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Size Layer Hire-MLP-Tiny ‘ Hire-MLP-Small Hire-MLP-Base ‘ Hire-MLP-Large
Patch Embed. 7 X 7,64, stride 4] 7 X 7,64, stride 4] 7 X 7,64, stride 4] 7 X 7,96, stride 4]
Stage 1 | £ x % [ Hire-MLP h=w=A4T " h=w=4]_ h=w=A4T ", h=w=A4T ",
Block | s=2 | | s=2 | | s=2 | | s=2 |
Patch Embed. | [3 x 3,128, stride 2] | [3 x 3,128, stride 2] | [3 x 3,128, stride 2] | [3 x 3,192, stride 2]
Stage 2 | L x ¥ [ Hire-MLP h=w=3 h=w=3 h=w=3 h=w=3
87 8 X 2 X 4 X 6 X 6
Block | s=2 | | s=2 | | s=2 | | s=2 |
Patch Embed. | [3 x 3,320, stride 2] | [3 x 3,320, stride 2] [3 x 3,320, stride 2] | [3 x 3,384, stride 2]
Stage 3 | £ x Y& [ Hire-MLP h=w=3 h=w=3 h=w=3 h=w=3
Block | s=1 _X4 s=1 x 10 s=1 x 24 s=1 x 24
Patch Embed. | [3 x 3,512, stride 2] | [3 x 3,512, stride 2] | [3 x 3,512, stride 2] | [3 x 3,768, stride 2]
Stage 4 %x% Hire-MLP h=w=2 %2 h=w=2 <3 h=w=2 <3 h=w=2 %3
Block s=1 | s=1 s=1 s=1
# Parameters \ 17.6M \ 33.1M \ 58.1IM \ 95.6M
# FLOPs \ 2.1G \ 4.2G \ 8.1G \ 13.4G

Table A-1. Detailed architecture specifications about variants of the Hire-MLP for ImageNet classification. Hire-MLP block is shown in
bracket with the number of stacked blocks. H and W indicate the height and the width of input images, respectively. h and w indicate the
number of tokens in each region in region partition (Sec. 3.2) along the height direction and the width direction, respectively. s indicates
the step size of shifted tokens in cross-region rearrangement (Sec. 3.2). FLOPs is calculated on 224 x224 input.

A. Detailed Architectures

Due to space limit, Figure 1 in the main paper only shows
the tiny version of Hire-MLP architectures, i.e., Hire-MLP-
Tiny. We have also developed diverse variants of Hire-MLP
with different memory and computational cost by stacking
different numbers of Hire-MLP blocks and expanding cor-
responding channel dimensions. The detailed architecture
specifications are shown in Table A-1, where an input im-
age with the size of 224 x224 is assumed for all architec-
tures. For example, the first “Patch Embed.” in Hire-MLP-
Tiny indicates an overlapping patch embedding layer with
the window size of 7, channel dimension of 64, and stride
of 4. This operation results in a downsampling of input im-

ages by a rate of 4. Furthermore, the parameter h, w, and s
in Hire-MLP block represent the number of tokens in each
region (Region Partition in Sec. 3.2) along the height direc-
tion, along the width direction, and the step size of shifted
tokens (Cross-region Rearrangement in Sec. 3.2), respec-
tively.

Specifically, we adopt BN instead of the original LN in
the Channel-MLP. The BN and LN achieve similar results
(i.e., £0.1) on ImageNet in our experiments. We choose BN
because “FC-BN” can be merged to “FC” and thus improves
the inference speed of our model.

In addition, we provide the PyTorch-like code in Algo-
rithm A-1 associated with the operations used in the hire
module.



B. Visualization of Feature Maps

Q4. Down-stream tasks. We evaluate the generalization of
Hire-Small trained on ImageNet. Table R3-Q4 reports the
performance on CIFAR-10, CIFAR-100, Standford Cars,
Flowers-102, and Oxford-IIIT Pets, demonstrating the su-
periority of Hire-MLP. Final version will discuss more.

In this section, we visualize feature maps generated by
the hire module (as is detailed in Figure | in the main pa-
per) to further understand the effect of the relative position.
Hire-MLP-Small is utilized as the backbone. We compare
intermediate features of two cross-region rearrangement
manners: ShuffleNet manner and shifted manner. These
two manners are also illustrated in Figure B-1. For bet-
ter visualization, the input image is resized to 1024 x1024.
Feature maps from the 3rd block in stage 1, the 4th block
in stage 2, and the 10th block in stage 3 are shown in Fig-
ure B-2, where 12 feature maps are randomly sampled along
the channel dimension. We observe that features generated
by the shifted manner can capture desired local structures
(e.g., edges, lines, and textures) better. Specifically, the
structure information is poorly modeled in the first row of
“Stage-1 Block-3, ShuffleNet manner”, demonstrating that
our shifted manner can preserve more information about
relative position than ShuffleNet manner.

C. Detailed Experimental Settings
C.1. Object detection on COCO

In order to compare with PVT [21] and CycleMLP [4],
we conduct object detection and instance segmentation
experiments based on two typical detectors, i.e., Reti-
naNet [13] and Mask R-CNN [7]. We use AdamW [15]
optimizer with a batch size of 4 images per GPU, the ini-
tial learning rate is set to 2e-4 and divided by 10 at the 8th
and the 11th epoch. The weight decay is set to 0.05. All
models are trained for 12 epochs, i.e., “1x” schedule, with
single-scale strategy on 8 NVIDIA Tesla V100 GPUs. The
input image is resized such that its shorter side has 800 pix-
els while its longer side does not exceed 1333 pixels during
training.

In addition, we utilize another setting to compare with
Swin Transformer [14] and AS-MLP [12] on Mask R-
CNN [7] and Cascade Mask R-CNN [1]: multi-scale train-
ing [19], i.e., the input image is resized such that its shorter
side is between 480 and 800 pixels while its longer side does
not exceed 1333, and “3x” schedule, i.e., 36 epochs with the
learning rate divided by 10 at the 27th and the 33rd epoch.

C.2. Semantic Segmentation on ADE20K

We first follow PVT [21] and CycleMLP [4] and uti-
lize Semantic FPN [9] in mmsegmentation [5] as our base
framework. We use AdamW [15] optimizer with a batch
size of 2 images per GPU. The initial learning rate is set to

le-4 with the polynomial decay parameter of 0.9, and the
weight decay is set to 0.05. All models are trained for 40K
iterations on 8 NVIDIA Tesla V100 GPUs. Input images
are randomly resized and cropped to 512x512 at the train-
ing phase.

In addition, we follow Swin Transformer [14] and AS-
MLP [12] and utilize UperNet [23] as another base frame-
work for fair comparison. The initial learning rate is set
to 6e-5 with the linear decay, and the weight decay is set
to 0.01. Models are trained with an input of 512x512 on
8 NVIDIA Tesla V100 GPUs with 2 images per GPU for
160K iterations. For data augmentations, we adopt random
horizontal flipping, random re-scaling within ratio range
[0.5, 2.0], and random photometric distortion. In inference,
we report both single-scale results and multi-scale results
in Table 10 in the main paper, and resolutions employed in
multi-scale testing are [0.5, 0.75, 1.0, 1.25, 1.5]x of that in
training phase.

D. More Experiments
D.1. Ablation study on the number of regions.

Table D-1 lists both the ImageNet top-1 accuracy and the
ADE20K single-scale mIoU of the ablation study about the
number of regions in region partition.

Above Table D-1 shows that the number of tokens in
each region significantly influences the final performance.
To have a deeper analysis under different input resolutions
that may be appropriate on down-stream tasks, we further
do experiments for 448 x448 input. Table D-2 shows an in-
teresting result that (6,4,4,3) is the best for 448 x448 input
on ImageNet-1K.

D.2. Transfer Learning

We also evaluate the proposed method on five commonly
used transfer learning datasets, including CIFAR10 [11],
CIFAR100 [11], Standford Cars [10], Flowers [16], and
Oxford-IIIT Pets [17]. We fine-tune the ImageNet pre-
trained models on new datasets following [0]. Table D-3
shows the corresponding results.

D.3. Improvement between single-scale and multi-
scale on ADE20K.

Table D-4 shows the improvement between single-scale
and multi-scale testing of several commonly used back-
bones and frameworks. We empirically find that models
with self-attention mechanism can obtain a larger improve-
ment during multi-scale testing.

D.4. Ablation study on training methods.

We follow [20,22] to have an ablation highlighting the
importance of some tricks for our proposed Hire-MLP. The
corresponding results are shown in Table D-5. The top row



Algorithm A-1 Code of the hire module (see Figure 1 in the main paper) in a PyTorch-like style.

S

We omit the padding of H and W here

batch, C: channel, H: height, W: width
input tensor with shape (B, C, H, W)

number of tokens in height direction region
number of tokens in width direction region
step size of shifted tokens

S S
0= oX W

import torch
import torch.nn as nn

class Mlp_2fc(nn.Module) :
"""Implementation of MLP with 11 convolution. Input tensor with shape [B, C, H, W]
def __init_ (self, dim, h, w):
super () .__init__ ()
self.mlp_h = nn.Sequential (
nn.Conv2d(dim*h, dim//2, 1, bias=False),
nn.BatchNorm2d (dim//2),
nn.RelLU(),
nn.Conv2d(dim//2, dimxh, 1, bias=True),
)
self.mlp_w = nn.Sequential(
nn.Conv2d (dim*w, dim//2, 1, bias=False),
nn.BatchNorm2d (dim//2),
nn.ReLU(),
nn.Conv2d(dim//2, dimxw, 1, bias=True),

def forward(self, h_axis, w_axis):
h_axis = self.mlp_h(h_axis)
w_axis = self.mlp_w(w_axis)
return h_axis, w_axis

class Mlp_lfc(nn.Module) :
"""Implementation of MLP with 1x1 convolution. Input tensor with shape [B, C, H, W]
won
def __init__(self, dim):
super () .__init__ ()
self.mlp_c = nn.Conv2d(dim, dim, 1, bias=True)

def forward(self, x):
c_axis = self.mlp_c(x)
return c_axis

# cross-region rearrangement operation

def cross_region_rearrange (x, s):
h_axis = torch.roll(x, s, -2)
w_axis = torch.roll(x, s, -1)

# inner-region rearrangement operation

def inner_region_rearrange (h_axis, w_axis, h, w):
h_axis = h_axis.reshape(B, C, H//h, h, W).permute(0, 1
w_axis = w_axis.reshape(B, C, H, W//w, w).permute(0, 1

.reshape (B, Cxh, H//h, W)
) .reshape (B, C*w, H, W//w)

Ny
NN
[RFS

# inner-region restoration operation

def inner_region_restore(h_axis, w_axis, h, w):
h_axis = h_axis.reshape (B, C, h, H//h, W).permute(0, 1
w_axis = w_axis.reshape(B, C, w, H, W//w).permute(0, 1, 3, 4,

w
N

) .reshape (B, C, H, W)
.reshape (B, C, H, W)

N >

# cross-region restoration operation

def cross_region_restore (h_axis, w_axis, s):
h_axis = torch.roll (h_axis, -s, -2)
w_axis = torch.roll (w_axis, -s, -1)

# hire module
def hire_module(x, h, w, s):

# first two branches

h_axis, w_axis = cross_region_rearrange (x)

h_axis, w_axis = inner_region_rearrange (h_axis, w_axis, h, w)
h_axis, w_axis = Mlp_2fc(h_axis, w_axis)

h_axis, w_axis = inner_region_restore (h_axis, w_axis, h, w)
h_axis, w_axis = cross_region_restore(h_axis, w_axis, s)

# last branch
c_axis = Mlp_1lfc(x)

x = h_axis + w_axis + c_axis
return x
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Figure B-2. Visualization of features in the Hire-MLP-Samll (ShuffleNet manner vs. shifted manner) on ImageNet.
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Num. of A and w ‘ ;m;%el(\;jt SSAr]I?I]i %?E%) ‘ Num. of A and w ‘ rIfr(I)l;gleI(\(I;:t SSAn]?I]i %()5%)
(2,2,2,2) | 8162 | 4473 | (3.3.,3,3) | 8L79 | 4589
(4,3,3,2) | 8207 | 4599 | (4444 | 8L72 | 4526
(5.4,3.3) | 8174 | 45.50 | 6.4,3,3) | 8149 | 44.83

Table D-1. Ablation study about the number of regions (h and w) in Region Partition based on Hire-MLP-Small (ImageNet input size @
224%). We report both the ImageNet top-1 accuracy and the ADE20K single-scale mIoU.

Num. of b and w ‘ ;r:;_glel(\;; Num. of h and w }Fr:;_glel(\j;zg
2,222 | 8042 | 4332 | 8099
4.3.3.3) | 8106 | (4444 | 8103
6,443 | 8127 | (8663 | B8LI8

Table D-2. Ablation study on the number of regions (k and w) in Region Partition based on Hire-MLP-Tiny (ImageNet input size @ 448?).
We report the ImageNet top-1 accuracy here.
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w/o self-attention ‘ ‘ w/ self-attention

Backbone (Framework) | SSmIoU | MSmloU | A || Backbone (Framework) | SS mIoU | MS mloU | A
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DeiT [20], ResNeSt [25], HRNet [18], and Swin Transformer [14]) and frameworks (e.g., UperNet [23], GCNet [2], OCRNet [24], and
DeepLabV3 [3]).

Ablationon | | Mix. Cut. | Era. DP Rep. DO EMA | Top-1

Hire-Tiny ‘ v v ‘ v X v X X ‘ 79.7
data X 79.2
augmentation X X 71.7
regularization X 79.6
gulariz X 79.4
v 79.2

0.1 79.4

0.1 79.6

HireLarge | v v | v 03 v X v | 838
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