
Supplementary Material for
SOMSI: Spherical Novel View Synthesis with Soft Occlusion Multi-Sphere

Images

Tewodros Habtegebrial1,2 Christiano Gava1,2 Marcel Rogge1,2

Didier Stricker1,2 Varun Jampani3
1TU Kaiserslautern 2DFKI 3Google Research

1. Introduction
In this document we present more details on our pro-

posed Soft Occlusion Multi-Sphere Images technique for
Spherical Novel View Synthesis. The architecture of our
network as well as training details are given in Section 2.
In Section 3, we discuss results with a baseline method that
directly learns an MSI representation of the scene without
MLPs. Finally, in Section 4 we explain camera pose esti-
mation for manually captured spherical light fields.

2. Network Architecture and Training Details
2.1. Network Architecture

We use a multi-scale MLP network that is implemented
as 1× 1 convolutional network. The network takes the ref-
erence views’ 2D positional encodings of each pixel along
with RGB color values. These inputs are then processed
through multiple stages to produce the desired SOMSI
scene representation. Note that each pixel (u, v) in the ref-
erence Equirectangular Projection (ERP) has a unique view-
ing direction (θ, ϕ) on the unit sphere associated with it; see
preliminary section in the main paper.

Input channels Output channels Input scale Output scale

Block 1 E + 3 F [1] H/27 H/26

Block 2 E + 3 + F [1] F [2] H/26 H/24

Block 3 E + 3 + F [2] F [3] H/25 H/23

Block 4 E + 3 + F [3] F [4] H/24 H/22

Block 5 E + 3 + F [4] F [5] H/23 H/21

Block 6 E + 3 + F [5] F [6] H/22 H/21

Block 7 E + 3 + F [6] F [7] H/21 H

Output Block F [7] k × f + d × (k + 1) H H

Table 1. SOMSI Network architecture. The input to SOMSI is
the concatenation of reference image RGB values and positional
encodings of its 2D pixel positions.

Table 1 summarizes the architecture of our network: It
is composed of convolutional blocks, each block consisting
of four 1 × 1 convolutions, each followed by ReLU. The
positional encodings and color values of the reference ERP

are fed to each convolution block at different resolutions.
The output of Block i is bilinearly upsampled by a factor
of 2 and is given as input to Block i+1. We refer to Fig. 3
in the main paper for an overview of SOMSI’s architecture.

In Table 1, E = 4× l+2 is the positional encoding size,
for a given number of octaves l. The number of channels in
the last block corresponds to the total number of outputs per
pixel, i.e. d opacity values, d × k visibility/occlusion and
k × f multi-occlusion appearance features. The number of
features per channel is decreased linearly from F [1] = 256
to F [7] = 128.

Unless specified otherwise, we use the following settings
for our experiments: number of spheres d = 64, number of
occlusion layers k = 3 and number of octaves l = 4.

3. Vanilla RGBA MSI baseline without MLP.

We have experimented with a baseline that learns an MSI
scene representation, directly. It is possible to randomly ini-
tialize and directly optimize an m×d×4 dimensional MSI
via gradient descent. Although cheaper to predict, it fails
to produce realistic MSIs, as shown in Fig 1. PSNR score
for this baseline is much lower than our method (by atleast
8 PSNR drop on Sea-Port and Residential datasets). This
shows the importance of the inductive bias of using MLPs.
The inductive bias of the MLP is crucial in learning realis-
tic MSIs. Due to its poor performance, we disregarded this
baseline, in favor of more robust baselines such as MatryO-
DShka [1] and NeRF [3].

3.1. Training

We trained our model using a batch size b = 2 for 30000
epochs. We use the Adam [2] optimizer with the following
settings: lr = 0.001, β1 = 0.9, β2 = 0.999. The network
is implemented in the PyTorch [4] Deep Learning frame-
work.The network can be trained in about 18 to 24 hours on
an NVIDIA GPU that has 15 > GB memory.

1



Ground-truth Synthesized

Ground-truth SynthesizedGround-truth Synthesized

Figure 1. Sample Vanilla-MSI Result. Novel view (right) generated using Vanilla-MSI is quite blurry compared to GT (left). Producing
realistic MSIs without the inductive bias of MLPs is challenging. Please zoom in for details.

4. Calibrating Spherical Light Fields with
COLMAP [5]

The structure from motion toolbox from Shoenberger
et al. [5] (known as COLMAP) has become the standard
tool for calibrating multi-view datasets. COLMAP works
for pinhole and fisheye cameras. We calibrate our spher-
ical datasets (Coffee Area 1-4) by first extracting virtual
perspective views from each spherical image and applying
COLMAP on the collection of perspective images. After
calibration each virtual perspective camera will have known
rotation and translation from a reference world coordinate.

The next step is to determine the pose of all spher-
ical cameras based on their virtual perspective counter-
parts. This is possible because the output camera poses
of COLMAP and their corresponding spherical cameras are
related by a rotation matrix Rp

s . For a perspective image
whose principal axis intercepts the unit sphere at coordi-
nates (θ, ϕ), Rp

s can computed as: Rp
s = Rx × Rz , where

Rx is a rotation around the x axis by angle ϕ and Rz is a
rotation around the z axis by π

2 − θ.
Perspective to sphere rotation matrices Rs

p = (Rp
s)

T are
used to calculate the rotation component of the spherical
camera poses: Rs

w = Rs
p × Rp

w. Translation vectors are
adapted accordingly: tsw = Rs

p×tpw, where tsw is expressed
in the spherical camera coordinates system.

References

[1] Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian
Richardt, and James Tompkin. Matryodshka: Real-time 6dof
video view synthesis using multi-sphere images. In Euro-
pean Conference on Computer Vision (ECCV), pages 441–
459, 2020. 1

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In arXiv Preprint, 2014. 1

[3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision (ECCV),
pages 405–421. Springer, 2020. 1

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems (NIPS),
2019. 1

[5] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4104–
4113, 2016. 2

2


