S
. : ) WAV [2] 400 4096 70.1 61.31
it evaluates whgther a self-;uperwsed learning me.th_od canycsc 400 256 71.0 64.1
capture ne-grained semantic structures by pre-training on DeepClusterv2* [2] 400 2096 743 66.0T
a general-purpose database, like ImageNet. SeLa-v2* [7] 400 4096 71.8 61.7t
Evaluation details. We evaluate model's zero-shot clas- SwAv* [2] 400 256 74.3 64.31
si cation performance on CUB with the standard KNN SwAv*[2] 400 4096 74.6 65.0t
evaluation protocol. Speci cally, a KNN classi er is em- HCSC* 400 256 74.1 69.9
ployed to predict the label of each sample by aggregating MoCo v2 [4] 800 256 711 61.81
800 256 72.0 64.5

the labels of its nearest neighbors. The implementation de-HCSC

tails of such a KNN classi er is speci ed in the KNN eval-  * with multi-crop augmentation.

uation part of Sec. 1. We report the highest accuracy of thet Evaluated by us with of cially released model weights.

KNN classi ers overK 2 f 10;20; 100 200g, which fol-

lows NPID [15]. capability can even be transferred to other datasets.
Results. Tab. 2 presents the performance comparison

among different approaches on this task. Under both the4 Model Zoo

con gurations with and without multi-crop augmentation,

HCSC clearly outperforms other baseline methods. Thissu- To make this project a more solid contribution, we train

perior performance demonstrates that, by pre-training witha comprehensive set of models, including longer training

HCSC, the image encoder can well capture the ne-grained epochs, single- and multi-crop settings and more backbone

semantic structures underlying an image dataset, and such architectures, and we will continually release corresponding



Table 4. Per-epoch running time comparison (batch size: 256).

Method w/o multi-crop | w/ multi-crop
SWAV [2] 27min 53s 44min 30s
HCSC (non-parallel) 26min 22s 44min 59s
HCSC (parallel) 21min 11s 39min 22s

Figure 1. Performance of our negative sample selection scheme.

codes and model weights to the community.
9 4 Table 5. Adjusted Mutual Information (AMI) between prototypes

4.1. Models of Longer Training ?nd Irl?at?eN?t I?bils on the 1st, 2nd and 3rd label hierarchy (count
rom bottom to top).

l_n Tab. 3, we give comprehensiv_e _comparisons among Prototype Con g| 1st hierarchy 2nd hierarchy 3rd hierarchy
various methods under different training epochs, and this 6000 0.543 0.535 0.506
table will be continually extended according to our progress 3000-2000-1000  0.582 0.588 0.566

on training longer epochs models. The current results show
that, our HCSC method preserves its superiority over pre-
vious state-of-the-art approaches on 400 and 800 epochgairs with truly distinct semantics. Though the pre-training
training for bothw/ andw/o multi-crop augmentation. stage is unsupervised, the labels and label hierarchies of the
pre-training database, ImageNet [5], are publicly available

4.2. Models with Different Architectures to enable us to perform this analysis.

This part of works are in progress. 6.1. Analysis on Positive Pair Selection
5. Time Complexity Analysis In this study, we aim to verify that our method can bet-
. ) ) ter includeimages and their corresponding prototypes
HCSC involves an extra hlerarchl_cal K-means step _for at higher ImageNet label hierarchy as positive pairs. In
each epoch. Here, we compare it with another clustering-1op, °s e report the adjusted mutual information (AMI)
based method, SWAV [?]. In each training step, SWAV per- hayeen prototypes and the ImageNet labels at three hierar-
forms three iterations of Sinkhorn-Knopp algorithm to up- chies. Compared with the prototypes with a single hierar-

date clusteri.ng assig.nmen'ts, which has a time complexity of .,y the prototypes with three hierarchies can better capture
O(KM ) (K batch sizeM : number of prototypes). After o semantics on all three label hierarchies. Hence, the pos-

amortizing the cost of hierarchical K-means to all training 4« image-prototype pairs selected based on our hierarchi-
steps within an epoch, our HCSC method has an extra time prototypes are more semantically diverse

complexity of O(NM 1+ M 1M+ M,M3)=T = O(KM ;)
for each stepN : dataset sizeyl;: number of prototypes at  6.2. Analysis on Negative Sample Selection
thel-th hierarchy;T: training steps per epoch). Therefore,
whenitholdsthaM M, SWAV and HCSC have compa-
rable extra computation. In the rst two rows of Tab. 4, we
compare the per-epoch running time of SwAV (with 3000
prototypes) and the vanilla HCSC (with 3000-2000-1000
hierarchical prototypes), which mak¥s = M;. The com-
parable cost of time supports the analysis above.

To further enhance the ef ciency of HCSC, we employ
faiss [10], a library for ef cient similarity search and clus-
tering, to perform the hierarchical K-means step. Thanks
for the high parallelism of faiss, the improved HCSC model,
i.e. HCSC (parallel), achieves much better computational

ef ciency than the vanilla HCSQ,e. HCSC (non-parallel), 7.1, Visualization of Hierarchical Semantics
as shown in the last two rows of Tab. 4.

This study seeks to measure the effectiveness of our neg-
ative sample selection scheme. In Fig. 1, we plot the pre-
cision and recall of false negatives and true negatives along
training. This recording showatably growing false nega-
tive removal andconstantly high true negative preserva-
tion, which veri es that the proposed scheme can keep most
of the correct negative samples and, at the same time, elim-
inate more and more false negatives as the representation
guality improves.

7. More Visualization Results

In Fig. 2, we visualize the images assigned to the proto-
6. Analysis on Contrastive Selective Coding typeg ina subgtructure of'hierarchical prototypes. The se-
mantics of the images assigned to the prototype at top hier-
Here, we analyze the proposed instance-wise and proto-archy are most diverse, which represents the coarse-grained
typical contrastive selective coding from two perspectives: semantics of “human interacting with animals or items”.
(1) how it can select more diverse positive pairs with similar By comparison, the images assigned to the prototypes at
semantics, and (2) how it can select more precise negativebottom hierarchy express ner-grained semanteg, “hu-



man catching snakes”, “human interacting with birds” and
“human catching sh”. These results illustrate that the pro-
posed hierarchical prototypes can indeed capture hierarchi-
cal semantic structures.

7.2. Visualization of Feature Representations

In Fig. 3, we use t-SNE [8] to visualize the represen-
tations of ImageNet [5] images learned by three methods,
i.e. MoCo v2 [4], PCL v2 [12] and the proposed HCSC, in
which the rst 20 classes of ImageNet are visualized follow-
ing PCL [12]. The image representations learned by MoCo
v2 are not separable among many classes. By comparison,
PCL v2 derives more separable representations among dif-
ferent classes, while it confuses the image representations
of class 7, 19 and 20. HCSC produces more separable
feature representations among these three classes, and the
representations from all 20 classes are best separated un-
der our approach. These visualization results demonstrate
that HCSC can derive discriminative feature representations
which bene t various downstream tasks.



Figure 2. Visualization of a typical substructure of hierarchical prototypes.

Figure 3. The t-SNE visualization of the learned representations for ImageNet training samples from the rst 20 classes.
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