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Figure 1. Comparison of feature maps for different input types.
(a) Input images. (b) Feature map from the high frequency inputs.
(b) Feature map from the image input.

1. Experiment setting details
1.1. FPS Test

We design a Frames-Per-Second (FPS) test script (Al-
gorithm 1) to evaluate the inference running time. The
FPS script calculates the average running time of 100 con-
secutive model inferences without calculating gradients.
The input tensor zy € RMX3XHXW i5 a random tensor,
which does not have impact on performance. We use
Python time.perf_counter() to calculate time, rather than
time.time(), since it is more precise. Besides, we wait for
all kernels in all streams to finish on a CUDA device, then
we record the start and end time, denoted by ¢4+ and tepq-

Note that all methods do not use optimization from pack-
ages like TensorRT. Before each test, at least 20 forward
pass is conducted as warm-up of the device. For each new
method to be tested, we keep running warm-up trials of a
recorded method until the recorded FPS is reached again,
so we can guarantee a similar peak machine condition as
before. The evaluation platform is a 2080 Ti GPU, with
CUDA 10.1, CuDNN 7.6.5, PyTorch 1.6.0.

1.2. The image size for testing

For a fair comparison, we align the settings with most
previous methods. Specifically, full-scale inputs are used in

Algorithm 1: The pseudo code for FPS test

Input: net: The test model; zg € RP3XHXW: The
Input tensor;

Output: FPS: the FPS of the test model

// load the model and tensor into the GPU device

net.cuda()

xg.cuda()

// Warm-up the deivce

fori<+ 0;,7<20;,i« i+ 1do
| out < net. forward(zo);

// compute the FPS

Leotal < 05

for j < 0;,j <100; i< j+1do

with torch.no_grad():
torch.cuda.synchronize(),

tstart < time.per f_counter();
out < net. forward(zo);
torch.cuda.synchronize(),

tend < time.per f _counter();

L ttotal — ttotal + (tend - tstart);
FPS < 100/t10ta1;
final;

Cityscapes [4] for all previous and our methods. For Deep-
Globe [5] and Inria Aerial [10], downsampling rate is 0.8
for ours, Deeplabv3 [1], and FCN8s [9], while 0.6 is used
in UNet [11]. For the Global Local Refinement methods,
i.e. GLNet [2] and FCtL [8], we keep their original settings,
full scale for global and i scale for patches.

2. Experimental results
2.1. Fine details in residual inputs

The Laplacian pyramid decomposition guarantees that
no information has been lost, i.e. the original image can be
reconstructed from the inputs of D branch and S branch.
Therefore, the information of two sides is complementary.
On the other hand, from the perspective of only one branch,
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Figure 2. We illustrate several examples of the DeepGlobe dataset, comparing with the SOTAs. In this figure, masks with varied colors

represent different semantic regions. Particularly, cyan represents “urban”,

represents “agriculture”, purple represents “rangeland”,

green represents “forest”, blue represents “water”, white represents “barren” and black represents “unknown”.

it is indeed lost, but making information loss is common
in regularization to help training (e.g. dropout). Besides,
Fig. 1(b) shows clearer boundaries than (c), which proves
that residuals help the network to learn fine-grained details.

2.2. Other metrics

As shown in Table 1, we also employ pixel acc (Acc).
and F1 score to validate the clarity of semantic boundary.
Our method reaches 88.7 pixel acc. and 84.0 F1 score on

DeepGlobe dataset. Both metrics are better and much faster
inference than previous methods, e.g. FCtL (88.3 pixel acc.,
83.8 F1). Moreover, on our approach achieves a clear im-
provement on Inria Aerial dataset. In sum, the above results
show the superiority of our method.

2.3. Comparison with different backbones

We choose ResNet18 as the backbone for the sake of
speed and accuracy. We have tried to replace it with HR-
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Figure 3. We illustrate several examples of the Inria Aerial dataset, comparing with the SOTAs. In this figure, white and black represent
building and non-building respectively. Besides, in the segmentation results, we employ red and blue to mark the area with misclassification.
Specifically, red represents foreground is classified into background, and vice versa for blue.

Netl18 [12]. As shown in Table 2, our method still reaches DeepGlobe Inria Aerial
72.81 mloU and 12.75 FPS on Deepglobe, which is similar method Fl Acc Fl Acc
in accuracy, but much faster than MagNet [7] (72.96, 0.8). CascadePSP [3] 79.7 85.6 81.8 93.2
GLNet [2] 83.2 88.0 - -
2.4. More qualitative results FCtL [8] 83.8 88.3 84.1 94.6
We provide more comparison results with FCtL [8] and Ours 84.0 88.7 849 95.6

STDC [6]. Fig. 2 and Fig. 3 shows comparison results Table 1. F1 and Acc on the DeepGlobe and Inria Aerial.
on DeepGlobe [5] and Inira Aerial [10], respectively. As

shown in Fig. 2, our results are better, in both thin, long
objects (e.g. the first row in Fig. 2) and lager areas (e.g. the



Backbone of deep branch mloU FPS
ResNet18 73.30 27.70
HRNet18 72.81 12.75

Table 2. Comparison with different backbones on DeepGlobe.

second and fourth rows in Fig. 2). The segmentation results
in Fig. 3 also show the superiority of our method. Hence,
our method outperforms the compared methods.

3. Method Comparison and Runtime Analysis

Since our method is distinctly different from previous
global-local refinement methods, here we only discuss the
novelty compared to previous lightweight models. Bilat-
eral architecture is widely used for real-time segmentation
e.g. BiSeNet [13]. However, we aim at designing a generic
framework for UHR image segmentation, which brings the
major difference that our method can reuse the architec-
ture and weights of existing deep and shallow segmentation
models for different scale inputs to make a better balance
for speed and accuracy. In addition, ICNet [14] proposes a
cascade pipeline to iterative refine the prediction from mul-
tiple scales, in which the final prediction is highly depen-
dent on the prediction from small scales. In contrast, we
used a parallel prediction with heterogeneous input, and the
segmentation head of low resolution is discarded.

Our method benefits from the heterogeneous inputs for
deep and shallow branches, while the high frequency resid-
ual inputs for deep branches require additional computa-
tion. In this paper, we keep a small kernel size to reduce
the computation. Besides, Gaussian blur has been highly
optimized in OpenCYV and it only takes around 5ms to build
the Laplacian pyramid on CPU, so it can be merged to the
data prefetch stage, and parallel with GPU inference.
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