
Supplementary Material for
NeRFReN: Neural Radiance Fields with Reflections

In this supplementary material, we provide additional
details for the network and training procedure (Sec. 1),
further discussions on limitations along with an example
of failure case (Sec. 2), results and comparisons on LLFF
Dataset [2] (Sec. 3), and more ablation studies with qualita-
tive demonstrations (Sec. 4). We also provide video results
in the project webpage.

1. Network and Training
1.1. Network Configurations

25
6
25
6
25
6
25
6
25
6γ(x) 𝜎! , 𝛼

25
6

25
6

25
6

25
6

12
8

12
8

γ(d)

𝒄!

𝒄"

𝜎!
Figure 1. Detailed network architecture of NeRFReN.

The detailed network architecture of NeRFReN is shown
in Fig. 1. Orange blocks are fully-connected layers. Each
layer is followed by ReLU activation except for the output
layers. γ(x) and γ(d) are positional encodings of the input
coordinate x and viewing direction d. The network is de-
signed to have approximately same amount of parameters
with the original NeRF [2] network.

1.2. Warm-Up Training

An illustration of how λd and λbdc change with the train-
ing process is shown in Fig. 2. Note that we first increase
λd to ensure correct geometry for the transmitted compo-
nent and then increase λbdc to remove redundancies in the
reflected component. We find this stabilize training com-
pared to optimizing both at the same time. Then we grad-
ually decrease the weights to concern more on photometric

loss to get more accurate renderings. Effects of warm-up
training are demonstrated in Sec. 4.1.
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Figure 2. Illustration for the proposed warm-up training. Weight-
ings for geometric priors are first increased then decreased.

1.3. Training Details

We sample 4 × 4 patches instead of individual pixels to
compute the depth smoothness constraint, which requires
depth value of pixels in a local area. λd and λbdc are set to
0.01 and 1e-4 at the beginning of training. λd is increased
to 0.1 at iteration 1k, and decreased to 0.01 at iteration 5k.
λbdc is increased to 0.05 at epoch 20, decreased to 1e-4 at
epoch 12 and further decreased to 0 at epoch 15. We mask
out the input viewing direction before epoch 10. All models
are trained for 40 epochs using Adam [1] optimizer with an
initial learning rate of 5e-4. The learning rate is exponen-
tially decayed to 5e-6 in the last 20 epochs.

To further stabilize training, we force the transmitted im-
age to be close to the input image for the first 1k iterations:

Linit = ||Ĉ(r;σt, ct)− Ĉ||2 (1)

We also apply a smoothness constraint on the reflection
fraction map:

Lβ =
∑
p

∑
q∈N (p)

||β(p)− β(q)||1, (2)

λinit and λβ are set to 0.01 and 1e-4 respectively.
Same as the original NeRF, we simultaneously optimize

a coarse and a fine network. When training the coarse net-
work, the transmitted and reflected field share the same set
of samples. For the fine network, we get two different sets
of fine samples respectively for the transmitted and reflected
field based on the weights of their coarse samples, since the
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PSNR↑
Method fern flower fortress horns leaves orchids room trex average

NeRF 26.01 31.70 33.23 32.92 22.98 21.38 37.04 32.03 29.66
NeRFReN 25.36 29.95 33.60 31.59 22.75 21.89 37.52 30.64 29.16

Table 1. View synthesis results of NeRF and NeRFReN on LLFF dataset.

transmitted and reflected component have independent ge-
ometries. A side-effect would be that we have to evaluate
the fine network twice for a query point. This computation
overhead is carefully taken care of in the comparisons with
the original NeRF: 64 fine samples are evaluated for NeR-
FReN and 128 fine samples for NeRF.

2. Limitations and Failure Case
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Figure 3. Illustration for a failure case where the virtual image is
not stable due to the curved reflective surface. Zoom in for more
details.

Curved reflective surfaces that do not produce stable vir-
tual images cannot be modeled by our image-based formu-
lation. An example can be seen in Fig. 3. Note the distorted
light and curtain in the reflections of the ground-truth im-
age. In this case, the reflected component does not have
a consistent geometry, leading to inaccurate decomposition
and rendering results.

Another limitation lies in the modeling of multiple non-
coplanar surfaces. However, we find that in real life, re-
flection images from different non-coplanar surfaces rarely
coincide because they are often far away from each other or
only observed from limited angles. This makes it possible
to model them by a single reflected field as we do in the pa-
per. Potential failure cases could be alleviated by utilizing
multiple reflected MLPs. An interesting direction for ad-
dressing the above limitations would be to model reflected
rays as in ray tracing, which we regard as a future work.

3. Results on LLFF Dataset
We experiment on LLFF dataset, where most of the

scenes do not exhibit strong reflections. As is shown in
Tab. 1, NeRFReN achieves a competitive average PSNR
(29.16) compared to NeRF (29.66). This demonstrates that
our method maintains high representational ability despite
of all the specifically-designed priors in training. Some
qualitative results are provided in Fig. 4. In Fig. 5 we

show the decomposition results and improved depth predic-
tion on the room scene, where we make use of manually-
annotated masks on the TV screen for 2 of the training im-
ages. No meaningful decomposition is achieved in other
LLFF scenes.

Figure 4. Novel view synthesis and depth estimation results of
NeRFReN on some of the LLFF scenes.

4. Ablation Studies
4.1. Warm-up Training

We exploit two alternative training strategies to demon-
strate the effectiveness of warm-up training: (1) training
with strong geometric constraints (Ld = 0.1,Lbdc = 0.05)
directly without warm-up; (2) training with viewing direc-
tions directly from the very beginning without masking.
The qualitative results are shown in Fig. 6. For the first
setting, the transmitted depth can be overly smoothed, and
the reflected component quickly converges to empty due to
the strong constraints without proper initialization. For the
second setting, the reflected image is explained by view-
dependency, leading to blurry reflections lacking fine de-
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Figure 5. Decomposition results of NeRFReN on the room scene with 2 manually annotated reflection masks on the screen. NeRFReN
provides reasonable decomposition along with high-quality depth estimation results.
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Figure 6. The effects of the proposed warm-up training strategy. The decomposition is likely to fail if strong geometric constraints (row 2)
or view-dependency (row 3) are introduced from the beginning of training. We manage to get faithful decomposition by warming-up the
weighting factors of the geometric constraints and masking out the viewing direction in early training stage (row 1).

tails. Training with the warm-up strategy does not exhibit
such problems, as shown in the first row.

4.2. Interactive Setting

We use user-provided reflection masks to guide the de-
composition for the mirror and tv scene. Fig. 7 shows the
effects of different numbers of masks to the decomposition
results. Without masks, the network finds it hard to distin-
guish between the transmitted and reflected geometry. For
the mirror scene, fair decomposition results can be achieved
by utilizing 4 masks. And only 1 mask is needed for the tv
scene. This demonstrates that our method can deal with
hard cases with only minimum user inputs.
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Figure 7. The effects of the user-provided reflection masks on challenging scenes. Without any masks, NeRFReN fails to distinguish
between the transmitted and reflected geometry. We utilize 4 masks for the mirror scene and only 1 mask for the tv scene to get faithful
decompositions.


