
OW-DETR: Open-world Detection Transformer
Supplementary Material

Akshita Gupta* 1 Sanath Narayan* 1 K J Joseph2,4

Salman Khan4,3 Fahad Shahbaz Khan4,5 Mubarak Shah6

1Inception Institute of Artificial Intelligence 2IIT Hyderabad 3Australian National University
4Mohamed Bin Zayed University of Artificial Intelligence 5CVL, Linköping University 6University of Central Florida

In this supplementary, we present additional quantitative
and qualitative results along with societal impact and limi-
tations of our proposed open-world object detection frame-
work, OW-DETR. The quantitative results are discussed in
Sec. A1 followed by qualitative analysis in Sec. A2. The
limitations and societal impact are covered in Sec. A3.

A1. Additional Quantitative Results
A1.1. Evaluation using WI and A-OSE Metrics

Tab. A1 shows a state-of-the-art comparison the for
open-world object detection (OWOD) setting on the MS-
COCO dataset in terms of wilderness impact (WI) and abso-
lute open-set error (A-OSE). The WI metric [3,4] measures
the model’s confusion in predicting an unknown instance as
known class, given by

WI =
PK

PK∪U
− 1,

where PK is the model precision for known classes when
evaluated on known class instances alone and PK∪U denotes
the same when evaluated with unknown class instances in-
cluded. On the other hand, the A-OSE metric measures the
total number of unknown instances detected as one of the
known classes. Both these two (WI and A-OSE) indicate
the degree of confusion in predicting the known classes in
the presence of unknown instances. Furthermore, we also
show the comparison in terms of U-Recall for ease of com-
parison. It is worth mentioning that U-Recall directly re-
lates to the unknown class and measures the model’s ability
to retrieve the unknown instances.

The standard object detectors (Faster R-CNN and
DDETR) in the top part of Tab. A1 are inherently not suited
for the OWOD setting since they cannot detect any un-
known object. Thereby, for these frameworks, only WI
and A-OSE can be computed but not U-Recall. Since the
energy-based unknown identifier (EBUI) in the recently in-
troduced ORE [4] is learned using a held-out validation
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set with weak unknown supervision, for a fair compari-
son in the OWOD setting, we compare with ORE not em-
ploying EBUI. We observe that the standard single-stage
DDETR wrongly predicts unknown instances as known
classes and performs poorly in terms of A-OSE, com-
pared to the two-stage Faster R-CNN. However, by adapt-
ing DDETR to OWOD setting through the proposed intro-
duction of attention-driven pseudo-labeling, novelty clas-
sification and objectness branch, our OW-DETR obtains
improved performance in terms of all three metrics across
tasks over the Faster R-CNN based ORE. These results em-
phasize the importance of the proposed contributions to-
wards a more accurate OWOD.

A1.2. Proposed MS-COCO Split for Open-world

Open-world object detection (OWOD) is a challeng-
ing setting due to its open-taxonomy nature. However,
the dataset split proposed in ORE [4] for OWOD allows
data leakage across tasks since different classes from a
super-categories are introduced in different tasks, e.g., most
classes from vehicle and animal super-categories are intro-
duced in Task 1, while related classes like truck, elephant,
bear, zebra and giraffe are introduced in Task 2. Here, we
conduct an experiment by constructing a stricter MS-COCO
split, where classes are added across super-categories, as
shown in Tab. A3. Such a split mitigates possible data leak-
age across tasks since all the classes of a super-category are
introduced at a time in a task and not spread across tasks.
Thereby, the proposed split is more challenging for OWOD
setting. The new split is divided by super-categories with
nearly 20 classes in each task: Animals, Person, Vehicles
in Task 1; Appliances, Accessories, Outdoor, Furniture in
Task 2; Food, Sport in Task 3; Electronic, Indoor, Kitchen in
Task 4. Here, Tab. A2 shows that our OW-DETR achieves
improved performance even on this stricter OWOD split,
compared to the recently introduced ORE. We note that
the proposed bottom-up attention driven pseudo-labeling
scheme aids our OWOD framework to better generalize to
unseen super-categories.
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Table A1. State-of-the-art comparison for open-world object detection (OWOD) on MS-COCO. The comparison is shown in terms
of wilderness impact (WI), absolute open set error (A-OSE) and unknown class recall (U-Recall). The unknown recall (U-Recall) metric
quantifies a model’s ability to retrieve the unknown object instances. The standard object detectors (Faster R-CNN and DDETR) in the top
part of table are inherently not suited for the OWOD setting since they cannot detect any unknown object and thereby U-Recall cannot be
computed for them. For a fair comparison in the OWOD setting, we compare with the recently introduced ORE [4] not employing EBUI.
Our OW-DETR achieves improved WI and A-OSE over ORE across tasks, thereby indicating lesser confusion in detecting unknown
instances as known classes. Furthermore, our OW-DETR achieves improved U-Recall over ORE across tasks, indicating our model’s
ability to better detect the unknown instances. Note that WI, A-OSE and U-Recall cannot be computed in Task 4 (and hence not shown)
since all 80 classes are known. See Sec. A1.1 for additional details.

Task IDs (→) Task 1 Task 2 Task 3

U-Recall WI A-OSE U-Recall WI A-OSE U-Recall WI A-OSE
(↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓) (↓)

Faster-RCNN [6] - 0.0699 13396 - 0.0371 12291 - 0.0213 9174
Faster-RCNN

+ Finetuning Not applicable in Task 1 - 0.0375 12497 - 0.0279 9622

DDETR [7] - 0.0608 33270 - 0.0368 18115 - 0.0197 9392
DDETR

+ Finetuning Not applicable in Task 1 - 0.0337 17834 - 0.0195 10095

ORE − EBUI [4] 4.9 0.0621 10459 2.9 0.0282 10445 3.9 0.0211 7990
Ours: OW-DETR 7.5 0.0571 10240 6.2 0.0278 8441 5.7 0.0156 6803

Table A2. State-of-the-art comparison for OWOD on the proposed MS-COCO split. The comparison is shown in terms of known class
mAP and unknown class recall (U-Recall). For a fair comparison in the OWOD setting, we compare with the recently introduced ORE [4]
not employing EBUI. The proposed split mitigates data leakage across tasks and is more challenging than the original OWOD split of [4].
Even on this harder data split, our OW-DETR achieves improved U-Recall over ORE across tasks, indicating our model’s ability to better
detect the unknown instances. Furthermore, our OW-DETR also achieves significant gains in mAP for the known classes across the four
tasks. Note that since all 80 classes are known in Task 4, U-Recall is not computed. See Sec. A1.2 for more details.

Task IDs (→) Task 1 Task 2 Task 3 Task 4

U-Recall mAP (↑) U-Recall mAP (↑) U-Recall mAP (↑) mAP (↑)

(↑)
Current
known (↑)

Previously
known

Current
known Both (↑)

Previously
known

Current
known Both

Previously
known

Current
known Both

ORE − EBUI [4] 1.5 61.4 3.9 56.5 26.1 40.6 3.6 38.7 23.7 33.7 33.6 26.3 31.8
Ours: OW-DETR 5.7 71.5 6.2 62.8 27.5 43.8 6.9 45.2 24.9 38.5 38.2 28.1 33.1

Table A3. Task composition in the proposed MS-COCO split
for Open-world evaluation protocol. The semantics of each task
and the number of images and instances (objects) across splits are
shown. The proposed task split mitigates the data leakage across
tasks that was present in the split of ORE [4]. E.g., all vehicles
including truck, which was in Task 2 earlier are now in Task 1.
Similarly all animals are now in Task 1, while other Pascal VOC
classes like sofa, bottle, etc. are moved out of Task 1.

Task 1 Task 2 Task 3 Task 4

Semantic split
Animals, Person,

Vehicles
Appliances, Accessories,

Outdoor, Furniture
Sports,
Food

Electronic, Indoor,
Kitchen

# training images 89490 55870 39402 38903
# test images 3793 2351 1642 1691
# train instances 421243 163512 114452 160794
# test instances 17786 7159 4826 7010

A1.3. Fully- vs. Self-supervised Pretraining

As discussed in the implementation details, our OW-
DETR framework employs a ResNet-50 backbone that is
pretrained on ImageNet1K [2] in a self-supervised man-

ner [1] (DINO) without labels. Such a pretraining mitigates
a likely open-world setting violation, which could occur in
fully-supervised (FS) pretraining, with class labels, due to
possible overlap with the novel classes. Here, we addition-
ally evaluate the performance of employing the ResNet-50
backbone, which is pretrained in an FS manner. Tab. A4
shows the performance comparison between FS and DINO
pretraining of ResNet-50. We observe that DINO pretrain-
ing enables a stronger backbone and achieves improved per-
formance over FS pretraining for OWOD while additionally
mitigating the violation in open-world setting.

A2. Additional Qualitative Results
OWOD comparison: Figs. A1 and A2 show qualita-
tive comparisons between ORE [4] and our proposed OW-
DETR on example images in MS-COCO test-set. For each
example image, detections of ORE are shown on the left,
while the predictions of our OW-DETR are shown on the



Table A4. Comparison of OW-DETR when using ImageNet1K
pretrained ResNet-50 trained in (i) fully-supervised (FS) setting
using class labels and (ii) self-supervised (DINO) setting without
class labels. Note that the FS backbone violates OWOD settings
due to overlap between pretraining (annotated) classes and un-
knowns. Hence, we utilize DINO ResNet50 for a fair OWOD
evaluation.
Backbone Task 1 Task 2 Task 3 Task 4

U-Recall mAP U-Recall mAP U-Recall mAP mAP

FS 6.2 57.6 5.6 40.2 4.1 30.0 27.2
DINO 7.5 59.2 6.2 42.9 5.7 30.8 27.8

right. In general, we observe that the proposed OW-DETR
obtains improved detections for the unknown objects, in
comparison to ORE. E.g., in top row of Fig. A1, while ORE
fails to detect the refrigerator (unknown in Task 1) in the
left part of the image as unknown, our OW-DETR correctly
predicts it as unknown. Similarly, in Fig. A2 (top row),
ORE wrongly predicts traffic light on a road sign that is
a true unknown, whereas our OW-DETR correctly detects
it as an unknown object. These results show that the pro-
posed contributions (attention-driven pseudo-labeling, nov-
elty classification and objectness branch) in OW-DETR en-
able better reasoning w.r.t. the characteristics of unknown
objects leading towards a more accurate detection in the
open-world setting.
Evolution of predictions: Figs. A3 and A4 illustrate an
evolution of predictions when evaluating the proposed OW-
DETR in different tasks of the OWOD setting on MS-
COCO images. For each image, the objects detected by our
OW-DETR when trained only on Task-1 classes is shown
on the left. Similarly, the predictions after incrementally
training with Task 2 classes is shown on the right. In the
top row of Fig. A3, a parking meter (unknown in Task 1)
is correctly detected as an unknown object during Task 1
evaluation and is rightly predicted as known class (park-
ing meter) during Task 2 after learning it incrementally. In
Fig. A4 (top row), the unknown objects (giraffe and zebra)
are localized accurately but they are confused as a known
class (horse) during Task 1, which can be attributed to vi-
sual similarity of these unknown objects with the known
class horse. However, these are correctly classified when
the OW-DETR is trained incrementally in Task 2 with gi-
raffe and zebra included as new known classes. In the bot-
tom row of Fig. A4, despite the localization not being ac-
curately performed, multiple traffic lights are correctly pre-
dicted as an unknown class in Task 1 and these are detected
accurately in Task 2 after incremental learning. These re-
sults show promising performance of our OW-DETR in ini-
tially detecting likely unknown objects and later accurately
detecting them when their respective classes are incremen-
tally introduced during the continual learning process.

In summary, these additional quantitative and qualitative
results along with those in the main paper show the benefits

of our proposed contributions in detecting unknown objects
in an open-world setting, leading towards a more accurate
OWOD detection.

A3. Societal Impact and Limitations
The open-world learning is a promising real-world set-

ting which incrementally discovers novel objects. However,
situations can arise where a particular object or fine-grained
category must not be detected due to privacy or legal con-
cerns. Similarly, an incremental model should be able to un-
learn (or forget) certain attributes or identities (object types
in our case) whenever required. Specific solutions to these
problems are highly relevant and significant, however, be-
yond the scope of our current work.

Although our results in Table 1 (main paper) demonstrate
significant improvements over ORE in terms of Recall and
mAP, the performances are still on the lower side due to
the challenging nature of the open-world detection problem.
We hope that this work will inspire further efforts on this
challenging but practical setting.

A4. Additional Implementation Details
The multi-scale feature maps extracted from the back-

bone are projected to feature maps with 256-channels (D)
using convolution filters and used as multi-scale input to
deformable transformer encoder, as in [7]. We use the Py-
Torch [5] library and eight NVIDIA Tesla V100 GPUs to
train our OW-DETR framework. In each task, the OW-
DETR framework is trained for 50 epochs and finetuned
for 20 epochs during the incremental learning step. Follow-
ing [7], we train our OW-DETR using the Adam optimizer
with a base learning rate of 2×10−4, β1 = 0.9, β2 = 0.999,
and weight decay of 10−4. For finetuning during incremen-
tal step, the learning rate is reduced by a factor of 10 and
trained using a set of 50 stored exemplars per known class.



ORE [4] Ours: OW-DETR
Figure A1. OWOD qualitative comparison between ORE [4] and our OW-DETR on example images in the MS-COCO test-set for
Task 1 evaluation. The predictions of ORE are shown on the left, while those from our OW-DETR are shown on the right. We observe
that, in comparison to ORE, our OW-DETR obtains improved detections for the unknown instances. E.g., in top row, the refrigerator
(unknown in Task 1) in the left part of the image is detected as unknown by OW-DETR, while it is missed by ORE. Similarly, in the second
row, traffic light (not part of known classes in Task 1) in the left part of the image are detected by our OW-DETR. Furthermore, while ORE
wrongly detects the sign boards as an aeroplane in the third row, our OW-DETR detects an unknown object in its place. See Fig. A2 for
more examples. These results show that the proposed OW-DETR achieves improved detection of unknown objects, in comparison to ORE.



ORE [4] Ours: OW-DETR
Figure A2. OWOD qualitative comparison between ORE [4] and our OW-DETR on example images in the MS-COCO test-set for
Task 2 evaluation. The predictions of ORE are shown on the left, while those from the proposed OW-DETR are shown on the right.
We observe that, in comparison to ORE, our OW-DETR achieves promising detections for the unknown objects. E.g., in top row, ORE
wrongly predicts traffic light on a road sign (true unknown), whereas our OW-DETR correctly detects it as an unknown object. In addition,
our OW-DETR also detects the smaller traffic light accurately. In the second row, while ORE detects cupboards as oven, our OW-DETR
detects it as unknown. Furthermore, ORE detects multiple objects on fire hydrant, which is mitigated by our OW-DETR. These results
show that the proposed OW-DETR captures better reasoning w.r.t. unknown objects, in comparison to ORE. See Sec. A2 for additional
details.



Task 1 evaluation Task 2 evaluation
Figure A3. Illustration showing the evolution of predictions of the proposed OW-DETR in the OWOD setting on MS-COCO images.
The objects detected by our OW-DETR when trained only on Task-1 classes is shown on the left. The predictions for the same images after
incrementally training with Task 2 classes is shown on the right. In the top row, an unknown prediction during Task 1 evaluation is correctly
predicted as parking meter during Task 2 evaluation. In the second row, traffic lights that are correctly detected as unknown objects during
Task 1 evaluation are correctly detected as known objects during Task 2 evaluation. In the third row, potential unknown objects (bench) are
detected but confused as chair due to their visual similarity during Task 1. However, they are correctly classified in Task 2 after bench class
is incrementally learned. These results show promising performance of our OW-DETR in initially detecting potential unknown objects and
later correctly detecting them when their corresponding classes are incrementally introduced for learning.



Task 1 evaluation Task 2 evaluation
Figure A4. Illustration showing the evolution of predictions of the proposed OW-DETR in the OWOD setting on MS-COCO images.
On the left: The objects detected by our OW-DETR when trained only on Task 1 classes. On the right: predictions for same images after
incrementally training with Task 2 classes. In the top row, although the unknown objects (giraffe and zebra) are localized accurately, they
are confused as a known class (horse) during Task 1. However, these are corrected to their actual labels when trained incrementally in Task
2. In the bottom row, despite being localized not so accurately, multiple traffic lights are correctly predicted as unknown class in Task 1
and these are detected accurately in Task 2. These results show promising performance of our OW-DETR in initially detecting potential
unknown objects and later correctly detecting them when their corresponding classes are incrementally introduced.
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