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In this supplementary material, we provide further im-
plementation details for reproducibility, as well as addi-
tional qualitative and quantitative results, covering different
organs and highlighting the accuracy of our method. Fi-
nally, we share some insight w.r.t. real-world applications
of our solution.

A. Implementation Details
Figure S2 serves as an supplement to the Section 4.2 in

the main text. We use the Elastix registration [2] imple-
mented in Slicer [1] to non-rigidly align the template mesh
M̂ to any given mesh Mk. After homogenizing the rep-
resentation of the organ meshes, every organ mesh shall
have exactly the same number of vertices, and vertices with
the same index shall also point to corresponding anatomical
structures, as in Figure S1.

B. Additional Results
B.1. Multi-organ Results

As a supplement to the results of the left lung and spleen
provided in the main text, we present the SMPL-A defor-
mation prediction for the right lung (Figure S3), left kidney
(Figure S4) and right kidney (Figure S5), follow the similar
pattern as in Figure 7 in the main text.

For each subfigure (A), we show one deformation se-
quence, from rest pose to extreme pose, with the resulting
organ prediction from SMPL-A compared to the baseline
one. Since the baseline method is simply the mean shape
of that particular sequence, the surface error mainly comes
from the organ stretching on the upper/lower edges (caused
by the FEM’s nodal loads and surface constraints). By ob-
serving the error color coding, we can see that the SMPL-
A’s results have a much lower surface error, which indi-
cates its capability of recovering the patient-specific organ’s
shape as well as the simulated deformation caused by the
pose change (lifting the arms).

For each subfigure (B), we show how the SMPL-A’s pre-
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Figure S1. Corresponding landmarks, i.e., the renal artery and
renal vein, for left kidneys.

diction changes according to the organ shape parameters α
and pose parameters θ, respectively. The color map was en-
coded by the predicted stretching amount w.r.t. to the first
frame inside one sequence. With changes in α, the recov-
ered points cloud shows different organ shapes across pa-
tients; whereas with changes in θ, the predicted stretching
amount gradually increases from the first row to the last row.
This, again, suggests that the SMPL-A model learns (1) the
patient-specific organ shape information and (2) the corre-
spondence between the changes in organ’s shape and human
pose parameters.

B.2. Study of Organ Parameter ααα

In Figure S6, we demonstrate the necessity of introduc-
ing α in modeling the shape of organs. With the proposed
additional information from α (SMPL-A in the second col-
umn), the recovered shapes have a high correspondence to
the ground-truth. In comparison, we trained another de-
coder D′ which directly predicts the organ’s points cloud
merely based on the SMPL’s pose parameters θ and shape
parameters β, i.e., merely based on human external appear-
ance. The resulting recovered organ shapes (third column)
show a low variance from one patient to the other, and are
very similar to the mean shape of that specific organ (fourth
column). This suggests that to accurately estimate the or-
gan shape deformation, it is necessary to combine both the
internal and external information.
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Target organ 
segmentation 𝐼! and mesh 𝑴𝒌

Template organ 
segmentation 𝐼# and mesh 𝑴$

Default alignment Deformably aligned
𝑴𝒌 and 𝑻(𝑴$ ; 𝝁𝒌)

Elastix Registration 
𝜇!

We keep 𝑻(𝑴$ ; 𝝁𝒌) to represent 𝑴𝒌,
with N vertices

Figure S2. Organ registration. We use Elastix registration to homogenize the representation (number of vertices) for the same organ across
different subjects.

C. Illustration of Real-life Applications
Our work targets a variety of medical use-cases (cf . Sec-

tion 1 of the main paper). One of these applications is il-
lustrated in Figures S7 and S8 (also in animated GIF files
attached to this supplement). Given a patient’s medical im-
age information obtained from previous scans, we can use
the SMPL-A encoder to extract and save the representa-
tion α of the patient’s target organ(s). After a period of
time, e.g., when the patient comes back to the hospital for
a follow-up study, the patient’s vector α can be passed to
the SMPL-A decoder to estimate the patient’s current or-
gan deformation and warp the historical medical image cor-
respondingly. This way, if new scans are captured during
the present session, they can be directly compared to the
warped historical scans, e.g., regardless of changes in the
patient’s pose during the present scanning procedure. By
enabling such a direct one-to-one comparison of medical
scans across time and poses, the clinicians could more eas-
ily perform their analysis, e.g., they could further examine
the disease progression or the effectiveness of treatment in
an intuitive way.
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Figure S3. (A) Predicted deformation error (color-coded, in mm) for the right lung; (B) Impact of patients’ pose parameter θ and organ
parameter α on deformed right lung shape reconstruction (color-coded by the stretch amount w.r.t. the first frame in each sequence, in mm).

Figure S4. (A) Predicted deformation error (color-coded, in mm) for the left kidney; (B) Impact of patients’ pose parameter θ and organ
parameter α on deformed left kidney shape reconstruction (color-coded by the stretch amount w.r.t. the 1st frame in each sequence, in mm).



Figure S5. (A) Predicted deformation error (color-coded, in mm) for the right kidney; (B) Impact of patients’ pose parameter θ and organ
parameter α on deformed right kidney shape reconstruction (color-coded by the stretch amount w.r.t. the first frame in each sequence, in
mm).
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Ground-truth Decoded from 𝛼, 𝜃, 𝛽 Decoded from 𝜃, 𝛽 Mean shape for spleen

Figure S6. Importance of encoding patients’ anatomical information. We show the necessity of α’s information in accurate estimation of
the patient-specific organ shape. The second column indicates our SMPL-A results; third column represents the results from a separately
trained decoder D′ which reconstructs organ shape merely depending on the θ and β, i.e., merely based on the patient’s external appearance;
the fourth column shows the mean shape of spleen.



Figure S7. Demonstration. Sliding axial view of the MRI im-
age (deformed by SMPL-A predictions) is overlaying with the pa-
tient’s SMPL model. (To see the animation, please view the document
with a compatible software, e.g., Adobe Acrobat or KDE Okular; other-
wise, the figure is also provided as a separate GIF file attached to the sub-
mission)

Figure S8. Demonstration. Circular round view of the MRI im-
age (deformed by SMPL-A predictions) is overlaying with the pa-
tient’s SMPL model. (To see the animation, please view the document
with compatible software, e.g., Adobe Acrobat or KDE Okular; otherwise,
the animation is also provided as a separate GIF file attached to the sub-
mission)
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