
Supplementary Material

1. Analysis of of bit rate distribution
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Figure 1. The distribution of bit rate for our proposed model.

As shown in the left of Fig. 1, the Y component occu-
pies much more bitrates than Cb and Cr components. Then
we analyze the entropy of each channel in the Y component
and find that channels with smaller indexes (corresponding
to higher frequency) occupy less entropy, which demon-
strates the information asymmetry mentioned in Sec. 3.4 in
the main text.

2. Entropy coding and probability model
Lossless compression technique is essentially an entropy

coder along with a probability model. JPEG algorithm
adopts Huffman coding together with Huffman tables defin-
ing the probability model to compress quantized DCT coef-
ficients losslessly. However, these coefficients are consid-
ered independently and identically distributed (i.i.d.) un-
der this fixed probability model, resulting in a mismatch
between estimated and actual data distribution, which de-
creases compression savings.

Our method contains two significant improvements in
this aspect. First, our method uses Laplace distribution with
different parameters for each coding symbol to obtain an
adaptive probability model, where the two parameters (scale
b and location µ) of each Laplace distribution are learned by
neural networks. It is known that AC coefficients of Fourier-

related transformations, like DCT coefficients of JPEG al-
gorithm, obey Laplace distribution [2]. Second, we replace
the Huffman coding with arithmetic coding, which is a more
efficient technique that almost achieves the lower bound en-
tropy for long enough symbol streams.

3. Details about performance on different qual-
ity levels

Tab. 1 is the detailed data corresponding to Figure 6 in
the main text. All results at row Ours (QP 75) and row
Ours (QP 95) are obtained by our models trained with QP
75 and QP 95 respectively. While results in row Ours (QP
independent) are generated by 7 models trained with QP
35, 45, 55, 65, 75, 85 and 95 respectively to ensure that QP
value is exactly the same for training and testing. Data of
these three rows are visualized by Fig. 2. It shows that
the Ours (QP 75) has comparable performance with Ours
(QP independent) at all QPs lower than 85, which further
demonstrates that our model trained for quality = 75 can
generalize well to different quality levels except very high
quality like 95.
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Figure 2. Comparison of bits per pixel (BPP) on Kodak dataset
when recompressing JPEG images of different quality levels (QP).
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Method QP35 QP45 QP55 QP65 QP75 QP85 QP95
JPEG 0.729 0.850 0.964 1.127 1.369 1.859 3.401

Lepton 0.549 0.655 0.755 0.896 1.102 1.520 2.786
JPEG XL 0.599 0.710 0.815 0.960 1.173 1.595 2.849

CMIX 0.519 0.621 0.718 0.853 1.054 1.452 2.648
Ours (QP 75) 0.487 0.577 0.662 0.784 0.965 1.396 3.022
Ours (QP 95) 0.547 0.638 0.732 0.853 1.038 1.405 2.500

Ours (QP independent) 0.476 0.568 0.655 0.778 0.965 1.341 2.500

Table 1. Comparison of bits per pixel (BPP) on Kodak dataset when recompressing JPEG images of different quality levels (QP).

4. Details about comparison with learned loss-
less methods

We reproduce the multi-scale model following the in-
structions in the original paper, and our reproduced model
achieves bits per sub-pixel (BPSP) of 3.942 (computed by
negative log-likelihood) on ImageNet64 dataset, which is
slightly better than BPSP 3.96 presented in the original pa-
per.

We also reproduce IDF based on the source code released
by the authors. Nevertheless, the original IDF can only ac-
cept input with fixed size due to the logistic mixture model
(LMM) used for latent prior zL (L is the level of flows). To
make IDF resolution-adaptive, we replace the LMM with
the univariate non-parametric density model used in [1].
Our reproduced model achieves BPSP of 3.879 (computed
by negative log-likelihood) on ImageNet64 dataset, slightly
better than BPSP of 3.90 given in the original paper.

As stated in the main text, these two methods are de-
signed for RGB 4:4:4 input, so we convert JPEG 4:2:0 input
data to RGB 4:4:4 or YCbCr 4:4:4 by upsampling Cb and
Cr components. This upsampling operation increases reso-
lution and may cause unfair comparison. Consequently, we
also carry out experiments with JPEG 4:4:4 source format
and convert it to RGB 4:4:4, YCbCr 4:4:4 and DCT 4:4:4
as model input, which ensures a fair comparison. We make
our method suitable for JPEG 4:4:4 images by removing
the downsampling and upsampling of Y component in CFM
and CPSM. The full experiment settings are given in Tab. 2.
We use Pillow library to read RGB values from the source
JPEG images, and YCbCr values are converted from RGB
values.

For IDF and multi-scale model using DCT coefficients as
input, we do not adopt the DCT coefficients rearrangement
proposed in the main text to avoid enormous architecture
modification (this is because they are originally designed
for thin input format like RGB values with only 3 channels).
To deal with DCT 4:2:0 input, we reshape Y component to
4 channels by space-to-depth operation and then concate-
nate these 4 channels with Cb and Cr components to form
6-channel inputs with 1

4 of their original resolutions. Mean-
while, both of the methods need to be adjusted slightly to

fit this kind of input. For multi-scale model, the number of
input channels is changed from 3 to 6, and autoregression
over RGB channels is disabled. For IDF, we start from the
original IDF and increase the number of input channels to
6.

For all of these experiments, we use Adam optimizer and
MultiStepLR scheduler. We use the same training set and
use Kodak for evaluation, and the quality level is 75. Other
settings and experiment results are presented in Tab. 2. For
both JPEG 4:2:0 and JPEG 4:4:4 images, our method out-
performs other methods on all input formats by a large mar-
gin. It is worth noting that though for JPEG 4:4:4 images,
our method for compressing Cb and Cr components is rel-
atively simple, the performance is still superior. And it is
obvious that lossless image compression methods designed
for PNG do not perform well on recompressing JPEG 4:2:0
and JPEG 4:4:4 images.

5. More architecture details

5.1. Hyper-network

Fig. 3 shows the architecture details for the hyper-
network mentioned in the main text.
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Figure 3. Detailed architecture of Hyper Encoder and Hyper De-
coder.

5.2. Cross-color Cases

Fig. 4, Fig. 5 and Fig. 6 show the architectures for the
three cases of cross-color entropy model respectively.



Source
format Model

Input
format Crop size

Learning
rate

Batch
size Epoch Milestones Gamma BPP

JPEG 4:2:0

IDF
RGB 4:4:4

64× 64 1e-4 64 3000 250, 500, 750 0.1
6.964

YCbCr 4:4:4 6.183
DCT 4:2:0 256× 256 32 1000 150 1.994

Multi-scale
RGB 4:4:4

256× 256
2e-4 64 6000 3000 0.5

4.398
YCbCr 4:4:4 3.984
DCT 4:2:0 2e-5 1.674

Ours DCT 4:2:0 256× 256 1e-4 16 2000 1500 0.1 0.965

JPEG 4:4:4

IDF
RGB 4:4:4

64× 64 1e-4 64 3000 250, 500, 750 0.1
7.059

YCbCr 4:4:4 6.362
DCT 4:4:4 5.875

Multi-scale
RGB 4:4:4

256× 256
2e-4 64 6000

3000 0.5
4.604

YCbCr 4:4:4 4.079
DCT 4:4:4 2e-5 3000 2.600

Ours DCT 4:4:4 256× 256 1e-4 16 2000 1500 0.1 1.122

Table 2. Experiment settings and results on Kodak dataset for multi-scale and IDF models. Milestones and gamma are parameters of
MultiStepLR in PyTorch. All models are trained and evaluated with QP 75.

5.3. Variants of MLCC model

This section shows architecture details of the three vari-
ants of MLCC (i.e. Only Outer Channel in Fig. 8, Only
Inner Channel in Fig. 10, and Column-to-row in Fig. 12)
and their corresponding context models (Fig. 7, Fig. 9,
Fig. 11) mentioned in Sec. 4.3 in the main text.
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Figure 4. Architecture details of Cross-color case 1. Blue and green lines indicate data-flow for encoding and decoding respectively,
orange lines are shared.
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Figure 5. Architecture details of Cross-color case 2. Blue and green lines indicate data-flow for encoding and decoding respectively,
orange lines are shared.
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Figure 6. Architecture details of Cross-color case 3. Blue and green lines indicate data-flow for encoding and decoding respectively,
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Figure 7. Matrix context modeling method with only row split. Solid arrows indicate data operation and dotted arrows denote conditional
relationships.
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Figure 8. Architecture details of Only Outer Channel. Fig. 7 is its corresponding context model. Letting n, m representing the channel
number of input tensor and next slice to be modeled respectively, C1, C2 and C3 are decided by C1 = n − d,C2 = n − 2 ∗ d,C3 =
2 ∗m, d = (n− 2 ∗m)//3. Blue and green lines indicate data-flow for encoding and decoding respectively, orange lines are shared.
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Figure 9. Matrix context modeling method with only column split.Solid arrows indicate data operation and dotted arrows denote conditional
relationships.
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Figure 10. Architecture details of Only Inner Channel. Fig. 9 is its corresponding context model. Letting n, m representing the channel
number of input tensor and next slice to be modeled respectively, C1, C2 and C3 are decided by C1 = n − d,C2 = n − 2 ∗ d,C3 =
2 ∗m, d = (n− 2 ∗m)//3. Blue and green lines indicate data-flow for encoding and decoding respectively, orange lines are shared.
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Figure 11. Matrix context modeling method in column-to-row manner.Solid arrows indicate data operation and dotted arrows denote
conditional relationships. Light grey and light blue dotted arrows align with Outer Channel and Inner Channel in Fig. 12, respectively.
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Figure 12. Architecture details of column-to-row. Fig. 11 is its corresponding context model. Letting n, m representing the channel
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