
Appendix

A. Weakly-supervised localization
In this section, we provide quantitative and additional

qualitative results for weakly-supervised localization, dis-
cussed in the Sec. 5.3 of the main paper. Our quantitative re-
sults in Tab. 5, together with the qualitative results in Fig. 5
and Fig. 6, demonstrate the capability of our framework in
learning fine-grained representations that can be used for
more accurate pathology localization when just image-level
annotations are available.

A.1. Quantitative results

Experimental setup: Following the common protocol [11–
13], we quantitatively evaluate the applicability of our
DiRA framework in a weakly supervised setting using
ChestX-ray14 dataset. First, we use min-max normalization
to normalize each heatmap; then, following [11], we bina-
rize the heatmaps by thresholding at {60, 180}, and gener-
ate bounding boxes around the isolated regions. To evalu-
ate localization accuracy, we compute the intersection over
union (IoU) between the generated and ground truth bound-
ing boxes. According to [11, 12], a localization is correct
when the bounding box prediction overlaps with the ground
truth box with IoU ≥ δ. Following [11], we investigate the
accuracy of localization under various δ values, from 10%
to 60%. We run each method ten times and report the aver-
age accuracy across all runs.

Result: Tab. 5 shows the pathology localization accuracy of
our DiRA and underlying discriminative models. As seen,
in each of the six IoU thresholds, DiRA models significantly
outperform the corresponding discriminative models. In
particular, the average of improvement for MoCo-v2, Bar-
low Twins, and SimSiam across all IoU thresholds is 2.38%,
5.4%, and 9.4%, respectively.

A.2. Qualitative results

Experimental setup: During training, we initialize mod-
els with our DiRA pre-trained models, and fine-tune down-
stream models using only image-level disease labels. We
use heatmaps to approximate the spatial location of a par-
ticular thorax disease. We generate heatmaps using Grad-
CAM [13], a technique for highlighting the important re-
gions in the image for predicting the pathology class.

Results: Fig. 6 presents the visualizations of heatmaps gen-
erated by DiRA and the corresponding discriminative mod-
els for 8 thorax pathologies in ChestX-ray14 dataset. As
seen, DiRA models provide more accurate pathology local-
izations compared to the underlying discriminative meth-
ods. These results demonstrate the impact of restorative
learning in providing fine-grained features that are useful
for disease localization.

B. Datasets and tasks
We have examined our framework in a diverse suite of

9 downstream tasks, including classification and segmenta-
tion in X-ray, CT, and MRI modalities. In this section, we
provide the details of each dataset and the underlying task,
as well as the evaluation metric for each task.

ChestX-ray14: ChestX-ray14 is a large open source
dataset of de-identifie chest X-ray images. The dataset in-
cludes 112K chest images taken from 30K unique patients.
The ground truth consists of a label space of 14 thorax dis-
eases. We use the official patient-wise split released with
the dataset, including 86K training images and 25K testing
images. The models are trained to predict 14 pathologies
in a multi-label classification setting. The mean AUC score
over 14 diseases is used to evaluate the classification per-
formance. In addition to image-level labels, ChestX-ray14
provides bounding box annotations for approximately 1,000
test images. Of this set of images, bounding box annotations
are available for 8 out of 14 thorax diseases. During testing,
we use bounding box annotations to assess the accuracy of
pathology localization in a weakly-supervised setting. The
mean accuracy over 8 diseases is used to evaluate the local-
ization performance.

CheXpert: CheXpert is a hospital-scale publicly avail-
able dataset with 224K chest X-ray images taken from
65K unique patients. We use the official data split re-
leased with the dataset, including 224K training and 234
test images. The ground truth for the training set includes
14 thoracic pathologies that were retrieved automatically
from radiology reports. The testing set is labeled manu-
ally by board-certified radiologists for 5 selected thoracic
pathologies— Cardiomegaly, Edema, Consolidation, At-
electasis, and Pleural Effusion. The models are trained to
predict five pathologies in a multi-label classification set-
ting. The mean AUC score over 5 diseases is used to evalu-
ate the classification performance.

SIIM-ACR: This open dataset is provided by the Society
for Imaging Informatics in Medicine (SIIM) and American
College of Radiology, including 10K chest X-ray images
and pixel-wise segmentation mask for Pneumothorax dis-
ease. We randomly divided the dataset into training (80%)
and testing (20%). The models are trained to segment pneu-
mothorax from chest radiographic images (if present). The
segmentation performance was measured by the mean Dice
coefficient score.

NIH Montgomery: This publicly available dataset is pro-
vided by the Montgomery County’s Tuberculosis screening
program, including 138 chest X-ray images. There are 80
normal cases and 58 cases with Tuberculosis (TB) indica-
tions in this dataset. Moreover, ground truth segmentation
masks for left and right lungs are provided. We randomly



Method δ = 10% δ = 20% δ = 30% δ = 40% δ = 50% δ = 60%

MoCo-v2 [3] 54.89 39.43 24.81 14.59 7.58 2.68
DiRAMoCo-v2 58.13 (↑ 3.2) 42.74 (↑ 3.3) 27.52 (↑ 2.7) 16.25 (↑ 1.7) 9.30 (↑ 1.7) 4.35 (↑ 1.7)
Barlow Twins [4] 50.54 38.01 26.36 16.93 9.31 4.69
DiRABarlowTwins 58.98 (↑ 8.4) 45.26 (↑ 7.2) 32.71 (↑ 6.3) 21.71 (↑ 4.8) 13.62 (↑ 4.3) 6.26 (↑ 1.6)
SimSiam [5] 30.24 19.80 11.46 5.62 2.30 0.79
DiRASimSiam 51.07 (↑ 20.8) 34.24 (↑ 14.4) 20.64 (↑ 9.2) 11.32 (↑ 5.7) 6.46 (↑ 4.2) 2.90 (↑ 2.1)

Table 5. Weakly-supervised pathology localization accuracy under different IoU thresholds (δ): DiRA models provide stronger
representations for pathology localization with only image-level annotations. For each method, we report the average performance over
ten runs. The green arrows show the improvement of DiRA models compared with the underlying discriminative method in each IoU
threshold.

divided the dataset into a training set (80%) and a test set
(20%). The models are trained to segment left and right
lungs in chest scans. The segmentation performance is eval-
uated by the mean Dice score.

LUNA: This publicly-available dataset consists of 888 lung
CT scans with a slice thickness of less than 2.5mm. The
dataset were divided into training (445 cases), validation
(178 cases), and test (265 cases) sets. The dataset provides
a set of 5M candidate locations for lung nodule. Each lo-
cation is labeled as true positive (1) or false positive (0).
The models are trained to classify lung nodule candidates
into true positives and false positives in a binary classifica-
tion setting. We evaluate the classification accuracy by Area
Under the Curve (AUC) score.

PE-CAD: This dataset includes 121 computed tomography
pulmonary angiography (CTPA) scans with a total of 326
pulmonary embolism (PE). The dataset provides a set of
candidate locations for PE and is divided at the patient-level
into training and test sets. Training set contains 434 true
positive PE candidates and 3,406 false positive PE candi-
dates. Test set contains 253 true positive PE candidates and
2,162 false positive PE candidates. We pre-processed the
3D scans as suggested in [6]. The 3D models are trained to
classify PE candidates into true positives and false positives
in a binary classification setting. We evaluate the classifi-
cation accuracy by Area Under the Curve (AUC) score at
candidate-level.

LIDC-IDRI: The Lung Image Database Consortium im-
age collection (LIDC-IDRI) dataset is created by seven aca-
demic centers and eight medical imaging companies. The
dataset includes 1,018 chest CT scans and marked-up an-
notated lung nodules. The dataset is divided into train-
ing (510), validation (100), and test (408) sets. We pre-
processed the data by re-sampling the 3D volumes to 1-1-1
spacing and then extracting a 64×64×32 crop around each
nodule. The models are trained to segment long nodules in
these 3D crops. The segmentation accuracy is measured by
the Intersection over Union (IoU) metric.

LiTS: The dataset is provided by MICCAI 2017 LiTS Chal-
lenge, including 130 CT scans with expert ground-truth seg-
mentation masks for liver and tumor lesions. We divide
dataset into training (100 patients), validation (15 patients),
and test (15 patients) sets. The models are trained to seg-
ment liver in 3D scans. The segmentation accuracy is mea-
sured by the Intersection over Union (IoU) metric.

BraTS: The dataset includes brain MRI scans of 285 pa-
tients (210 HGG and 75 LGG) and segmentation ground
truth for necrotic and non-enhancing tumor core, peritu-
moral edema, GD-enhancing tumor, and background. For
each patient, four different MR volumes are available: na-
tive T1-weighted (T1), post-contrast T1-weighted (T1Gd),
T2-weighted (T2), and T2 fluid attenuated inversion recov-
ery (FLAIR). We divide dataset at patient-level into training
(190 patients) and testing (95 patients) sets. The models are
trained to segment brain tumors (background as negatives
class and tumor sub-regions as positive class). The segmen-
tation accuracy is measured by the Intersection over Union
(IoU) metric.

C. Implementation
C.1. Pre-training settings

We apply DiRA to four existing self-supervised meth-
ods [1, 3–5]. To be self-contained, we’ll explain each
method briefly here. Also, we provide additional pre-
training details that supplements Sec. 4.1.
MoCo-v2 [3]: We adopt MoCo-v2— a popular represen-
tative of contrastive learning methods, into our framework.
MoCo leverages a momentum encoder to ensure the con-
sistency of negative samples as they evolve during training.
Moreover, a queue K = {k1, k2, ...kN} is utilized to store
the representations of negative samples. The discrimination
task is to contrast representations of positive and negative
samples. As MoCo-v2 is adopted in DiRA, the encoder fθ
and projection head hθ are updated by back-propagation,
while fξ and hξ are updated by using an exponential mov-
ing average (EMA) of the parameters in fθ and hθ, respec-
tively. The discrimination branch is trained using InfoNCE
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Figure 6. Visualization of Grad-CAM heatmaps: We provide the heatmap examples for 8 thorax diseases in each column. The first row
in each sub-figure represents the results for the original self-supervised method, while the second row represents the original method when
adopted in DiRA framework. The black boxes represents the localization ground truths.

loss [7], which for a pair of positive samples x1 and x2 de-
fined as follows:

Ldis = −log
exp(z1 · z2/τ)

N∑
n=0

exp(z1 · kn/τ)
(5)

where z1 = hθ(fθ(x1)) and z2 = hξ(fξ(x2)), τ is a tem-
perature hyperparameter, and N is the queue size. Follow-
ing [3], fθ is a standard ResNet-50 and hθ is a two-layer
MLP head (hidden layer 2048-d, with ReLU). Moreover,
when adopting MoCo-v2 in DiRA, fθ, hθ, and gθ are op-

timized using SGD with an initial learning rate of 0.03,
weight decay 0.0001, and the SGD momentum 0.9.

SimSiam [5]: We adopt SimSiam— a popular represen-
tative of asymmetric instance discrimination methods, into
our framework. SimSiam trains the model without nega-
tive pairs and directly maximizes the similarity of two views
from an image using a simple siamese network followed by
a predictor head. To prevent collapsing solutions, a stop-
gradient operation is utilized. As such, the model param-
eters are only updated using one distorted version of the



input, while the representations from another distorted ver-
sion are used as a fixed target. As SimSiam is adopted in
DiRA, the encoder fθ and projection head hθ share weights
with fξ and hξ, respectively. The model is trained to maxi-
mize the agreement between the representations of positive
samples using negative cosine similarity, defined as follows:

D(z1, y2) = − z1
∥z1∥2

· y2
∥y2∥2

(6)

where z1 = hθ(fθ(x1)) and y2 = fξ(x2). The discrimina-
tion branch is trained using a symmetrized loss as follows:

Ldis =
1

2
D(z1, stopgrad(y2)) +

1

2
D(z2, stopgrad(y1))

(7)
where stopgrad means that y2 is treated as a constant in this
term. Following [5], fθ is a standard ResNet-50 and hθ

is a three-layer projection MLP head (hidden layer 2048-
d), followed by a two-layer predictor MLP head. More-
over, when adopting SimSiam in DiRA, fθ, hθ, and gθ are
optimized using SGD with a linear scaling learning rate
(lr×BatchSize/256). The initial learning rate is 0.05, weight
decay is 0.0001, and the SGD momentum is 0.9.

Barlow Twins [4]: We adopt Barlow Twins— a popular
representative of redundancy reduction instance discrim-
ination learning methods, into our framework. Barlow
Twins makes the cross-correlation matrix computed from
two siamese branches close to the identity matrix. By equat-
ing the diagonal elements of the cross-correlation matrix
to 1, the representation will be invariant to the distortions
applied to the samples. By equating the off-diagonal ele-
ments of the cross-correlation matrix to 0, the different vec-
tor components of the representation will be decorrelated,
so that the output units contain non-redundant information
about the sample. The discrimination loss is defined as fol-
lows:

Ldis =
∑
i

(1− Cii)2 + λ
∑
i

∑
i̸=j

C2
ij (8)

where C is the cross-correlation matrix computed be-
tween the outputs of the hθ and hξ networks along the batch
dimension. λ is a coefficient that determines the importance
of the invariance term and redundancy reduction term in the
loss. Following [4], fθ is a standard ResNet-50 and hθ is
a three-layer MLP head. Moreover, when adopting Barlow
Twins in DiRA, fθ, hθ, and gθ are optimized using LARS
optimizer with the learning rate schedule similar to [4].

TransVW [1]: TransVW defines the similar anatomical
patterns within medical images as anatomical visual words,
and combines the discrimination and restoration of visual
words in a single loss objective. As TransVW is adopted in
DiRA, the encoder fθ and projection head hθ are identical

to fξ and hξ, respectively. In particular, the discrimination
branch is trained to classify instances of visual words ac-
cording to their pseudo class labels using the standard cross-
entropy loss:

Ldis = − 1

B

B∑
b=1

C∑
c=1

Ybc logPbc (9)

where B denotes the batch size; C denotes the number of vi-
sual words classes; Y and P represent the ground truth (one-
hot pseudo label vector obtained from visual word classes)
and the prediction of hθ, respectively. Following [1], we
use 3D U-Net as the fθ and gθ. hθ includes a set of fully-
connected layers followed by a classification head. fθ and
gθ are trained with the same setting as [1].

Joint training process: Following [8, 9], we perform the
overall pre-training with the discrimination, restoration, and
adversarial losses in a gradual evolutionary manner. First,
the encoder fθ along with projector hθ are optimized us-
ing the discrimination loss Ldis according to the learning
schedule of the original discriminative methods [1, 3–5],
empowering the model with an initial discrimination abil-
ity. Then, the restoration and adversarial losses are further
fused into the training process incrementally. To stabilize
the adversarial training process and reduce the noise from
imperfect restoration at initial epochs [9], we first warm
up the fθ and gθ using the Ldis + Lres, and then add
the adversarial loss Ladv to jointly train the whole frame-
work; the optimization of the framework by incorporation
of Lres and Ladv takes up to 800 epochs. Following [2],
we use the early-stop technique on the validation set, and
the checkpoints with the lowest validation loss are used for
fine-tuning.

C.2. Fine-tuning settings

Preprocessing and data augmentation: Following [10],
for 2D target tasks on X-ray datasets (ChestX-ray14, CheX-
pert, SIIM-ACR, and Montgomery), we resize the images
to 224×224. For thorax diseases classification tasks on
ChestX-ray14 and CheXpert, we apply standard data aug-
mentation techniques, including random cropping and re-
sizing, horizontal flipping, and rotating. For segmentation
tasks on SIIM-ACR and Montgomery, we apply random
brightness contrast, random gamma, optical distortion, elas-
tic transformation, and grid distortion. For 3D target tasks,
we use regular data augmentations including random flip-
ping, transposing, rotating, and adding Gaussian noise.
Training parameters: We endeavour to optimize
each downstream task with the best performing hyper-
parameters. In all 2D and 3D downstream tasks, we use
Adam optimizer with β1 = 0.9, β2 = 0.999. We use
early-stop mechanism using the 10% of the training data



as the validation set to avoid over-fitting. For 2D classi-
fication tasks on ChestX-ray14 and CheXpert datasets, we
use a learning rate 2e − 4 and ReduceLROnPlateau as the
learning rate decay scheduler. For 2D segmentation tasks on
SIIM-ACR and Montgomery, we use a learning rate 1e− 3
and cosine learning rate decay scheduler. For all 3D down-
stream tasks, we use ReduceLROnPlateau as the learning
rate decay scheduler. For downstream tasks on LUNA, PE-
CAD, LIDC, and LiTS, we use a learning rate 1e − 2. For
BraTS dataset, we use a learning rate of 1e− 3.
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